示例#1
0
文件: operation.py 项目: wenxcs/tvm
def create_prim_func(ops: List[_tensor.Tensor]) -> tvm.tir.PrimFunc:
    """Create a TensorIR PrimFunc from tensor expression

    Parameters
    ----------
    ops : List[Tensor]
        The source expression.

    Example
    -------
    We define a matmul kernel using following code:

    .. code-block:: python

        import tvm
        from tvm import te
        from tvm.te import create_prim_func
        import tvm.script

        A = te.placeholder((128, 128), name="A")
        B = te.placeholder((128, 128), name="B")
        k = te.reduce_axis((0, 128), "k")
        C = te.compute((128, 128), lambda x, y: te.sum(A[x, k] * B[y, k], axis=k), name="C")
        func = create_prim_func([A, B, C])
        print(func.script())

    If we want to use TensorIR schedule to do transformations on such kernel,
    we need to use `create_prim_func([A, B, C])` to create a schedulable PrimFunc.
    The generated function looks like:

    .. code-block:: python

        @T.prim_func
        def tir_matmul(a: T.handle, b: T.handle, c: T.handle) -> None:
            A = T.match_buffer(a, (128, 128))
            B = T.match_buffer(b, (128, 128))
            C = T.match_buffer(c, (128, 128))

            for i, j, k in T.grip(128, 128, 128):
                with T.block():
                    vi, vj, vk = T.axis.remap("SSR", [i, j, k])
                    with T.init():
                        C[vi, vj] = 0.0
                    C[vi, vj] += A[vi, vk] * B[vj, vk]

    Returns
    -------
    func : tir.PrimFunc
        The created function.
    """
    if not isinstance(ops, (list, tuple, Array)):
        ops = [ops]
    return _ffi_api.CreatePrimFunc(ops)
示例#2
0
def create_prim_func(ops: List[_tensor.Tensor]) -> tvm.tir.PrimFunc:
    """Create a TensorIR PrimFunc from tensor expression

    Parameters
    ----------
    ops : List[Tensor]
        The source expression.

    Example
    -------
    We define a matmul kernel using following code:

    .. code-block:: python

        import tvm
        from tvm import te

        A = te.placeholder((128, 128), name="A")
        B = te.placeholder((128, 128), name="B")
        C = te.compute((128, 128), lambda x, y: te.sum(A[x, k] * B[y, k], axis=k), name="C")
        func = create_prim_func([A, B, C])
        print(tvm.script.asscript(func))

    If we want to use TensorIR schedule to do transformations on such kernel,
    we need to use `create_prim_func([A, B, C])` to create a schedulable PrimFunc.
    The generated function looks like:

    .. code-block:: python

        @tvm.script.tir
        def tir_matmul(a: ty.handle, b: ty.handle, c: ty.handle) -> None:
            A = tir.match_buffer(a, (128, 128))
            B = tir.match_buffer(b, (128, 128))
            C = tir.match_buffer(c, (128, 128))

            with tir.block([128, 128, tir.reduce_axis(0, 128)]) as [i, j, k]:
                with tir.init():
                    C[i, j] = 0.0
                C[i, j] += A[i, k] * B[j, k]

    Returns
    -------
    func : tir.PrimFunc
        The created function.
    """
    if not isinstance(ops, (list, tuple, Array)):
        ops = [ops]
    return _ffi_api.CreatePrimFunc(ops)