def primfunc_global_allocates(placeholder_144: T.handle, placeholder_145: T.handle, placeholder_146: T.handle, T_cast_48: T.handle) -> None:
    # function attr dict
    T.func_attr({"global_symbol": "fused_nn_conv2d_add_cast_fixed_point_multiply_clip_cast_cast_13", "tir.noalias": True})
    placeholder_147 = T.match_buffer(placeholder_144, [100352], dtype="int16", elem_offset=0, align=128, offset_factor=1)
    placeholder_148 = T.match_buffer(placeholder_145, [4608], dtype="int16", elem_offset=0, align=128, offset_factor=1)
    placeholder_149 = T.match_buffer(placeholder_146, [512], dtype="int32", elem_offset=0, align=128, offset_factor=1)
    T_cast_49 = T.match_buffer(T_cast_48, [100352], dtype="int16", elem_offset=0, align=128, offset_factor=1)
    # body
    PaddedInput_22 = T.allocate([131072], "int16", "global")
    DepthwiseConv2d_9 = T.allocate([100352], "int32", "global")
    for i1_29, i2_39, i3_40 in T.grid(16, 16, 512):
        PaddedInput_22[(((i1_29*8192) + (i2_39*512)) + i3_40)] = T.if_then_else(((((1 <= i1_29) and (i1_29 < 15)) and (1 <= i2_39)) and (i2_39 < 15)), placeholder_147[((((i1_29*7168) + (i2_39*512)) + i3_40) - 7680)], T.int16(0), dtype="int16")
    for i_9, j_9, c_9 in T.grid(14, 14, 512):
        DepthwiseConv2d_9[(((i_9*7168) + (j_9*512)) + c_9)] = 0
        for di_9, dj_9 in T.grid(3, 3):
            DepthwiseConv2d_9[(((i_9*7168) + (j_9*512)) + c_9)] = (DepthwiseConv2d_9[(((i_9*7168) + (j_9*512)) + c_9)] + (PaddedInput_22[(((((i_9*8192) + (di_9*8192)) + (j_9*512)) + (dj_9*512)) + c_9)].astype("int32")*placeholder_148[(((di_9*1536) + (dj_9*512)) + c_9)].astype("int32")))
    for ax1_27, ax2_28, ax3_30 in T.grid(14, 14, 512):
        DepthwiseConv2d_9[(((ax1_27*7168) + (ax2_28*512)) + ax3_30)] = (DepthwiseConv2d_9[(((ax1_27*7168) + (ax2_28*512)) + ax3_30)] + placeholder_149[ax3_30])
    for i1_30, i2_40, i3_41 in T.grid(14, 14, 512):
        DepthwiseConv2d_9[(((i1_30*7168) + (i2_40*512)) + i3_41)] = T.q_multiply_shift(DepthwiseConv2d_9[(((i1_30*7168) + (i2_40*512)) + i3_41)], 1269068532, 31, -4, dtype="int32")
    for i1_31, i2_41, i3_42 in T.grid(14, 14, 512):
        DepthwiseConv2d_9[(((i1_31*7168) + (i2_41*512)) + i3_42)] = T.max(T.max(DepthwiseConv2d_9[(((i1_31*7168) + (i2_41*512)) + i3_42)], 255), 0)
    for ax1_28, ax2_29, ax3_31 in T.grid(14, 14, 512):
        PaddedInput_22[(((ax1_28*7168) + (ax2_29*512)) + ax3_31)] = DepthwiseConv2d_9[(((ax1_28*7168) + (ax2_29*512)) + ax3_31)].astype("uint8")
    for ax1_29, ax2_30, ax3_32 in T.grid(14, 14, 512):
        T_cast_49[(((ax1_29*7168) + (ax2_30*512)) + ax3_32)] = PaddedInput_22[(((ax1_29*7168) + (ax2_30*512)) + ax3_32)].astype("int16")
示例#2
0
 def main(placeholder: T.Buffer[(1, 384), "int64"],
          placeholder_1: T.Buffer[(30522, 768), "float32"],
          placeholder_2: T.Buffer[(1, 384, 768), "float32"],
          T_add: T.Buffer[(1, 384, 768), "float32"]) -> None:
     # function attr dict
     T.func_attr({"global_symbol": "main", "tir.noalias": True})
     # body
     # with T.block("root")
     for i0, i1, i2 in T.grid(1, 384, 768):
         with T.block("T_add_1"):
             ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2])
             T.reads(
                 placeholder[ax0, ax1], placeholder_1[
                     T.min(T.max(T.int64(0), placeholder[
                         ax0, ax1]), T.int64(30521)):T.min(
                             T.max(T.int64(0), placeholder[ax0, ax1] +
                                   T.int64(30522)), T.int64(30521)) +
                     T.int64(1), ax2], placeholder_2[ax0, ax1, ax2])
             T.writes(T_add[ax0, ax1, ax2])
             T_add[ax0, ax1, ax2] = placeholder_1[T.min(
                 T.max(
                     T.int64(0),
                     T.Select(
                         T.cast(placeholder[ax0, ax1] < T.int64(0), "int32"
                                ) != 0, placeholder[ax0, ax1] +
                         T.int64(30522), placeholder[ax0, ax1])
                 ), T.int64(30521)), ax2] + placeholder_2[ax0, ax1, ax2]
def primfunc_local_allocates(placeholder_162: T.handle, placeholder_163: T.handle, placeholder_164: T.handle, T_cast_76: T.handle) -> None:
    # function attr dict
    T.func_attr({"global_symbol": "fused_nn_conv2d_add_cast_fixed_point_multiply_clip_cast_cast_9", "tir.noalias": True})
    placeholder_165 = T.match_buffer(placeholder_162, [100352], dtype="int16", elem_offset=0, align=128, offset_factor=1)
    placeholder_166 = T.match_buffer(placeholder_163, [4608], dtype="int16", elem_offset=0, align=128, offset_factor=1)
    placeholder_167 = T.match_buffer(placeholder_164, [512], dtype="int32", elem_offset=0, align=128, offset_factor=1)
    T_cast_77 = T.match_buffer(T_cast_76, [100352], dtype="int16", elem_offset=0, align=128, offset_factor=1)
    sid_21 = T.allocate_const([0,1,2,3,4,5,6,7], "int8", [8])
    # body
    PaddedInput_25 = T.allocate([131072], "int16", "global")
    for i1_35, i2_46, i3_47 in T.grid(16, 16, 512):
        PaddedInput_25[(((i1_35*8192) + (i2_46*512)) + i3_47)] = T.if_then_else(((((1 <= i1_35) and (i1_35 < 15)) and (1 <= i2_46)) and (i2_46 < 15)), placeholder_165[((((i1_35*7168) + (i2_46*512)) + i3_47) - 7680)], T.int16(0), dtype="int16")
    T_add_11 = T.allocate([100352], "int32", "global")
    with T.allocate([100352], "int32", "global") as DepthwiseConv2d_11:
        for i_11, j_11, c_11 in T.grid(14, 14, 512):
            DepthwiseConv2d_11[(((i_11*7168) + (j_11*512)) + c_11)] = 0
            for di_11, dj_11 in T.grid(3, 3):
                DepthwiseConv2d_11[(((i_11*7168) + (j_11*512)) + c_11)] = (DepthwiseConv2d_11[(((i_11*7168) + (j_11*512)) + c_11)] + (PaddedInput_25[(((((i_11*8192) + (di_11*8192)) + (j_11*512)) + (dj_11*512)) + c_11)].astype("int32")*placeholder_166[(((di_11*1536) + (dj_11*512)) + c_11)].astype("int32")))
        for ax1_44, ax2_45, ax3_47 in T.grid(14, 14, 512):
            T_add_11[(((ax1_44*7168) + (ax2_45*512)) + ax3_47)] = (DepthwiseConv2d_11[(((ax1_44*7168) + (ax2_45*512)) + ax3_47)] + placeholder_167[ax3_47])
    compute_22 = T.allocate([100352], "int32", "global")
    with T.allocate([100352], "int32", "global") as T_cast_78:
        for ax1_45, ax2_46, ax3_48 in T.grid(14, 14, 512):
            T_cast_78[(((ax1_45*7168) + (ax2_46*512)) + ax3_48)] = T_add_11[(((ax1_45*7168) + (ax2_46*512)) + ax3_48)]
        for i1_36, i2_47, i3_48 in T.grid(14, 14, 512):
            compute_22[(((i1_36*7168) + (i2_47*512)) + i3_48)] = T.q_multiply_shift(T_cast_78[(((i1_36*7168) + (i2_47*512)) + i3_48)], 1948805937, 31, -5, dtype="int32")
    T_cast_79 = T.allocate([100352], "uint8", "global")
    with T.allocate([100352], "int32", "global") as compute_23:
        for i1_37, i2_48, i3_49 in T.grid(14, 14, 512):
            compute_23[(((i1_37*7168) + (i2_48*512)) + i3_49)] = T.max(T.max(compute_22[(((i1_37*7168) + (i2_48*512)) + i3_49)], 255), 0)
        for ax1_46, ax2_47, ax3_49 in T.grid(14, 14, 512):
            T_cast_79[(((ax1_46*7168) + (ax2_47*512)) + ax3_49)] = compute_23[(((ax1_46*7168) + (ax2_47*512)) + ax3_49)].astype("uint8")
    for ax1_47, ax2_48, ax3_50 in T.grid(14, 14, 512):
        T_cast_77[(((ax1_47*7168) + (ax2_48*512)) + ax3_50)] = T_cast_79[(((ax1_47*7168) + (ax2_48*512)) + ax3_50)].astype("int16")
示例#4
0
 def main(A: T.Buffer[(256, 256), "float32"],
          T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None:
     T_softmax_maxelem = T.alloc_buffer([256], dtype="float32")
     T_softmax_expsum = T.alloc_buffer([256], dtype="float32")
     for i0, i1 in T.grid(256, 256):
         with T.block("T_softmax_maxelem"):
             i0_1, k = T.axis.remap("SR", [i0, i1])
             with T.init():
                 T_softmax_maxelem[i0_1] = T.min_value("float32")
             T_softmax_maxelem[i0_1] = T.max(T_softmax_maxelem[i0_1],
                                             A[i0_1, k])
     for i0, i1 in T.grid(256, 256):
         with T.block("T_softmax_expsum"):
             i0_2, k = T.axis.remap("SR", [i0, i1])
             with T.init():
                 T_softmax_expsum[i0_2] = T.float32(0)
             T_softmax_expsum[i0_2] = T_softmax_expsum[i0_2] + T.exp(
                 A[i0_2, k] - T_softmax_maxelem[i0_2], dtype="float32")
     for i0_3, i1 in T.grid(256, 256):
         with T.block("T_softmax_norm"):
             i0_4, i1_1 = T.axis.remap("SS", [i0_3, i1])
             T_softmax_norm[i0_4,
                            i1_1] = T.exp(
                                A[i0_4, i1_1] - T_softmax_maxelem[i0_4],
                                dtype="float32") / T_softmax_expsum[i0_4]
示例#5
0
 def tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast(
         placeholder: T.handle, placeholder_1: T.handle,
         T_cast: T.handle) -> None:
     # function attr dict
     T.func_attr({
         "global_symbol":
         "tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast",
         "tir.noalias": True
     })
     placeholder_2 = T.match_buffer(placeholder, [360000], dtype="uint8")
     placeholder_3 = T.match_buffer(placeholder_1, [64], dtype="int32")
     T_cast_1 = T.match_buffer(T_cast, [360000], dtype="int16")
     # body
     for ax0_ax1_fused, ax2, ax3_outer, ax3_inner in T.grid(75, 75, 4, 16):
         T_cast_1[
             ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 +
             ax3_inner] = T.cast(
                 T.cast(
                     T.max(
                         T.min(
                             T.q_multiply_shift(T.cast(
                                 placeholder_2[ax0_ax1_fused * 4800 +
                                               ax2 * 64 + ax3_outer * 16 +
                                               ax3_inner], "int32") - 94,
                                                1843157232,
                                                31,
                                                1,
                                                dtype="int32") +
                             placeholder_3[ax3_outer * 16 + ax3_inner],
                             255), 0), "uint8"), "int16")
def non_perfect_tiling_cache(a: T.handle, b: T.handle) -> None:
    X = T.match_buffer(a, [224, 224], dtype="float32")
    Y = T.match_buffer(b, [224, 224], dtype="float32")
    cache = T.alloc_buffer([224, 224], dtype="float32")
    for hh_0, ww_0 in T.grid(28, 28):
        for ax0 in T.serial(0, 10):
            for ax1 in T.serial(0, 10):
                with T.block("cache"):
                    h = T.axis.spatial(224, hh_0 * 8 - 1 + ax0)
                    w = T.axis.spatial(224, ww_0 * 8 - 1 + ax1)
                    T.where(1 <= hh_0 * 8 + ax0 and hh_0 * 8 + ax0 < 225
                            and 1 <= ww_0 * 8 + ax1 and ww_0 * 8 + ax1 < 225)
                    cache[h, w] = X[h, w]
        for hh_1, ww_1, khh, kww in T.grid(8, 8, 3, 3):
            with T.block("compute"):
                h = T.axis.spatial(224, hh_0 * 8 + hh_1)
                w = T.axis.spatial(224, ww_0 * 8 + ww_1)
                kh, kw = T.axis.remap("RR", [khh, kww])
                with T.init():
                    Y[h, w] = 0.0
                Y[h, w] = T.max(
                    Y[h, w],
                    T.if_then_else(
                        T.likely(1 <= h + kh, dtype="bool")
                        and T.likely(h + kh < 225, dtype="bool")
                        and T.likely(1 <= w + kw, dtype="bool")
                        and T.likely(w + kw < 225, dtype="bool"),
                        cache[h + kh - 1, w + kw - 1],
                        0.0,
                        dtype="float32",
                    ),
                )
示例#7
0
 def main(A: T.handle, tensor: T.handle) -> None:
     # function attr dict
     T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True})
     # buffer definition
     tensor_2 = T.buffer_decl([1, 10, 12, 16], dtype="int8", elem_offset=0, align=128, offset_factor=1)
     A_1 = T.match_buffer(A, [1, 12, 14, 16], dtype="int8", elem_offset=0, align=128, offset_factor=1)
     tensor_1 = T.match_buffer(tensor, [1, 8, 8, 16], dtype="int8", elem_offset=0, align=128, offset_factor=1)
     # body
     T.realize(tensor_1[0:1, 0:8, 0:8, 0:16], "")
     for ax1_outer in T.serial(0, 2):
         T.realize(tensor_2[0:1, (ax1_outer*4):((ax1_outer*4) + 6), 0:12, 0:16], "")
         T.attr(tensor_2, "rolling_buffer_scope", True)
         for ax1 in T.serial(0, 6):
             for ax2 in T.serial(0, 12):
                 for ax3 in T.serial(0, 16):
                     tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3] = T.int8(0)
                     for dh in T.serial(0, 3):
                         for dw in T.serial(0, 3):
                             tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3] = T.max(tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3], A_1[0, ((ax1 + (ax1_outer*4)) + dh), (ax2 + dw), ax3])
         for ax1_inner in T.serial(0, 4):
             for ax2_inner in T.serial(0, 8):
                 for ax3_inner in T.serial(0, 16):
                     tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.int8(0)
                     for dh_1 in T.serial(0, 3):
                         for dw_1 in T.serial(0, 5):
                             tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.max(tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner], tensor_2[0, ((ax1_inner + (ax1_outer*4)) + dh_1), (ax2_inner + dw_1), ax3_inner])
示例#8
0
def expected_recursive_bufferslice_indices(data: T.handle,
                                           index: T.handle) -> None:
    index_buf = T.match_buffer(index, [1],
                               dtype="int32",
                               elem_offset=0,
                               align=128,
                               offset_factor=1)
    data_buf = T.match_buffer(data, [16, 16],
                              elem_offset=0,
                              align=128,
                              offset_factor=1)
    with T.block("root"):
        T.reads([])
        T.writes([])
        out_buf = T.alloc_buffer([16, 16],
                                 elem_offset=0,
                                 align=128,
                                 offset_factor=1)
        for i0, i1 in T.grid(16, 16):
            with T.block():
                vi, vj = T.axis.remap("SS", [i0, i1])
                T.reads([
                    data_buf[index_buf[index_buf[0]], index_buf[0]],
                    index_buf[T.min(index_buf[0], 0):T.max(index_buf[0], 0) +
                              1],
                ])
                T.writes([out_buf[vi, vj]])
                out_buf[vi, vj] = data_buf[index_buf[index_buf[0]],
                                           index_buf[0]]
示例#9
0
def lowered_reducer_max(a: T.handle, b: T.handle) -> None:
    A = T.match_buffer(a, [128, 128], dtype="float32")
    B = T.match_buffer(b, [128], dtype="float32")
    reduce_temp0 = T.alloc_buffer([1],
                                  dtype="float32",
                                  strides=[1],
                                  scope="local")
    for i in T.serial(0, 128):
        for k in T.thread_binding(0, 128, thread="threadIdx.x"):
            with T.block("B_cross_thread_reduction"):
                vi, vk = T.axis.remap("SR", [i, k])
                T.reads([A[vi, vk]])
                T.writes([reduce_temp0[0]])
                T.attr(
                    T.comm_reducer(lambda x, y: T.max(x, y),
                                   [T.min_value("float32")]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
                )
                T.evaluate(
                    T.tvm_thread_allreduce(T.uint32(1),
                                           A[vi, vk],
                                           True,
                                           reduce_temp0.data,
                                           k,
                                           dtype="handle"))
            with T.block("B_write_back"):
                vi = T.axis.spatial(128, i)
                T.reads([reduce_temp0[0]])
                T.writes([B[vi]])
                B[vi] = reduce_temp0[0]
示例#10
0
def different_access_indices(a: T.handle, b: T.handle) -> None:
    A = T.match_buffer(a, [128, 128, 128], dtype="float32")
    B = T.match_buffer(b, [128, 128], dtype="float32")
    for i, j in T.grid(128, 128):
        for k in T.thread_binding(0, 128, thread="threadIdx.x"):
            with T.block("B"):
                vi, vj, vk = T.axis.remap("SSR", [i, j, k])
                T.reads([B[vi, vj], A[vi, vj, vk]])
                T.writes([
                    B[T.min(vj, vi):T.min(vj, vi) +
                      (T.max(vj, vi) + 1 - T.min(vj, vi)),
                      T.min(vi, vj):T.min(vi, vj) +
                      (T.max(vi, vj) + 1 - T.min(vi, vj)), ]
                ])
                with T.init():
                    B[vj, vi] = T.float32(0)
                B[vi, vj] = B[vi, vj] + A[vi, vj, vk]
 def compacted_spatial_tiled_pad_and_pooling(
     X: T.Buffer[(64, 112, 112), "int32"], Y: T.Buffer[(64, 56, 56), "int32"]
 ) -> None:
     for h_o, w_o in T.grid(14, 14):
         with T.block():
             T.reads(X[0:64, h_o * 8 - 1 : h_o * 8 + 8, w_o * 8 - 1 : w_o * 8 + 8])
             T.writes(Y[h_o * 4 : h_o * 4 + 4, w_o * 4 : w_o * 4 + 4, 0:64])
             X_cache = T.alloc_buffer([9, 9, 64], dtype="int32")
             for ax0, ax1, ax2 in T.grid(64, 9, 9):
                 with T.block("cache"):
                     T.where(1 <= h_o * 8 + ax1 and 1 <= w_o * 8 + ax2)
                     T.reads(X[ax0, h_o * 8 + ax1 - 1, w_o * 8 + ax2 - 1])
                     T.writes(
                         X_cache[
                             h_o * 8 + ax1 - T.max(0, h_o * 8 - 1) - 1,
                             w_o * 8 + ax2 - T.max(0, w_o * 8 - 1) - 1,
                             ax0,
                         ]
                     )
                     X_cache[
                         h_o * 8 + ax1 - T.max(0, h_o * 8 - 1) - 1,
                         w_o * 8 + ax2 - T.max(0, w_o * 8 - 1) - 1,
                         ax0,
                     ] = X[ax0, h_o * 8 + ax1 - 1, w_o * 8 + ax2 - 1]
             for h_i, w_i, kh, kw, c in T.grid(4, 4, 3, 3, 64):
                 with T.block("compute"):
                     T.reads(
                         X_cache[
                             h_o * 8 + h_i * 2 + kh - T.max(0, h_o * 8 - 1) - 1,
                             w_o * 8 + w_i * 2 + kw - T.max(0, w_o * 8 - 1) - 1,
                             c,
                         ]
                     )
                     T.writes(Y[h_o * 4 + h_i, w_o * 4 + w_i, c])
                     if kh == 0 and kw == 0:
                         Y[h_o * 4 + h_i, w_o * 4 + w_i, c] = 0
                     Y[h_o * 4 + h_i, w_o * 4 + w_i, c] = T.max(
                         Y[h_o * 4 + h_i, w_o * 4 + w_i, c],
                         T.if_then_else(
                             T.likely(1 <= h_o * 8 + h_i * 2 + kh, dtype="bool")
                             and T.likely(1 <= w_o * 8 + w_i * 2 + kw, dtype="bool"),
                             X_cache[
                                 h_o * 8 + h_i * 2 + kh - T.max(0, h_o * 8 - 1) - 1,
                                 w_o * 8 + w_i * 2 + kw - T.max(0, w_o * 8 - 1) - 1,
                                 c,
                             ],
                             0,
                             dtype="int32",
                         ),
                     )
示例#12
0
 def main(X: T.Buffer[(1, 512, 56, 56), "float32"],
          W: T.Buffer[(512, 512, 3, 3), "float32"], B: T.Buffer[(512, 1, 1),
                                                                "float32"],
          bn_scale: T.Buffer[(512, 1, 1),
                             "float32"], bn_offset: T.Buffer[(512, 1, 1),
                                                             "float32"],
          compute: T.Buffer[(1, 512, 56, 56), "float32"]) -> None:
     compute_local = T.alloc_buffer([1, 512, 56, 56],
                                    dtype="float32",
                                    scope="local")
     for i0_0_i1_0_i2_0_i3_0_fused in T.thread_binding(224,
                                                       thread="blockIdx.x"):
         for i0_1_i1_1_i2_1_i3_1_fused in T.thread_binding(
                 2, thread="vthread.x"):
             for i0_2_i1_2_i2_2_i3_2_fused in T.thread_binding(
                     8, thread="threadIdx.x"):
                 for i4_0, i5_0, i6_0, i4_1, i5_1, i6_1, i0_3, i1_3, i2_3, i3_3, i4_2, i5_2, i6_2, i0_4, i1_4, i2_4, i3_4 in T.grid(
                         1, 3, 1, 32, 1, 1, 1, 1, 1, 1, 16, 1, 3, 1, 8, 2,
                         28):
                     with T.block("compute"):
                         nn = T.axis.spatial(1, 0)
                         ff = T.axis.spatial(
                             512, i0_0_i1_0_i2_0_i3_0_fused // 14 * 32 +
                             i0_2_i1_2_i2_2_i3_2_fused // 2 * 8 + i1_4)
                         yy = T.axis.spatial(
                             56, i0_0_i1_0_i2_0_i3_0_fused // 2 % 7 * 8 +
                             i0_1_i1_1_i2_1_i3_1_fused * 4 +
                             i0_2_i1_2_i2_2_i3_2_fused % 2 * 2 + i2_4)
                         xx = T.axis.spatial(
                             56, i0_0_i1_0_i2_0_i3_0_fused % 2 * 28 + i3_4)
                         rc = T.axis.reduce(512, i4_1 * 16 + i4_2)
                         ry, rx = T.axis.remap("RR", [i5_0, i6_2])
                         with T.init():
                             compute_local[nn, ff, yy, xx] = T.float32(0)
                         compute_local[nn, ff, yy, xx] = compute_local[
                             nn, ff, yy, xx] + T.if_then_else(
                                 yy + ry >= 1 and yy + ry < 57
                                 and xx + rx >= 1 and xx + rx < 57,
                                 X[nn, rc, yy + ry - 1, xx + rx - 1],
                                 T.float32(0),
                                 dtype="float32") * W[ff, rc, ry, rx]
                 for ax0, ax1, ax2, ax3 in T.grid(1, 8, 2, 28):
                     with T.block("compute_local"):
                         v0 = T.axis.spatial(1, ax0)
                         v1 = T.axis.spatial(
                             512, i0_0_i1_0_i2_0_i3_0_fused // 14 * 32 +
                             i0_2_i1_2_i2_2_i3_2_fused // 2 * 8 + ax1)
                         v2 = T.axis.spatial(
                             56, i0_0_i1_0_i2_0_i3_0_fused % 14 // 2 * 8 +
                             i0_1_i1_1_i2_1_i3_1_fused * 4 +
                             i0_2_i1_2_i2_2_i3_2_fused % 2 * 2 + ax2)
                         v3 = T.axis.spatial(
                             56, i0_0_i1_0_i2_0_i3_0_fused % 2 * 28 + ax3)
                         compute[v0, v1, v2, v3] = T.max(
                             (compute_local[v0, v1, v2, v3] + B[v1, 0, 0]) *
                             bn_scale[v1, 0, 0] + bn_offset[v1, 0, 0],
                             T.float32(0))
示例#13
0
def softmax(var_A: T.handle, var_T_softmax_norm: T.handle) -> None:
    A = T.match_buffer(var_A, [256, 256], dtype="float32")
    T_softmax_norm = T.match_buffer(var_T_softmax_norm, [256, 256], dtype="float32")
    T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared")
    T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared")
    for i0 in T.thread_binding(0, 256, thread="blockIdx.x"):
        for ax0_0 in T.serial(0, 8):
            for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"):
                with T.block("T_softmax_maxelem"):
                    i0_1 = T.axis.spatial(256, i0)
                    k = T.axis.reduce(256, ax0_0 * 32 + ax0_1)
                    T.reads([T_softmax_maxelem_shared[i0_1], A[i0_1, k]])
                    T.writes([T_softmax_maxelem_shared[i0_1]])
                    with T.init():
                        T_softmax_maxelem_shared[i0_1] = T.min_value("float32")
                    T_softmax_maxelem_shared[i0_1] = T.max(
                        T_softmax_maxelem_shared[i0_1], A[i0_1, k]
                    )
        for ax0_0 in T.serial(0, 8):
            for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"):
                with T.block("T_softmax_expsum"):
                    i0_2 = T.axis.spatial(256, i0)
                    k = T.axis.reduce(256, ax0_0 * 32 + ax0_1)
                    T.reads(
                        [
                            T_softmax_expsum_shared[i0_2],
                            A[i0_2, k],
                            T_softmax_maxelem_shared[i0_2],
                        ]
                    )
                    T.writes([T_softmax_expsum_shared[i0_2]])
                    with T.init():
                        T_softmax_expsum_shared[i0_2] = T.float32(0)
                    T_softmax_expsum_shared[i0_2] = T_softmax_expsum_shared[i0_2] + T.exp(
                        A[i0_2, k] - T_softmax_maxelem_shared[i0_2], dtype="float32"
                    )
        for i1_0 in T.serial(0, 8):
            for i1_1 in T.thread_binding(0, 32, thread="threadIdx.x"):
                with T.block("T_softmax_norm"):
                    i0_3 = T.axis.spatial(256, i0)
                    i1 = T.axis.spatial(256, i1_0 * 32 + i1_1)
                    T.reads(
                        [
                            A[i0_3, i1],
                            T_softmax_maxelem_shared[i0_3],
                            T_softmax_expsum_shared[i0_3],
                        ]
                    )
                    T.writes([T_softmax_norm[i0_3, i1]])
                    T.block_attr({"axis": 1})
                    T_softmax_norm[i0_3, i1] = (
                        T.exp(
                            A[i0_3, i1] - T_softmax_maxelem_shared[i0_3],
                            dtype="float32",
                        )
                        / T_softmax_expsum_shared[i0_3]
                    )
示例#14
0
 def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle,
                                             T_cast_6: T.handle) -> None:
     # function attr dict
     T.func_attr({
         "global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast",
         "tir.noalias": True
     })
     placeholder_29 = T.match_buffer(placeholder_28, [1, 112, 112, 64],
                                     dtype="uint8",
                                     elem_offset=0,
                                     align=128,
                                     offset_factor=1)
     T_cast_7 = T.match_buffer(T_cast_6, [1, 56, 56, 64],
                               dtype="int16",
                               elem_offset=0,
                               align=128,
                               offset_factor=1)
     # body
     tensor_2 = T.allocate([200704], "uint8", "global")
     for ax0_ax1_fused_4 in T.serial(0, 56):
         for ax2_4 in T.serial(0, 56):
             for ax3_init in T.serial(0, 64):
                 T.store(tensor_2, (((ax0_ax1_fused_4 * 3584) +
                                     (ax2_4 * 64)) + ax3_init), T.uint8(0),
                         True)
             for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64):
                 T.store(
                     tensor_2,
                     (((ax0_ax1_fused_4 * 3584) + (ax2_4 * 64)) + ax3_2),
                     T.max(
                         T.load("uint8", tensor_2,
                                (((ax0_ax1_fused_4 * 3584) +
                                  (ax2_4 * 64)) + ax3_2)),
                         T.if_then_else(
                             ((((ax0_ax1_fused_4 * 2) +
                                T.floordiv(rv0_rv1_fused_1, 3)) < 112) and
                              (((ax2_4 * 2) +
                                T.floormod(rv0_rv1_fused_1, 3)) < 112)),
                             T.load("uint8", placeholder_29.data, (((
                                 ((ax0_ax1_fused_4 * 14336) +
                                  (T.floordiv(rv0_rv1_fused_1, 3) * 7168)) +
                                 (ax2_4 * 128)) + (T.floormod(
                                     rv0_rv1_fused_1, 3) * 64)) + ax3_2)),
                             T.uint8(0),
                             dtype="uint8")), True)
     for ax0_ax1_fused_5 in T.serial(0, 56):
         for ax2_5, ax3_3 in T.grid(56, 64):
             T.store(
                 T_cast_7.data,
                 (((ax0_ax1_fused_5 * 3584) + (ax2_5 * 64)) + ax3_3),
                 T.cast(
                     T.load("uint8", tensor_2, (((ax0_ax1_fused_5 * 3584) +
                                                 (ax2_5 * 64)) + ax3_3)),
                     "int16"), True)
示例#15
0
def reducer_max(a: T.handle, b: T.handle) -> None:
    A = T.match_buffer(a, [128, 128], dtype="float32")
    B = T.match_buffer(b, [128], dtype="float32")
    for i in T.serial(0, 128):
        for k in T.thread_binding(0, 128, thread="threadIdx.x"):
            with T.block("B"):
                vi, vk = T.axis.remap("SR", [i, k])
                T.reads([B[vi], A[vi, vk]])
                T.writes([B[vi]])
                with T.init():
                    B[vi] = T.min_value("float32")
                B[vi] = T.max(B[vi], A[vi, vk])
示例#16
0
 def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast(
         placeholder_4: T.handle, placeholder_5: T.handle,
         placeholder_6: T.handle, T_cast_2: T.handle) -> None:
     # function attr dict
     T.func_attr({
         "global_symbol":
         "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast",
         "tir.noalias": True
     })
     placeholder_7 = T.match_buffer(placeholder_4, [1, 75, 75, 64],
                                    dtype="int16")
     placeholder_8 = T.match_buffer(placeholder_5, [1, 1, 64, 64],
                                    dtype="int16")
     placeholder_9 = T.match_buffer(placeholder_6, [1, 1, 1, 64],
                                    dtype="int32")
     T_cast_3 = T.match_buffer(T_cast_2, [1, 75, 75, 64], dtype="int16")
     # body
     PaddedInput = T.allocate([360000], "int16", "global")
     for i0_i1_fused, i2, i3 in T.grid(75, 75, 64):
         T.store(
             PaddedInput, i0_i1_fused * 4800 + i2 * 64 + i3,
             T.load("int16", placeholder_7.data,
                    i0_i1_fused * 4800 + i2 * 64 + i3), True)
     for ax0_ax1_fused_ax2_fused in T.serial(0, 5625):
         Conv2dOutput = T.allocate([64], "int32", "global")
         for ff in T.serial(0, 64):
             T.store(Conv2dOutput, ff, 0, True)
             for rc in T.serial(0, 64):
                 T.store(
                     Conv2dOutput, ff,
                     T.load("int32", Conv2dOutput, ff) + T.cast(
                         T.load("int16", PaddedInput,
                                ax0_ax1_fused_ax2_fused * 64 + rc), "int32")
                     * T.cast(
                         T.load("int16", placeholder_8.data, rc * 64 + ff),
                         "int32"), True)
         for ax3_inner_1 in T.serial(0, 64):
             T.store(
                 T_cast_3.data, ax0_ax1_fused_ax2_fused * 64 + ax3_inner_1,
                 T.cast(
                     T.cast(
                         T.max(
                             T.min(
                                 T.q_multiply_shift(
                                     T.load("int32", Conv2dOutput,
                                            ax3_inner_1) +
                                     T.load("int32", placeholder_9.data,
                                            ax3_inner_1),
                                     1843106743,
                                     31,
                                     -6,
                                     dtype="int32"), 255), 0), "uint8"),
                     "int16"), True)
示例#17
0
 def main(a: T.handle, b: T.handle, d: T.handle) -> None:  # pylint: disable=no-self-argument
     T.func_attr({"global_symbol": "main", "tir.noalias": True})
     A = T.match_buffer(a, (16, 16), "float32")
     B = T.match_buffer(b, (16, 16), "float32")
     D = T.match_buffer(d, (16, 16), "float32")
     C = T.alloc_buffer((16, 16), "float32")
     with T.block([16, 16, T.reduce_axis(0, 16)], "matmul") as [vi, vj, vk]:
         with T.init():
             C[vi, vj] = 0.0
         C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
     with T.block([16, 16], "relu") as [vi, vj]:
         D[vi, vj] = T.max(C[vi, vj], 0.0)
示例#18
0
def access_of_padding_pattern() -> None:
    X = T.alloc_buffer([28, 28])
    X_pad = T.alloc_buffer([32, 32])
    Y = T.alloc_buffer([28, 28])
    for i, j in T.grid(32, 32):
        with T.block("padding"):
            vi, vj = T.axis.remap("SS", [i, j])
            T.reads([
                X[T.max(vi - 2, 0):T.min(vi - 2, 27) + 1,
                  T.max(vj - 2, 0):T.min(vj - 2, 27) + 1, ]
            ])
            T.writes([X_pad[vi, vj]])
            X_pad[vi, vj] = T.if_then_else(2 <= vi and vi < 30 and 2 <= vj
                                           and vj < 30,
                                           X[vi - 2, vj - 2],
                                           0.0,
                                           dtype="float32")
        with T.block("padding_reverse"):
            vi, vj = T.axis.remap("SS", [i, j])
            T.reads([
                X_pad[T.max(vi, 2):T.min(vi, 29) + 1,
                      T.max(vj, 2):T.min(vj, 29) + 1]
            ])
            T.writes([
                Y[T.max(vi - 2, 0):T.min(vi - 2, 27) + 1,
                  T.max(vj - 2, 0):T.min(vj - 2, 27) + 1, ]
            ])
            if 2 <= vi and vi < 30 and 2 <= vj and vj < 30:
                Y[vi - 2, vj - 2] = X_pad[vi, vj]
示例#19
0
 def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_(
         placeholder_16: T.handle, placeholder_17: T.handle,
         placeholder_18: T.handle, T_add: T.handle) -> None:
     # function attr dict
     T.func_attr({
         "global_symbol":
         "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_",
         "tir.noalias": True
     })
     placeholder_19 = T.match_buffer(placeholder_16, [360000],
                                     dtype="int16")
     placeholder_20 = T.match_buffer(placeholder_17, [16384], dtype="int16")
     placeholder_21 = T.match_buffer(placeholder_18, [256], dtype="int32")
     T_add_1 = T.match_buffer(T_add, [1440000], dtype="int32")
     # body
     PaddedInput_2 = T.allocate([360000], "int16", "global")
     for i0_i1_fused_2, i2_2, i3_2 in T.grid(75, 75, 64):
         PaddedInput_2[i0_i1_fused_2 * 4800 + i2_2 * 64 +
                       i3_2] = placeholder_19[i0_i1_fused_2 * 4800 +
                                              i2_2 * 64 + i3_2]
     for ax0_ax1_fused_ax2_fused_2 in T.serial(0, 5625):
         Conv2dOutput_2 = T.allocate([64], "int32", "global")
         for ax3_outer_1 in T.serial(0, 4):
             for ff_2 in T.serial(0, 64):
                 Conv2dOutput_2[ff_2] = 0
                 for rc_2 in T.serial(0, 64):
                     Conv2dOutput_2[ff_2] = Conv2dOutput_2[ff_2] + T.cast(
                         PaddedInput_2[ax0_ax1_fused_ax2_fused_2 * 64 +
                                       rc_2],
                         "int32") * T.cast(
                             placeholder_20[rc_2 * 256 + ax3_outer_1 * 64 +
                                            ff_2], "int32")
             for ax3_inner_3 in T.serial(0, 64):
                 T_add_1[
                     ax0_ax1_fused_ax2_fused_2 * 256 + ax3_outer_1 * 64 +
                     ax3_inner_3] = T.q_multiply_shift(T.cast(
                         T.cast(
                             T.max(
                                 T.min(
                                     T.q_multiply_shift(
                                         Conv2dOutput_2[ax3_inner_3] +
                                         placeholder_21[ax3_outer_1 * 64 +
                                                        ax3_inner_3],
                                         1711626602,
                                         31,
                                         -8,
                                         dtype="int32") + 132, 255), 0),
                             "uint8"), "int32") - 132,
                                                       2094289803,
                                                       31,
                                                       -2,
                                                       dtype="int32") + 136
示例#20
0
 def main(var_X: T.handle, var_W: T.handle, var_B: T.handle,
          var_bn_scale: T.handle, var_bn_offset: T.handle,
          var_compute: T.handle) -> None:
     X = T.match_buffer(var_X, [1, 512, 56, 56], dtype="float32")
     W = T.match_buffer(var_W, [512, 512, 3, 3], dtype="float32")
     B = T.match_buffer(var_B, [512, 1, 1], dtype="float32")
     bn_scale = T.match_buffer(var_bn_scale, [512, 1, 1], dtype="float32")
     bn_offset = T.match_buffer(var_bn_offset, [512, 1, 1], dtype="float32")
     compute = T.match_buffer(var_compute, [1, 512, 56, 56],
                              dtype="float32")
     pad_temp = T.alloc_buffer([1, 512, 58, 58], dtype="float32")
     compute_1 = T.alloc_buffer([1, 512, 56, 56], dtype="float32")
     bias_add = T.alloc_buffer([1, 512, 56, 56], dtype="float32")
     bn_mul = T.alloc_buffer([1, 512, 56, 56], dtype="float32")
     bn_add = T.alloc_buffer([1, 512, 56, 56], dtype="float32")
     for i0, i1, i2, i3 in T.grid(1, 512, 58, 58):
         with T.block("pad_temp"):
             i0_1, i1_1, i2_1, i3_1 = T.axis.remap("SSSS", [i0, i1, i2, i3])
             pad_temp[i0_1, i1_1, i2_1,
                      i3_1] = T.if_then_else(i2_1 >= 1 and i2_1 < 57
                                             and i3_1 >= 1 and i3_1 < 57,
                                             X[i0_1, i1_1, i2_1 - 1,
                                               i3_1 - 1],
                                             T.float32(0),
                                             dtype="float32")
     for i0, i1, i2, i3, i4, i5, i6 in T.grid(1, 512, 56, 56, 512, 3, 3):
         with T.block("compute"):
             nn, ff, yy, xx, rc, ry, rx = T.axis.remap(
                 "SSSSRRR", [i0, i1, i2, i3, i4, i5, i6])
             with T.init():
                 compute_1[nn, ff, yy, xx] = T.float32(0)
             compute_1[nn, ff, yy,
                       xx] = compute_1[nn, ff, yy, xx] + pad_temp[
                           nn, rc, yy + ry, xx + rx] * W[ff, rc, ry, rx]
     for i0, i1, i2, i3 in T.grid(1, 512, 56, 56):
         with T.block("bias_add"):
             i, j, k, l = T.axis.remap("SSSS", [i0, i1, i2, i3])
             bias_add[i, j, k, l] = compute_1[i, j, k, l] + B[j, 0, 0]
     for i0, i1, i2, i3 in T.grid(1, 512, 56, 56):
         with T.block("bn_mul"):
             i, j, k, l = T.axis.remap("SSSS", [i0, i1, i2, i3])
             bn_mul[i, j, k, l] = bias_add[i, j, k, l] * bn_scale[j, 0, 0]
     for i0, i1, i2, i3 in T.grid(1, 512, 56, 56):
         with T.block("bn_add"):
             i, j, k, l = T.axis.remap("SSSS", [i0, i1, i2, i3])
             bn_add[i, j, k, l] = bn_mul[i, j, k, l] + bn_offset[j, 0, 0]
     for i0, i1, i2, i3 in T.grid(1, 512, 56, 56):
         with T.block("compute_1"):
             i0_2, i1_2, i2_2, i3_2 = T.axis.remap("SSSS", [i0, i1, i2, i3])
             compute[i0_2, i1_2, i2_2,
                     i3_2] = T.max(bn_add[i0_2, i1_2, i2_2, i3_2],
                                   T.float32(0))
示例#21
0
 def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1(
         placeholder_10: T.handle, placeholder_11: T.handle,
         placeholder_12: T.handle, T_cast_4: T.handle) -> None:
     # function attr dict
     T.func_attr({
         "global_symbol":
         "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1",
         "tir.noalias": True
     })
     placeholder_13 = T.match_buffer(placeholder_10, [360000],
                                     dtype="int16")
     placeholder_14 = T.match_buffer(placeholder_11, [36864], dtype="int16")
     placeholder_15 = T.match_buffer(placeholder_12, [64], dtype="int32")
     T_cast_5 = T.match_buffer(T_cast_4, [360000], dtype="int16")
     # body
     PaddedInput_1 = T.allocate([379456], "int16", "global")
     for i0_i1_fused_1, i2_1, i3_1 in T.grid(77, 77, 64):
         PaddedInput_1[i0_i1_fused_1 * 4928 + i2_1 * 64 +
                       i3_1] = T.if_then_else(
                           1 <= i0_i1_fused_1 and i0_i1_fused_1 < 76
                           and 1 <= i2_1 and i2_1 < 76,
                           placeholder_13[i0_i1_fused_1 * 4800 + i2_1 * 64 +
                                          i3_1 - 4864],
                           T.int16(0),
                           dtype="int16")
     for ax0_ax1_fused_ax2_fused_1 in T.serial(0, 5625):
         Conv2dOutput_1 = T.allocate([64], "int32", "global")
         for ff_1 in T.serial(0, 64):
             Conv2dOutput_1[ff_1] = 0
             for ry, rx, rc_1 in T.grid(3, 3, 64):
                 Conv2dOutput_1[ff_1] = Conv2dOutput_1[ff_1] + T.cast(
                     PaddedInput_1[
                         T.floordiv(ax0_ax1_fused_ax2_fused_1, 75) * 4928 +
                         ry * 4928 + rx * 64 +
                         T.floormod(ax0_ax1_fused_ax2_fused_1, 75) * 64 +
                         rc_1], "int32") * T.cast(
                             placeholder_14[ry * 12288 + rx * 4096 +
                                            rc_1 * 64 + ff_1], "int32")
         for ax3_inner_2 in T.serial(0, 64):
             T_cast_5[ax0_ax1_fused_ax2_fused_1 * 64 +
                      ax3_inner_2] = T.cast(
                          T.cast(
                              T.max(
                                  T.min(
                                      T.q_multiply_shift(
                                          Conv2dOutput_1[ax3_inner_2] +
                                          placeholder_15[ax3_inner_2],
                                          1608879842,
                                          31,
                                          -7,
                                          dtype="int32"), 255), 0),
                              "uint8"), "int16")
示例#22
0
def read_out_of_bound(a: T.handle, c:T.handle) -> None:
    A = T.match_buffer(a, [16], "float32")
    B = T.alloc_buffer([16], "float32")
    C = T.match_buffer(c, [16], "float32")
    for i in T.serial(0, 16):
        with T.block("B"):
            v = T.axis.S(16, i)
            B[v] = A[v]
    for j in T.serial(0, 16):
        with T.block("C"):
            v = T.axis.S(16, j)
            T.reads(B[v : v + 2])
            C[v] = T.if_then_else(v < 15, T.max(B[v], B[v + 1]), B[v], dtype="float32")
示例#23
0
def read_out_of_bound_after_compute_at(a: T.handle, c: T.handle) -> None:
    A = T.match_buffer(a, [16], "float32")
    B = T.alloc_buffer([16], "float32")
    C = T.match_buffer(c, [16], "float32")
    for j in T.serial(0, 16):
        for i in T.serial(0, T.min(1, 15 - j) + 1):
            with T.block("B"):
                v = T.axis.S(16, j + i)
                B[v] = A[v]
        with T.block("C"):
            v = T.axis.S(16, j)
            T.reads([B[v : v + 2]])
            C[v] = T.if_then_else(v < 15, T.max(B[v], B[v + 1]), B[v], dtype="float32")
示例#24
0
def single_reduction_loop_with_block_predicate(
        A: T.Buffer[(256, 256), "float32"],
        T_softmax_norm: T.Buffer[(256, 256), "float32"]) -> None:
    T_softmax_maxelem_shared = T.alloc_buffer([256],
                                              dtype="float32",
                                              scope="shared")
    T_softmax_expsum_shared = T.alloc_buffer([256],
                                             dtype="float32",
                                             scope="shared")
    for i0 in T.serial(256):
        for ax0, ax1_0 in T.grid(1, 1):
            for ax1_1 in T.thread_binding(512, thread="threadIdx.x"):
                with T.block("T_softmax_maxelem"):
                    i0_1 = T.axis.spatial(256, i0)
                    k = T.axis.reduce(256, ax1_1)
                    T.where(ax1_0 * 512 + ax1_1 < 256)
                    T.reads(T_softmax_maxelem_shared[i0_1], A[i0_1, k])
                    T.writes(T_softmax_maxelem_shared[i0_1])
                    with T.init():
                        T_softmax_maxelem_shared[i0_1] = T.float32(
                            -3.4028234663852886e38)
                    T_softmax_maxelem_shared[i0_1] = T.max(
                        T_softmax_maxelem_shared[i0_1], A[i0_1, k])
        for ax0, ax1_0 in T.grid(1, 1):
            for ax1_1 in T.thread_binding(512, thread="threadIdx.x"):
                with T.block("T_softmax_expsum"):
                    i0_2 = T.axis.spatial(256, i0)
                    k = T.axis.reduce(256, ax1_1)
                    T.where(ax1_0 * 512 + ax1_1 < 256)
                    T.reads(T_softmax_expsum_shared[i0_2], A[i0_2, k],
                            T_softmax_maxelem_shared[i0_2])
                    T.writes(T_softmax_expsum_shared[i0_2])
                    with T.init():
                        T_softmax_expsum_shared[i0_2] = T.float32(0)
                    T_softmax_expsum_shared[
                        i0_2] = T_softmax_expsum_shared[i0_2] + T.exp(
                            A[i0_2, k] - T_softmax_maxelem_shared[i0_2],
                            dtype="float32")
        for i1_0 in T.serial(1):
            for i1_1 in T.thread_binding(512, thread="threadIdx.x"):
                with T.block("T_softmax_norm"):
                    i0_3 = T.axis.spatial(256, i0)
                    i1 = T.axis.spatial(256, i1_1)
                    T.where(i1_0 * 512 + i1_1 < 256)
                    T.reads(A[i0_3, i1], T_softmax_maxelem_shared[i0_3],
                            T_softmax_expsum_shared[i0_3])
                    T.writes(T_softmax_norm[i0_3, i1])
                    T.block_attr({"axis": 1})
                    T_softmax_norm[i0_3, i1] = (
                        T.exp(A[i0_3, i1] - T_softmax_maxelem_shared[i0_3],
                              dtype="float32") / T_softmax_expsum_shared[i0_3])
示例#25
0
def matmul_relu(a: T.handle, b: T.handle, d: T.handle) -> None:
    A = T.match_buffer(a, (1024, 1024))
    B = T.match_buffer(b, (1024, 1024))
    C = T.alloc_buffer((1024, 1024))
    D = T.match_buffer(d, (1024, 1024))
    for i, j, k in T.grid(1024, 1024, 1024):
        with T.block("matmul"):
            vi, vj, vk = T.axis.remap("SSR", [i, j, k])
            with T.init():
                C[vi, vj] = 0.0
            C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    for i, j in T.grid(1024, 1024):
        with T.block("relu"):
            vi, vj = T.axis.remap("SS", [i, j])
            D[vi, vj] = T.max(C[vi, vj], 0.0)
示例#26
0
 def main(a: T.handle, b: T.handle, d: T.handle) -> None:  # pylint: disable=no-self-argument
     T.func_attr({"global_symbol": "main", "tir.noalias": True})
     A = T.match_buffer(a, (1024, 1024), "float32")
     B = T.match_buffer(b, (1024, 1024), "float32")
     D = T.match_buffer(d, (1024, 1024), "float32")
     C = T.alloc_buffer((1024, 1024), "float32")
     for i, j, k in T.grid(1024, 1024, 1024):
         with T.block("matmul"):
             vi, vj, vk = T.axis.remap("SSR", [i, j, k])
             with T.init():
                 C[vi, vj] = 0.0
             C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
     for i, j in T.grid(1024, 1024):
         with T.block("relu"):
             vi, vj = T.axis.remap("SS", [i, j])
             D[vi, vj] = T.max(C[vi, vj], 0.0)
def matmul_relu_ann1(a: T.handle, b: T.handle, d: T.handle) -> None:
    A = T.match_buffer(a, (1024, 1024))
    B = T.match_buffer(b, (1024, 1024))
    C = T.alloc_buffer((1024, 1024))
    D = T.match_buffer(d, (1024, 1024))
    for i in T.serial(0, 1024, annotations={"test1": "aaa"}):
        for j in T.serial(0, 1024, annotations={"test2": 612}):
            for k in T.serial(0, 1024):
                with T.block("matmul"):
                    vi, vj, vk = T.axis.remap("SSR", [i, j, k])
                    with T.init():
                        C[vi, vj] = 0.0
                    C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    for i, j in T.grid(1024, 1024):
        with T.block("relu"):
            vi, vj = T.axis.remap("SS", [i, j])
            D[vi, vj] = T.max(C[vi, vj], 0.0)
示例#28
0
def matmul_relu_ann2(a: T.handle, b: T.handle, d: T.handle) -> None:
    A = T.match_buffer(a, (1024, 1024))
    B = T.match_buffer(b, (1024, 1024))
    C = T.alloc_buffer((1024, 1024))
    D = T.match_buffer(d, (1024, 1024))
    for i, j, k in T.grid(1024, 1024, 1024):
        with T.block("matmul"):
            vi, vj, vk = T.axis.remap("SSR", [i, j, k])
            with T.init():
                C[vi, vj] = 0.0
            T.block_attr({"test1": "aaa"})
            C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj]
    for i, j in T.grid(1024, 1024):
        with T.block("relu"):
            vi, vj = T.axis.remap("SS", [i, j])
            T.block_attr({"test2": 0.22, "test3": ["aa", 1]})
            D[vi, vj] = T.max(C[vi, vj], 0.0)
示例#29
0
 def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast(placeholder_4: T.handle, placeholder_5: T.handle, placeholder_6: T.handle, T_cast_2: T.handle) -> None:
     # function attr dict
     T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", "tir.noalias": True})
     placeholder_7 = T.match_buffer(placeholder_4, [360000], dtype="int16")
     placeholder_8 = T.match_buffer(placeholder_5, [4096], dtype="int16")
     placeholder_9 = T.match_buffer(placeholder_6, [64], dtype="int32")
     T_cast_3 = T.match_buffer(T_cast_2, [360000], dtype="int16")
     # body
     PaddedInput = T.allocate([360000], "int16", "global")
     for i0_i1_fused, i2, i3 in T.grid(75, 75, 64):
         PaddedInput[i0_i1_fused * 4800 + i2 * 64 + i3] = placeholder_7[i0_i1_fused * 4800 + i2 * 64 + i3]
     for ax0_ax1_fused_ax2_fused in T.serial(0, 5625):
         Conv2dOutput = T.allocate([64], "int32", "global")
         for ff in T.serial(0, 64):
             Conv2dOutput[ff] = 0
             for rc in T.serial(0, 64):
                 Conv2dOutput[ff] = Conv2dOutput[ff] + T.cast(PaddedInput[ax0_ax1_fused_ax2_fused * 64 + rc], "int32") * T.cast(placeholder_8[rc * 64 + ff], "int32")
         for ax3_inner_1 in T.serial(0, 64):
             T_cast_3[ax0_ax1_fused_ax2_fused * 64 + ax3_inner_1] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput[ax3_inner_1] + placeholder_9[ax3_inner_1], 1843106743, 31, -6, dtype="int32"), 255), 0), "uint8"), "int16")
def matmul_relu(var_A: T.handle, var_B: T.handle, var_compute: T.handle) -> None:
    A = T.match_buffer(var_A, [512, 512], dtype="float32")
    B = T.match_buffer(var_B, [512, 512], dtype="float32")
    compute = T.match_buffer(var_compute, [512, 512], dtype="float32")
    C = T.alloc_buffer([512, 512], dtype="float32")
    for i0, i1, i2 in T.grid(512, 512, 512):
        with T.block("C"):
            i, j, k = T.axis.remap("SSR", [i0, i1, i2])
            T.reads([C[i, j], A[i, k], B[k, j]])
            T.writes([C[i, j]])
            with T.init():
                C[i, j] = T.float32(0)
            C[i, j] = C[i, j] + A[i, k] * B[k, j]
    for i0, i1 in T.grid(512, 512):
        with T.block("compute"):
            i0_1, i1_1 = T.axis.remap("SS", [i0, i1])
            T.reads([C[i0_1, i1_1]])
            T.writes([compute[i0_1, i1_1]])
            compute[i0_1, i1_1] = T.max(C[i0_1, i1_1], T.float32(0))