示例#1
0
 def before(dim):
     X = relay.var("X", shape=(1, dim))
     W = relay.var("W", shape=(3 * dim, dim))
     matmul = relay.nn.dense(X, W)
     splitted = relay.split(matmul, indices_or_sections=3, axis=1)
     out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2])
     return relay.Function([X, W], out)
示例#2
0
文件: dcgan.py 项目: LANHUIYING/tvm
def get_net(batch_size, random_len=100, oshape=(3, 64, 64), ngf=128, code=None, dtype="float32"):
    """get net of dcgan generator"""
    assert oshape[-1] == 64, "Only support 64x64 image"
    assert oshape[-2] == 64, "Only support 64x64 image"

    code = relay.var("data", dtype=dtype, shape=(batch_size, random_len)) if code is None else code
    dense_weight = relay.var("dense_weight")
    dense = relay.nn.dense(code, weight=dense_weight, units=4*4*ngf*8)
    relu = relay.nn.relu(dense)
    # 4 x 4
    reshape = relay.reshape(relu, newshape=(-1, ngf * 8, 4, 4))
    # 8 x 8
    dc8 = deconv2d_bn_relu(
        reshape, ishape=(ngf * 8, 4, 4), oshape=(ngf * 4, 8, 8), kshape=(4, 4), prefix="g2")
    # 16x16
    dc16 = deconv2d_bn_relu(
        dc8, ishape=(ngf * 4, 8, 8), oshape=(ngf * 2, 16, 16), kshape=(4, 4), prefix="g3")
    # 32x32
    dc32 = deconv2d_bn_relu(
        dc16, ishape=(ngf * 2, 16, 16), oshape=(ngf, 32, 32), kshape=(4, 4), prefix="g4")
    # 64x64
    dc64 = deconv2d(
        dc32, ishape=(ngf, 32, 32), oshape=oshape[-3:], kshape=(4, 4), name="g5_deconv")
    tanh = relay.tanh(dc64)

    args = relay.ir_pass.free_vars(tanh)
    return relay.Function(args, tanh)
示例#3
0
def get_conv1d_bias(x_shape=(1, 3, 224), k_shape=(10, 3, 3), activation=None, dtype="float32"):
    conv, dic, param_lst = get_conv1d(x_shape=x_shape, k_shape=k_shape, dtype=dtype)
    bias = relay.var("bias", shape=(k_shape[0],), dtype=dtype)
    out = relay.nn.bias_add(conv, bias)
    dic["bias"] = (k_shape[0],)
    param_lst += ["bias"]

    if activation == "relu":
        return relay.nn.relu(out), dic, param_lst
    elif activation == "tanh":
        return relay.tanh(out), dic, param_lst
    elif activation == "sigmoid":
        return relay.sigmoid(out), dic, param_lst
    else:
        return out, dic, param_lst
示例#4
0
def _get_model(shape, input_zp, input_sc, output_zp, output_sc, dtype):
    a = relay.var("a", shape=shape, dtype=dtype)
    dequantize = relay.qnn.op.dequantize(
        a,
        input_scale=relay.const(input_sc, "float32"),
        input_zero_point=relay.const(input_zp, "int32"),
    )
    tanh = relay.tanh(dequantize)
    model = relay.qnn.op.quantize(
        tanh,
        output_scale=relay.const(output_sc, "float32"),
        output_zero_point=relay.const(output_zp, "int32"),
        out_dtype=dtype,
    )
    return model
示例#5
0
 def create_graph():
     data = relay.var('data', shape=(10, 10))
     bn_gamma = relay.var("bn_gamma")
     bn_beta = relay.var("bn_beta")
     bn_mmean = relay.var("bn_mean")
     bn_mvar = relay.var("bn_var")
     x = relay.nn.batch_norm(data, bn_gamma, bn_beta, bn_mmean, bn_mvar)
     out_1 = relay.nn.relu(x[0])
     bn_out_1 = x[1]
     out_2 = relay.tanh(bn_out_1)
     out_3 = relay.log(bn_out_1)
     out = relay.Tuple([out_1, out_2, out_3])
     func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar],
                           out)
     return func
示例#6
0
    def expected(dim):
        p0 = relay.var("p0", shape=(1, dim))
        p1 = relay.var("p1", shape=(3 * dim, dim))
        matmul = relay.nn.dense(p0, p1)
        f0 = relay.Function([p0, p1], matmul)

        p01 = relay.var("p01", shape=(1, 3 * dim))
        splitted = relay.split(p01, indices_or_sections=3, axis=1)
        out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2])
        f1 = relay.Function([p01], out)

        X = relay.var("X", shape=(1, dim))
        W = relay.var("W", shape=(3 * dim, dim))
        y = relay.Call(f0, [X, W])
        z = relay.Call(f1, [y])
        return relay.Function([X, W], z)
示例#7
0
    def expected(dim):
        p0 = relay.var("p0", shape=(1, dim))
        p1 = relay.var("p1", shape=(3 * dim, dim))
        matmul = relay.nn.dense(p0, p1)
        f0 = relay.Function([p0, p1], matmul)

        p01 = relay.var("p01", shape=(1, 3 * dim))
        splitted = relay.split(p01, indices_or_sections=3, axis=1)
        out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2])
        f1 = relay.Function([p01], out)

        X = relay.var("X", shape=(1, dim))
        W = relay.var("W", shape=(3 * dim, dim))
        y = relay.Call(f0, [X, W])
        z = relay.Call(f1, [y])
        return relay.Function([X, W], z)
    def expected():
        data = relay.var('data', shape=(10, 10))
        cb_1 = compiler_begin(data, "test")
        O_1 = relay.abs(cb_1)
        ce_2 = compiler_end(O_1, "test")
        O_2 = relay.nn.relu(O_1)
        ce_3 = compiler_end(O_2, "test")

        X = relay.tanh(ce_2)

        cb_3 = compiler_begin(ce_3, "test")
        cb_4 = compiler_begin(X, "test")
        O_3 = relay.add(cb_3, cb_4)
        ce_4 = compiler_end(O_3, "test")

        func = relay.Function([data], ce_4)
        return func
示例#9
0
        def create_external_func1(mod_, compiler_name, symbol_name):
            x_int = relay.var("x_int", shape=(10, 10))

            p0 = relay.nn.relu(x_int)
            q0 = relay.tanh(x_int)

            # reshapes
            p0_reshaped = relay.reshape(p0, newshape=100)
            q0_reshaped = relay.reshape(q0, newshape=100)
            ofms = relay.concatenate((p0_reshaped, q0_reshaped), 0)

            f1 = relay.Function([x_int], ofms)
            f1 = set_func_attr(f1, compiler_name, symbol_name)
            glb_f1 = relay.GlobalVar(symbol_name)
            mod_[glb_f1] = f1
            mod_ = relay.transform.InferType()(mod_)
            return glb_f1, mod_
示例#10
0
def test_region_set_creator_diamond():
    data = relay.var('data', shape=(10, 10))
    cb_1 = compiler_begin(data, 'test_target')
    O_1 = relay.abs(cb_1)
    ce_1 = compiler_end(O_1, 'test_target')
    ce_2 = compiler_end(O_1, 'test_target')
    cb_2 = compiler_begin(ce_1, 'test_target')
    O_2 = relay.nn.relu(cb_2)
    ce_3 = compiler_end(O_2, 'test_target')
    cb_d = compiler_begin(ce_2, "default")
    X = relay.tanh(cb_d)
    ce_d = compiler_end(X, 'default')
    cb_3 = compiler_begin(ce_3, 'test_target')
    cb_4 = compiler_begin(ce_d, 'test_target')
    O_3 = relay.add(cb_3, cb_4)
    ce_4 = compiler_end(O_3, 'test_target')
    diamond = relay.Function([data], ce_4)

    region_set = relay.analysis.AnnotatedRegionSet(diamond,
                                                   relay.op.get("annotation.compiler_begin"),
                                                   relay.op.get("annotation.compiler_end"))
    assert len(region_set) == 4
    check_region(
        region_set,
        [cb_1],
        [cb_1, O_1, ce_1, ce_2],
        [ce_1, ce_2],
    )
    check_region(
        region_set,
        [cb_2],
        [cb_2, O_2, ce_3],
        [ce_3],
    )
    check_region(
        region_set,
        [cb_d],
        [cb_d, X, ce_d],
        [ce_d],
    )
    check_region(
        region_set,
        [cb_3, cb_4],
        [cb_3, cb_4, O_3, ce_4],
        [ce_4],
    )
示例#11
0
def conv2d(x, node: Conv, params):
    wname = f'{node.name}.weight'
    bname = f'{node.name}.bias'
    weight = tvm.nd.array(node.weight)
    bias = tvm.nd.array(node.bias)
    params[wname] = weight
    params[bname] = bias

    x = relay.nn.conv2d(x, weight=relay.var(wname, shape=weight.shape), strides=node.stride, padding=node.padding, channels=node.out_channels, kernel_size=node.kernel, groups=node.groups)
    x = relay.nn.bias_add(x, relay.var(bname, shape=bias.shape), axis=1)
    if node.act == "relu":
        x = relay.nn.relu(x)
    elif node.act == "tanh":
        x = relay.tanh(x)
    elif node.act == "identity":
        x = x
    return x
示例#12
0
def get_net(batch_size,
            random_len=100,
            oshape=(3, 64, 64),
            ngf=128,
            code=None,
            dtype="float32"):
    """get net of dcgan generator"""
    assert oshape[-1] == 64, "Only support 64x64 image"
    assert oshape[-2] == 64, "Only support 64x64 image"

    code = relay.var("data", dtype=dtype,
                     shape=(batch_size, random_len)) if code is None else code
    dense_weight = relay.var("dense_weight")
    dense = relay.nn.dense(code, weight=dense_weight, units=4 * 4 * ngf * 8)
    relu = relay.nn.relu(dense)
    # 4 x 4
    reshape = relay.reshape(relu, newshape=(-1, ngf * 8, 4, 4))
    # 8 x 8
    dc8 = deconv2d_bn_relu(reshape,
                           ishape=(ngf * 8, 4, 4),
                           oshape=(ngf * 4, 8, 8),
                           kshape=(4, 4),
                           prefix="g2")
    # 16x16
    dc16 = deconv2d_bn_relu(dc8,
                            ishape=(ngf * 4, 8, 8),
                            oshape=(ngf * 2, 16, 16),
                            kshape=(4, 4),
                            prefix="g3")
    # 32x32
    dc32 = deconv2d_bn_relu(dc16,
                            ishape=(ngf * 2, 16, 16),
                            oshape=(ngf, 32, 32),
                            kshape=(4, 4),
                            prefix="g4")
    # 64x64
    dc64 = deconv2d(dc32,
                    ishape=(ngf, 32, 32),
                    oshape=oshape[-3:],
                    kshape=(4, 4),
                    name="g5_deconv")
    tanh = relay.tanh(dc64)

    args = relay.analysis.free_vars(tanh)
    return relay.Function(args, tanh)
    def create_graph():
        data = relay.var('data', shape=(10, 10))

        cb_1 = compiler_begin(data, 'test_target')
        O_1 = relay.abs(cb_1)
        ce_2 = compiler_end(O_1, 'test_target')
        O_2 = relay.nn.relu(O_1)
        ce_3 = compiler_end(O_2, 'test_target')

        X = relay.tanh(ce_2)

        cb_3 = compiler_begin(ce_3, 'test_target')
        cb_4 = compiler_begin(X, 'test_target')
        O_3 = relay.add(cb_3, cb_4)
        ce_4 = compiler_end(O_3, 'test_target')

        func = relay.Function([data], ce_4)
        return func
示例#14
0
    def expected(dim):
        p0 = relay.var("p0", shape=(1, dim))
        p1 = relay.var("p1", shape=(3 * dim, dim))
        matmul = relay.nn.dense(p0, p1)
        f0 = relay.Function([p0, p1], matmul)
        f0 = f0.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

        p01 = relay.var("p01", shape=(1, 3 * dim))
        splitted = relay.split(p01, indices_or_sections=3, axis=1)
        out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2])
        f1 = relay.Function([p01], out)
        f1 = f1.set_attribute("Primitive", tvm.tir.IntImm("int32", 1))

        X = relay.var("X", shape=(1, dim))
        W = relay.var("W", shape=(3 * dim, dim))
        y = relay.Call(f0, [X, W])
        z = relay.Call(f1, [y])
        return relay.Function([X, W], z)
示例#15
0
    def expected():
        mod = tvm.IRModule()

        # function 1
        f1_cb1 = relay.var('test_target_1_i0', shape=(10, 10))
        f1_O_1 = relay.abs(f1_cb1)
        f1_O_2 = relay.nn.relu(f1_O_1)
        f1_out = relay.Tuple((f1_O_2, f1_O_1))
        func1 = relay.Function([f1_cb1], f1_out)

        func1 = func1.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
        func1 = func1.with_attr("Inline", tvm.tir.IntImm("int32", 1))
        func1 = func1.with_attr("Compiler", tvm.tir.StringImm("test_target"))
        func1 = func1.with_attr("global_symbol",
                                container.String("test_target_1"))
        gv1 = relay.GlobalVar("test_target_1")
        mod[gv1] = func1

        # function 0
        f2_cb3 = relay.var('test_target_0_i0', shape=(10, 10))
        f2_cb4 = relay.var('test_target_0_i1', shape=(10, 10))
        f2_O_3 = relay.add(f2_cb3, f2_cb4)
        func0 = relay.Function([f2_cb3, f2_cb4], f2_O_3)

        func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
        func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1))
        func0 = func0.with_attr("Compiler", tvm.tir.StringImm("test_target"))
        func0 = func0.with_attr("global_symbol",
                                container.String("test_target_0"))
        gv0 = relay.GlobalVar("test_target_0")
        mod[gv0] = func0

        # body
        data = relay.var('data', shape=(10, 10))
        tuple_out = gv1(data)
        ce_2 = relay.TupleGetItem(tuple_out, 1)
        ce_3 = relay.TupleGetItem(tuple_out, 0)

        X = relay.tanh(ce_2)
        ce_4 = gv0(ce_3, X)
        func = relay.Function([data], ce_4)
        mod["main"] = func

        return mod
    def diamond_graph_fanouts():
        data = relay.var('data', shape=(10, 10))
        cb_1 = compiler_begin(data, "test")
        O_1 = relay.abs(cb_1)
        ce_1 = compiler_end(O_1, "test")
        ce_2 = compiler_end(O_1, "test")
        cb_2 = compiler_begin(ce_1, "test")
        O_2 = relay.nn.relu(cb_2)
        ce_3 = compiler_end(O_2, "test")

        X = relay.tanh(ce_2)

        cb_3 = compiler_begin(ce_3, "test")
        cb_4 = compiler_begin(X, "test")
        O_3 = relay.add(cb_3, cb_4)
        ce_4 = compiler_end(O_3, "test")

        diamond = relay.Function([data], ce_4)
        return diamond
示例#17
0
def test_region_set_creator_merged():
    data = relay.var("data", shape=(10, 10))
    cb_1 = compiler_begin(data, "test_target")
    O_1 = relay.abs(cb_1)
    ce_2 = compiler_end(O_1, "test_target")
    O_2 = relay.nn.relu(O_1)
    ce_3 = compiler_end(O_2, "test_target")
    cb_d = compiler_begin(ce_2, "default")
    X = relay.tanh(cb_d)
    ce_d = compiler_end(X, "default")
    cb_3 = compiler_begin(ce_3, "test_target")
    cb_4 = compiler_begin(ce_d, "test_target")
    O_3 = relay.add(cb_3, cb_4)
    O_4 = relay.add(cb_3, cb_4)
    O_5 = relay.Tuple([O_3, O_4])
    ce_4 = compiler_end(O_5, "test_target")
    merged = relay.Function([data], ce_4)

    region_set = relay.analysis.AnnotatedRegionSet(
        merged, relay.op.get("annotation.compiler_begin"),
        relay.op.get("annotation.compiler_end"))
    assert len(region_set) == 3
    check_region(
        region_set,
        "test_target",
        [cb_1],
        [cb_1, O_1, O_2, ce_2, ce_3],
        [ce_2, ce_3],
    )
    check_region(
        region_set,
        "default",
        [cb_d],
        [cb_d, X, ce_d],
        [ce_d],
    )
    check_region(
        region_set,
        "test_target",
        [cb_3, cb_4],
        [cb_3, cb_4, O_3, O_4, O_5, ce_4],
        [ce_4],
    )
    def expected():
        mod = tvm.IRModule()

        # function 0
        f0_i0 = relay.var(target + "_0_i0", shape=(10, 10))
        f0_i1 = relay.var(target + "_0_i1")
        f0_i2 = relay.var(target + "_0_i2")
        f0_i3 = relay.var(target + "_0_i3")
        f0_i4 = relay.var(target + "_0_i4")
        f0_n0 = relay.nn.batch_norm(f0_i0, f0_i1, f0_i2, f0_i3, f0_i4)
        f0_n1 = f0_n0[1]
        f0_n2 = relay.nn.relu(f0_n0[0])
        f0_o0 = relay.Tuple([f0_n2, f0_n1])
        func0 = relay.Function([f0_i0, f0_i1, f0_i2, f0_i3, f0_i4], f0_o0)

        func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1))
        func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1))
        func0 = func0.with_attr("Compiler", target)
        func0 = func0.with_attr("global_symbol", target + "_0")
        gv0 = relay.GlobalVar(target + "_0")
        mod[gv0] = func0
        mod = transform.InferType()(mod)

        # body
        data = relay.var("data", shape=(10, 10))
        bn_gamma = relay.var("bn_gamma")
        bn_beta = relay.var("bn_beta")
        bn_mmean = relay.var("bn_mean")
        bn_mvar = relay.var("bn_var")
        function_out = gv0(data, bn_gamma, bn_beta, bn_mmean, bn_mvar)
        get_out0 = relay.TupleGetItem(function_out, 0)
        get_out1 = relay.TupleGetItem(function_out, 1)
        out_2 = relay.tanh(get_out1)
        out_3 = relay.log(get_out1)
        out = relay.Tuple([get_out0, out_2, out_3])
        func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], out)
        mod["main"] = func
        mod = transform.InferType()(mod)
        return mod
示例#19
0
文件: test_dnnl.py 项目: wenxcs/tvm
def get_conv3d_transpose(
    x_shape=(1, 32, 8, 8, 8),
    k_shape=(32, 16, 3, 3, 3),
    groups=1,
    padding=(0, 0, 0),
    strides=(1, 1, 1),
    output_padding=(0, 0, 0),
    activation=None,
    dtype="float32",
    data_layout="NCDHW",
    kernel_layout="OIDHW",
):
    x = relay.var("x", shape=(x_shape), dtype=dtype)
    kernel = relay.const(np.random.randint(0, 1, k_shape).astype(dtype))
    out = relay.nn.conv3d_transpose(
        x,
        kernel,
        channels=k_shape[1],
        kernel_size=k_shape[2:5],
        groups=groups,
        padding=padding,
        strides=strides,
        output_padding=output_padding,
        data_layout=data_layout,
        kernel_layout=kernel_layout,
    )
    dic = {"x": x_shape, "kernel": k_shape}
    param_lst = ["kernel"]

    if activation == "relu":
        return relay.nn.relu(out), dic, param_lst
    elif activation == "tanh":
        return relay.tanh(out), dic, param_lst
    elif activation == "sigmoid":
        return relay.sigmoid(out), dic, param_lst
    else:
        return out, dic, param_lst
    def expected():
        mod = tvm.IRModule()

        # function 1
        f1_cb1 = relay.var("test_target_0_i0", shape=(10, 10))
        f1_O_1 = relay.abs(f1_cb1)
        f1_O_2 = relay.nn.relu(f1_O_1)
        f1_out = relay.Tuple((f1_O_2, f1_O_1))
        func1 = relay.Function([f1_cb1], f1_out)
        func1 = set_func_attr(func1, "test_target", "test_target_0")
        gv1 = relay.GlobalVar("test_target_0")
        mod[gv1] = func1
        mod = relay.transform.InferType()(mod)

        # function 0
        f2_cb3 = relay.var("test_target_1_i0", shape=(10, 10))
        f2_cb4 = relay.var("test_target_1_i1", shape=(10, 10))
        f2_O_3 = relay.add(f2_cb3, f2_cb4)
        func0 = relay.Function([f2_cb3, f2_cb4], f2_O_3)
        func0 = set_func_attr(func0, "test_target", "test_target_1")
        gv0 = relay.GlobalVar("test_target_1")
        mod[gv0] = func0
        mod = relay.transform.InferType()(mod)

        # body
        data = relay.var("data", shape=(10, 10))
        tuple_out = gv1(data)
        ce_2 = relay.TupleGetItem(tuple_out, 1)
        ce_3 = relay.TupleGetItem(tuple_out, 0)

        X = relay.tanh(ce_2)
        ce_4 = gv0(ce_3, X)
        func = relay.Function([data], ce_4)
        mod["main"] = func
        mod = relay.transform.InferType()(mod)
        return mod
示例#21
0
文件: lstm.py 项目: LANHUIYING/tvm
def lstm_cell(num_hidden, batch_size=1, dtype="float32", name=""):
    """Long-Short Term Memory (LSTM) network cell.

    Parameters
    ----------
    num_hidden : int
        Number of units in output symbol.

    batch_size : int
        Batch size (length of states).

    Returns
    -------
    result : tvm.relay.Function
        A Relay function that evaluates an LSTM cell.
        The function takes in a tensor of input data, a tuple of two
        states, and weights and biases for dense operations on the
        inputs and on the state. It returns a tuple with two members,
        an output tensor and a tuple of two new states.
    """
    builder = relay.ScopeBuilder()

    input_type = relay.TensorType((batch_size, num_hidden), dtype)
    weight_type = relay.TensorType((4*num_hidden, num_hidden), dtype)
    bias_type = relay.TensorType((4*num_hidden,), dtype)

    dense_type = relay.TensorType((batch_size, 4*num_hidden), dtype)
    slice_type = relay.TupleType([input_type, input_type,
                                  input_type, input_type])
    ret_type = relay.TupleType([input_type,
                                relay.TupleType([input_type, input_type])])

    inputs = relay.Var("inputs", input_type)
    states = relay.Var("states",
                       relay.TupleType([input_type, input_type]))

    i2h_weight = relay.Var("i2h_weight", weight_type)
    i2h_bias = relay.Var("i2h_bias", bias_type)

    h2h_weight = relay.Var("h2h_weight", weight_type)
    h2h_bias = relay.Var("h2h_bias", bias_type)

    i2h = builder.let(("i2h", dense_type),
                      layers.dense_add_bias(
                          data=inputs,
                          units=num_hidden * 4,
                          weight=i2h_weight, bias=i2h_bias,
                          name="%si2h" % name))
    h2h = builder.let(("h2h", dense_type),
                      layers.dense_add_bias(
                          data=relay.TupleGetItem(states, 0),
                          units=num_hidden * 4,
                          weight=h2h_weight, bias=h2h_bias,
                          name="%sh2h" % name))

    gates = builder.let(("gates", dense_type), relay.add(i2h, h2h))
    slice_gates = builder.let(("slice_gates", slice_type),
                              relay.split(gates,
                                          indices_or_sections=4,
                                          axis=1).astuple())

    in_gate = builder.let(("in_gate", input_type),
                          relay.sigmoid(relay.TupleGetItem(slice_gates, 0)))
    forget_gate = builder.let(("forget_gate", input_type),
                              relay.sigmoid(relay.TupleGetItem(slice_gates, 1)))
    in_transform = builder.let(("in_transform", input_type),
                               relay.tanh(relay.TupleGetItem(slice_gates, 2)))
    out_gate = builder.let(("out_gate", input_type),
                           relay.sigmoid(relay.TupleGetItem(slice_gates, 3)))

    next_c = builder.let(("next_c", input_type),
                         relay.add(relay.multiply(forget_gate,
                                                  relay.TupleGetItem(states, 1)),
                                   relay.multiply(in_gate, in_transform)))
    next_h = builder.let(("next_h", input_type),
                         relay.multiply(out_gate, relay.tanh(next_c)))
    ret = builder.let(("ret", ret_type),
                      relay.Tuple([next_h, relay.Tuple([next_h, next_c])]))
    builder.ret(ret)

    body = builder.get()

    return relay.Function([inputs, states, i2h_weight,
                           i2h_bias, h2h_weight, h2h_bias],
                          body, ret_type)
    def _execute(self):
        self.node_dict = {}
        # self.node_dict['1'] = relay.const(np.zeros((1, 128)), dtype='int32')
        gelu_a = relay.var('gelu_a', shape=())
        gelu_b = relay.var('gelu_b', shape=())
        gelu_c = relay.var('gelu_c', shape=())
        gelu_d = relay.var('gelu_d', shape=())
        gelu_e = relay.var('gelu_e', shape=())

        self.node_dict['1'] = relay.var('input.1', shape=(1,128), dtype='int32')
        self.node_dict['2'] = relay.var('input.2', shape=(1,128), dtype='int32')
        for gnode in self.graph:
            name = gnode['name']
            op_type = gnode['op_type']
            attrs = gnode['attrs']
            del attrs['A_shape']
            del attrs['O_shape']

            inputs = gnode['inputs']

            if op_type == 'Const':
                arr = np.zeros(attrs['shape'], dtype=np.int32)
                y =  relay.const(arr, dtype='int32')

            elif op_type == 'expand_dims':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.expand_dims(x, attrs['axis'], attrs['num_newaxis'])

            elif op_type == 'reshape':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.reshape(x, attrs['newshape'])
            elif op_type == 'take':
                data = get_input(self.node_dict, self.params, inputs[0])
                indices = get_input(self.node_dict, self.params, inputs[1])
                y = relay.take(data, indices, axis=attrs['axis'][0], mode=attrs['mode'])
            elif op_type == 'one_hot':
                x = get_input(self.node_dict, self.params, inputs[0])
                cc1 = get_input(self.node_dict, self.params, inputs[1])
                cc2 = get_input(self.node_dict, self.params, inputs[2])
                y = relay.one_hot(x, cc1, cc2, **attrs)
            elif op_type == 'strided_slice':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.strided_slice(x, **attrs)
            elif op_type == 'mean':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.mean(x, axis=attrs['axis'],
                        exclude=attrs['exclude'],
                        keepdims=attrs['keepdims'])
            elif op_type == 'nn.dense':
                x = get_input(self.node_dict, self.params, inputs[0])
                weight = get_input(self.node_dict, self.params, inputs[1])
                y = relay.nn.dense(x, weight, units=attrs['units'][0])
            elif op_type == 'add':
                x1 = get_input(self.node_dict, self.params, inputs[0])
                x2 = get_input(self.node_dict, self.params, inputs[1])
                y = relay.add(x1, x2)
            elif op_type == 'subtract':
                x1 = get_input(self.node_dict, self.params, inputs[0])
                x2 = get_input(self.node_dict, self.params, inputs[1])
                y = relay.subtract(x1, x2)
            elif op_type == 'multiply':
                x1 = get_input(self.node_dict, self.params, inputs[0])
                x2 = get_input(self.node_dict, self.params, inputs[1])
                y = relay.multiply(x1, x2)
            elif op_type == 'power':
                x1 = get_input(self.node_dict, self.params, inputs[0])
                x2 = get_input(self.node_dict, self.params, inputs[1])
                y = relay.power(x1, x2)
            elif op_type == 'transpose':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.transpose(x, **attrs)
            elif op_type == 'tanh':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.tanh(x)
            elif op_type == 'squeeze':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.squeeze(x, **attrs)
            elif op_type == 'nn.batch_matmul':
                x1 = get_input(self.node_dict, self.params, inputs[0])
                x2 = get_input(self.node_dict, self.params, inputs[1])
                y = relay.nn.batch_matmul(x1, x2)
            elif op_type == 'nn.softmax':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = relay.nn.softmax(x, **attrs)
            elif op_type == 'gelu':
                x = get_input(self.node_dict, self.params, inputs[0])
                y = x * gelu_a * (gelu_b + relay.tanh(
                           ( gelu_c * (x + gelu_d *
                                   relay.power(x, gelu_e)))))
            else:
                import pdb; pdb.set_trace()
                print( 'not supported op %s ' % op_type)
            self.node_dict[name] = y

        output_name = self.output_node_ids[0]
        output = self.node_dict[output_name]

        inputs = relay.analysis.free_vars(output)
        # inputs = [self.node_dict['1'], self.node_dict['2']]
        func = relay.Function(inputs, output)
        mod = tvm.IRModule()
        mod['main'] = func

        with relay.build_config(opt_level=0):
            graph, lib, params = relay.build(mod, 'llvm', params={})
        self.m = graph_runtime.create(graph, lib, tvm.cpu())
示例#23
0
def lstm_cell(num_hidden, batch_size=1, dtype="float32", name=""):
    """Long-Short Term Memory (LSTM) network cell.

    Parameters
    ----------
    num_hidden : int
        Number of units in output symbol.

    batch_size : int
        Batch size (length of states).

    Returns
    -------
    result : tvm.relay.Function
        A Relay function that evaluates an LSTM cell.
        The function takes in a tensor of input data, a tuple of two
        states, and weights and biases for dense operations on the
        inputs and on the state. It returns a tuple with two members,
        an output tensor and a tuple of two new states.
    """
    builder = relay.ScopeBuilder()

    input_type = relay.TensorType((batch_size, num_hidden), dtype)
    weight_type = relay.TensorType((4 * num_hidden, num_hidden), dtype)
    bias_type = relay.TensorType((4 * num_hidden,), dtype)

    dense_type = relay.TensorType((batch_size, 4 * num_hidden), dtype)
    slice_type = relay.TupleType([input_type, input_type, input_type, input_type])
    ret_type = relay.TupleType([input_type, relay.TupleType([input_type, input_type])])

    inputs = relay.Var("inputs", input_type)
    states = relay.Var("states", relay.TupleType([input_type, input_type]))

    i2h_weight = relay.Var("i2h_weight", weight_type)
    i2h_bias = relay.Var("i2h_bias", bias_type)

    h2h_weight = relay.Var("h2h_weight", weight_type)
    h2h_bias = relay.Var("h2h_bias", bias_type)

    i2h = builder.let(
        ("i2h", dense_type),
        layers.dense_add_bias(
            data=inputs, units=num_hidden * 4, weight=i2h_weight, bias=i2h_bias, name="%si2h" % name
        ),
    )
    h2h = builder.let(
        ("h2h", dense_type),
        layers.dense_add_bias(
            data=relay.TupleGetItem(states, 0),
            units=num_hidden * 4,
            weight=h2h_weight,
            bias=h2h_bias,
            name="%sh2h" % name,
        ),
    )

    gates = builder.let(("gates", dense_type), relay.add(i2h, h2h))
    slice_gates = builder.let(
        ("slice_gates", slice_type), relay.split(gates, indices_or_sections=4, axis=1).astuple()
    )

    in_gate = builder.let(
        ("in_gate", input_type), relay.sigmoid(relay.TupleGetItem(slice_gates, 0))
    )
    forget_gate = builder.let(
        ("forget_gate", input_type), relay.sigmoid(relay.TupleGetItem(slice_gates, 1))
    )
    in_transform = builder.let(
        ("in_transform", input_type), relay.tanh(relay.TupleGetItem(slice_gates, 2))
    )
    out_gate = builder.let(
        ("out_gate", input_type), relay.sigmoid(relay.TupleGetItem(slice_gates, 3))
    )

    next_c = builder.let(
        ("next_c", input_type),
        relay.add(
            relay.multiply(forget_gate, relay.TupleGetItem(states, 1)),
            relay.multiply(in_gate, in_transform),
        ),
    )
    next_h = builder.let(("next_h", input_type), relay.multiply(out_gate, relay.tanh(next_c)))
    ret = builder.let(("ret", ret_type), relay.Tuple([next_h, relay.Tuple([next_h, next_c])]))
    builder.ret(ret)

    body = builder.get()

    return relay.Function(
        [inputs, states, i2h_weight, i2h_bias, h2h_weight, h2h_bias], body, ret_type
    )
示例#24
0
def tvm_elem_tanh(node, ctx):
    inp = ctx[node.args[0].name]
    th = relay.tanh(inp)
    return node.args[1].name, th
示例#25
0
 def get_inner_func_1():
     x = relay.var("x", shape=(1, 4, 5, 6), dtype="int8")
     x = relay.tanh(x)
     x = _create_primitive_function(x)
     return x