示例#1
0
def np_conv(na, nw, padding, stride=1):
    batch, in_channel, in_height, in_width = na.shape
    _, num_filter, kernel_h, kernel_w = nw.shape
    if isinstance(stride, int):
        stride_h = stride_w = stride
    else:
        stride_h, stride_w = stride

    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel_h, kernel_w))
    pad_h = pad_top + pad_bottom
    pad_w = pad_left + pad_right

    out_channel = num_filter
    out_height = (in_height - kernel_h + pad_h) // stride_h + 1
    out_width = (in_width - kernel_w + pad_w) // stride_w + 1
    nb = np.zeros((batch, out_channel, out_height, out_width))
    for n in range(batch):
        for f in range(out_channel):
            for c in range(in_channel):
                if pad_h > 0 or pad_w > 0:
                    apad = np.zeros((in_height + pad_h, in_width + pad_w))
                    apad[pad_top : pad_top + in_height, pad_left : pad_left + in_width] = na[n, c]
                else:
                    apad = na[n, c]
                out = scipy.signal.convolve2d(apad, np.rot90(np.rot90(nw[f, c])), mode="valid")
                nb[n, f] += out[::stride, ::stride]
    return nb
        def get_ref_data():
            out_grad_np = np.random.uniform(size=out_grad_shape).astype(dtype)
            input_np = np.random.uniform(size=in_shape).astype(dtype)
            dilated_out_grad_np = tvm.topi.testing.dilate_python(
                out_grad_np, [1, stride_h, stride_w, 1])

            pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
                [padding_h, padding_w], (filter_h, filter_w))
            padded_input_np = np.zeros(
                (batch, in_h + pad_top + pad_bottom,
                 in_w + pad_left + pad_right, in_channel))
            padded_input_np[:, pad_top:in_h + pad_top,
                            pad_left:in_w + pad_left, :] = input_np

            weight_grad_np = np.zeros(
                (filter_h, filter_w, in_channel, channel_multiplier))
            for c in range(in_channel):
                for m in range(channel_multiplier):
                    for b in range(batch):
                        weight_grad_np[:, :, c, m] += signal.convolve2d(
                            padded_input_np[b, :, :, c],
                            np.rot90(
                                dilated_out_grad_np[b, :, :,
                                                    c * channel_multiplier +
                                                    m % channel_multiplier],
                                2,
                            ),
                            mode="valid",
                        )[0:filter_h, 0:filter_w]
            return (out_grad_np, input_np, weight_grad_np)
        def get_ref_data():
            out_grad_np = np.random.uniform(size=out_grad_shape).astype(dtype)
            filter_np = np.random.uniform(size=filter_shape).astype(dtype)
            dilated_out_grad_np = tvm.topi.testing.dilate_python(
                out_grad_np, [1, stride_h, stride_w, 1])
            # padding params in forward propagation
            fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(
                [padding_h, padding_w], (filter_h, filter_w))
            # padding params in backward propagation
            bpad_top = filter_h - 1 - fpad_top
            bpad_bottom = (filter_h - 1 - fpad_bottom) + (stride_h - 1)
            bpad_left = filter_w - 1 - fpad_left
            bpad_right = (filter_w - 1 - fpad_right) + (stride_w - 1)

            padded_out_grad = np.zeros(
                (batch, dilated_out_grad_np.shape[1] + bpad_top + bpad_bottom,
                 dilated_out_grad_np.shape[2] + bpad_left + bpad_right,
                 out_channel))
            padded_out_grad[:,
                            bpad_top:dilated_out_grad_np.shape[1] + bpad_top,
                            bpad_left:dilated_out_grad_np.shape[2] +
                            bpad_left, :] = dilated_out_grad_np

            in_grad_np = np.zeros((batch, in_h, in_w, in_channel))
            for b in range(batch):
                for c in range(in_channel):
                    for m in range(channel_multiplier):
                        in_grad_np[b, :, :, c] += signal.convolve2d(padded_out_grad[b, :, :, c*channel_multiplier+m], \
                                filter_np[:, :, c, m], mode='valid')[0:in_h, 0:in_w]
            return (out_grad_np, filter_np, in_grad_np)
示例#4
0
def conv2d_grad(orig, grad):
    """Gradient of conv2d"""
    attrs = orig.attrs
    data, weight = orig.args
    data_shape = get_const_tuple(data.checked_type.shape)
    weight_shape = get_const_tuple(weight.checked_type.shape)
    _, _, grad_h, grad_w = get_const_tuple(orig.checked_type.shape)
    batch, in_channel, in_h, in_w = data_shape
    out_channel, _, filter_h, filter_w = weight_shape

    # infer output_padding
    fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(get_const_tuple(attrs.padding),
                                                                 (filter_h, filter_w))
    stride_h, stride_w = get_const_tuple(attrs.strides)
    dilation_h, dilation_w = get_const_tuple(attrs.dilation)
    out_h = (grad_h - 1) * stride_h - fpad_top - fpad_bottom + filter_h
    out_w = (grad_w - 1) * stride_w - fpad_left - fpad_right + filter_w
    output_padding = (in_h - out_h, in_w - out_w)

    assert attrs.data_layout == 'NCHW', 'only support NCHW data layout'
    assert attrs.kernel_layout == 'OIHW', 'only support OIHW kernel layout'
    assert attrs.out_layout in ['', 'NCHW'], 'only support NCHW output layout'


    backward_data = _nn.conv2d_transpose(grad, weight,
                                         strides=attrs.strides,
                                         padding=attrs.padding,
                                         dilation=attrs.dilation,
                                         groups=attrs.groups,
                                         output_padding=output_padding)
    grad = tile(grad, [1, in_channel // attrs.groups, 1, 1])
    grad = reshape(grad, [-1, 1, 0, 0])  # batch * oc * ic // groups, 1, oh, ow
    data = reshape(data, [1, -1, 0, 0])  # 1, batch * ic, ih, iw

    backward_weight = _nn.conv2d(data, grad,
                                 strides=attrs.dilation,
                                 padding=attrs.padding,
                                 dilation=attrs.strides,
                                 groups=in_channel * batch)
    # infer shape of backward_weight
    padded_weight_grad_h = (in_h - (grad_h - 1) * stride_h - 1 + fpad_top + fpad_bottom) \
                           // dilation_h + 1
    padded_weight_grad_w = (in_w - (grad_w - 1) * stride_w - 1 + fpad_left + fpad_right) \
                           // dilation_w + 1
    backward_weight = reshape(backward_weight,
                              [batch, in_channel // attrs.groups, out_channel,
                               padded_weight_grad_h, padded_weight_grad_w])
    backward_weight = _sum(backward_weight, axis=0)
    backward_weight = transpose(backward_weight, [1, 0, 2, 3])

    assert padded_weight_grad_h >= filter_h
    assert padded_weight_grad_w >= filter_w
    if padded_weight_grad_h > filter_h or padded_weight_grad_w > filter_w:
        backward_weight = strided_slice(backward_weight,
                                        begin=[0, 0, 0, 0],
                                        end=[out_channel, in_channel // attrs.groups,
                                             filter_h, filter_w])

    return [backward_data, backward_weight]
def compile_conv2d_NHWC_gemm_int8_arm(batch, in_channel, in_size, num_filter, kernel, stride, padding,
                                 dilation=1, add_bias=False, add_relu=False):
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter,
                                                          kernel, stride, padding_sum, dilation))

    in_height = in_width = in_size
    A = te.placeholder((batch, in_height, in_width, in_channel), name='A', dtype='int8')
    W = te.placeholder((kernel, kernel, in_channel, num_filter), name='W', dtype='int8')
    bias = te.placeholder((num_filter,), name='bias', dtype='int8')
    dtype = 'int32'
    device = "llvm --device arm_cpu --mtriple aarch64-linux-gnu"

    ctx = tvm.context(device, 0)
    if not ctx.exist:
        print("Skip because %s is not enabled" % device)
        return
    print("Compiling on arm AArch64 target: %s" % device)
    with tvm.target.create(device):
        assert is_aarch64_arm(), "AArch64 target not recognized"

        C = topi.arm_cpu.compute_conv2d_NHWC_quantized(A, W, (stride, stride), padding,
                                                       (dilation, dilation), dtype)
        if add_bias:
            C = topi.add(C, bias)
        if add_relu:
            C = topi.nn.relu(C)
        s = topi.arm_cpu.schedule_conv2d_NHWC_quantized([C])

    if add_bias:
        tvm.build(s, [A, W, bias, C], device,
                  name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch,
                                                         in_channel,
                                                         in_size,
                                                         num_filter,
                                                         kernel,
                                                         stride,
                                                         padding_sum,
                                                         dilation))
        func = tvm.build(s, [A, W, bias, C], device,
                         name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch,
                                                                in_channel,
                                                                in_size,
                                                                num_filter,
                                                                kernel,
                                                                stride,
                                                                padding_sum,
                                                                dilation))
    else:
        func = tvm.build(s, [A, W, C], device,
                         name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch,
                                                                in_channel,
                                                                in_size,
                                                                num_filter,
                                                                kernel,
                                                                stride,
                                                                padding_sum,
                                                                dilation))
示例#6
0
def conv2d_hwcn_python(a_np, w_np, stride, padding):
    """Convolution operator in HWCN layout.

    Parameters
    ----------
    a_np : numpy.ndarray
        4-D with shape [in_height, in_width, in_channel, batch]

    w_np : numpy.ndarray
        4-D with shape [filter_height, filter_width, in_channel, num_filter]

    stride : int or a list/tuple of two ints
        Stride size, or [stride_height, stride_width]

    padding : int or str or a list/tuple of 2 or 4 ints
        Padding size, or ['VALID', 'SAME'], or
        [pad_height, pad_width] for 2 ints, or
        [pad_top, pad_left, pad_bottom, pad_right] for 2 ints

    Returns
    -------
    b_np : np.ndarray
        4-D with shape [out_height, out_width, out_channel, batch]
    """
    in_height, in_width, in_channel, batch = a_np.shape
    kernel_h, kernel_w, _, num_filter = w_np.shape
    if isinstance(stride, int):
        stride_h = stride_w = stride
    else:
        stride_h, stride_w = stride

    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel_h, kernel_w))
    pad_h = pad_top + pad_bottom
    pad_w = pad_left + pad_right
    # compute the output shape
    out_channel = num_filter
    out_height = (in_height - kernel_h + pad_h) // stride_h + 1
    out_width = (in_width - kernel_w + pad_w) // stride_w + 1
    # change the layout from HWCN to NCHW
    at = a_np.transpose((3, 2, 0, 1))
    wt = w_np.transpose((3, 2, 0, 1))
    bt = np.zeros((batch, out_channel, out_height, out_width))
    # computation
    for n in range(batch):
        for f in range(out_channel):
            for c in range(in_channel):
                if pad_h > 0 or pad_w > 0:
                    apad = np.zeros((in_height + pad_h, in_width + pad_w))
                    apad[pad_top:pad_top + in_height,
                         pad_left:pad_left + in_width] = at[n, c]
                else:
                    apad = at[n, c]
                out = scipy.signal.convolve2d(apad,
                                              np.rot90(np.rot90(wt[f, c])),
                                              mode="valid")
                bt[n, f] += out[::stride, ::stride]
    return bt.transpose((2, 3, 1, 0))
示例#7
0
def conv2d_transpose_packed(cfg,
                            data,
                            kernel,
                            strides,
                            padding,
                            out_dtype,
                            output_padding=(0, 0)):
    """Packed conv2d_transpose compute"""
    ishape = get_const_tuple(data.shape)
    kshape = get_const_tuple(kernel.shape)
    b, c_i, i_h, i_w, t_b, t_ci = ishape
    c_o, _, k_h, k_w, t_co, t_ci = kshape
    stride_h, stride_w = strides
    opad_h, opad_w = output_padding
    # FIXME(tmoreau89): currently IR pass breaks when output padding != (0,0)
    assert opad_h == 0 and opad_w == 0, "VTA does not support output padding for now"

    # derive padding parameters
    fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(
        padding, (k_h, k_w))
    bpad_top = k_h - 1 - fpad_top
    bpad_bottom = k_h - 1 - fpad_bottom + opad_h
    bpad_left = k_w - 1 - fpad_left
    bpad_right = k_w - 1 - fpad_right + opad_w

    # padding stage
    dilated_input = topi.nn.dilate(data, [1, 1, stride_h, stride_w, 1, 1])
    data_pad = topi.nn.pad(dilated_input, [0, 0, bpad_top, bpad_left, 0, 0],
                           [0, 0, bpad_bottom, bpad_right, 0, 0])

    # convolution transpose stage
    out_h = (i_h - 1) * stride_h - fpad_top - fpad_bottom + k_h + opad_h
    out_w = (i_w - 1) * stride_w - fpad_left - fpad_right + k_w + opad_w
    oshape = (b, c_o, out_h, out_w, t_b, t_co)
    d_c = te.reduce_axis((0, c_i), name="d_c")
    d_h = te.reduce_axis((0, k_h), name="d_h")
    d_w = te.reduce_axis((0, k_w), name="d_w")
    d_ci = te.reduce_axis((0, t_ci), name="d_ci")

    out = te.compute(
        oshape,
        lambda i_n, i_c, i_h, i_w, j_n, j_c: te.sum(
            data_pad(i_n, d_c, i_h + d_h, i_w + d_w, j_n, d_ci).astype(
                out_dtype) * kernel[i_c, d_c, d_h, d_w, j_c, d_ci].astype(
                    out_dtype),
            axis=[d_c, d_h, d_w, d_ci],
        ),
        tag="packed_conv2d_transpose",
        name="res",
    )

    cfg.add_flop(2 * np.prod(topi.util.get_const_tuple(oshape)) * kshape[2] *
                 kshape[3] * ishape[1] * ishape[-1])

    return out
示例#8
0
def _conv2d_nchw_python(a_np, w_np, stride, padding):
    """Convolution operator in NCHW layout.

    Parameters
    ----------
    a_np : numpy.ndarray
        4-D with shape [batch, in_channel, in_height, in_width]

    w_np : numpy.ndarray
        4-D with shape [num_filter, in_channel, filter_height, filter_width]

    stride : int or a list/tuple of two ints
        Stride size, or [stride_height, stride_width]

    padding : int or str or a list/tuple of 2 or 4 ints
        Padding size, or ['VALID', 'SAME'], or
        [pad_height, pad_width] for 2 ints, or
        [pad_top, pad_left, pad_bottom, pad_right] for 2 ints

    Returns
    -------
    b_np : np.ndarray
        4-D with shape [batch, out_channel, out_height, out_width]
    """
    batch, in_channel, in_height, in_width = a_np.shape
    num_filter, _, kernel_h, kernel_w = w_np.shape
    if isinstance(stride, int):
        stride_h = stride_w = stride
    else:
        stride_h, stride_w = stride
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel_h, kernel_w))
    pad_h = pad_top + pad_bottom
    pad_w = pad_left + pad_right
    # compute the output shape
    out_channel = num_filter
    out_height = (in_height - kernel_h + pad_h) // stride_h + 1
    out_width = (in_width - kernel_w + pad_w) // stride_w + 1
    b_np = np.zeros((batch, out_channel, out_height, out_width))
    # computation
    for n in range(batch):
        for f in range(out_channel):
            for c in range(in_channel):
                if pad_h > 0 or pad_w > 0:
                    apad = np.zeros((in_height + pad_h, in_width + pad_w))
                    apad[pad_top:pad_top + in_height,
                         pad_left:pad_left + in_width] = a_np[n, c]
                else:
                    apad = a_np[n, c]
                out = scipy.signal.convolve2d(apad,
                                              np.rot90(np.rot90(w_np[f, c])),
                                              mode='valid')
                b_np[n, f] += out[::stride_h, ::stride_w]
    return b_np
def verify_conv2d_NHWC_gemm_int8(batch,
                                 in_channel,
                                 in_size,
                                 num_filter,
                                 kernel,
                                 stride,
                                 padding,
                                 dilation=1,
                                 add_bias=False,
                                 add_relu=False):
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" %
          (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum,
           dilation))

    in_height = in_width = in_size

    A = te.placeholder((batch, in_height, in_width, in_channel),
                       name='A',
                       dtype='int8')
    W = te.placeholder((kernel, kernel, in_channel, num_filter),
                       name='W',
                       dtype='int8')
    bias = te.placeholder((num_filter, ), name='bias', dtype='int8')

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    bias_shape = get_const_tuple(bias.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_int8.verify_conv2d_nchw")
    def get_ref_data():
        a_np = np.random.randint(low=-128, high=127,
                                 size=a_shape).astype(dtype)
        w_np = np.random.randint(low=-128, high=128,
                                 size=w_shape).astype(dtype)
        b_np = np.random.uniform(size=bias_shape).astype(dtype)
        dw_np = tvm.topi.testing.dilate_python(w_np,
                                               (dilation, dilation, 1, 1))
        c_np = tvm.topi.testing.conv2d_nhwc_python(a_np, dw_np, stride,
                                                   padding).astype(dtype)

        if add_bias:
            b_np = np.random.uniform(size=bias_shape).astype(dtype)
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)

        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not tvm.testing.device_enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.Target(device):
            C = topi.arm_cpu.compute_conv2d_NHWC_quantized(
                A, W, (stride, stride), padding, (dilation, dilation), dtype)
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
            s = topi.arm_cpu.schedule_conv2d_NHWC_quantized([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype),
                         ctx)
        if add_bias:
            tvm.build(s, [A, W, bias, C],
                      device,
                      name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                      (batch, in_channel, in_size, num_filter, kernel, stride,
                       padding_sum, dilation))
            func = tvm.build(s, [A, W, bias, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, b, c)
        else:
            func = tvm.build(s, [A, W, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, c)
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)

    check_device("llvm")
def verify_conv2d_NCHWc_int8(batch,
                             in_channel,
                             in_size,
                             num_filter,
                             kernel,
                             stride,
                             padding,
                             dilation=1,
                             add_bias=False,
                             add_relu=False):
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" %
          (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum,
           dilation))

    in_height = in_width = in_size

    A = te.placeholder((batch, in_channel, in_height, in_width),
                       name='A',
                       dtype='int8')
    W = te.placeholder((num_filter, in_channel, kernel, kernel),
                       name='W',
                       dtype='int8')
    bias = te.placeholder(
        (num_filter // oc_block_factor, 1, 1, oc_block_factor),
        name='bias',
        dtype='int8')

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    bias_shape = get_const_tuple(bias.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_int8.verify_conv2d_nchw")
    def get_ref_data():
        a_np = np.random.randint(low=-128, high=127,
                                 size=a_shape).astype(dtype)
        w_np = np.random.randint(low=-128, high=128,
                                 size=w_shape).astype(dtype)
        b_np = np.random.uniform(size=bias_shape).astype(dtype)
        dw_np = tvm.topi.testing.dilate_python(w_np,
                                               (1, 1, dilation, dilation))
        c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride,
                                                   padding).astype(dtype)

        # convert to NCHWc
        _, _, out_height, out_width = c_np.shape
        c_np = c_np.reshape((batch, num_filter // oc_block_factor, oc_block_factor, \
                out_height, out_width)).transpose(0, 1, 3, 4, 2)

        if add_bias:
            b_np = np.random.uniform(size=bias_shape).astype(dtype)
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)

        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not tvm.testing.device_enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        if device == "cuda" and not tvm.contrib.nvcc.have_int8(
                ctx.compute_version):
            print("Skip because int8 intrinsics are not available")
            return

        print("Running on target: %s" % device)
        with tvm.target.Target(device):
            C = topi.cuda.conv2d_NCHWc_int8(A, W, (stride, stride), padding,
                                            (dilation, dilation), 'NCHW',
                                            dtype)
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
            s = topi.cuda.schedule_conv2d_NCHWc_int8([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype),
                         ctx)
        if add_bias:
            tvm.build(s, [A, W, bias, C],
                      device,
                      name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                      (batch, in_channel, in_size, num_filter, kernel, stride,
                       padding_sum, dilation))
            func = tvm.build(s, [A, W, bias, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, b, c)
        else:
            func = tvm.build(s, [A, W, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, c)
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)

    for device in ["cuda"]:
        check_device(device)
示例#11
0
def conv2d_transpose_nchw_python(a_np, w_np, stride, padding, output_padding):
    """Transposed convolution operator in NCHW layout.

    Parameters
    ----------
    a_np : numpy.ndarray
        4-D with shape [batch, in_channel, in_height, in_width]

    w_np : numpy.ndarray
        4-D with shape [in_channel, num_filter, filter_height, filter_width]

    stride : int or a list/tuple of two ints
        Stride size, or [stride_height, stride_width]

    padding : int or str
        Padding size, or ['VALID', 'SAME']

    output_padding : int or a list/tuple of two ints
        Use to disambiguate the output shape.

    Returns
    -------
    b_np : np.ndarray
        4-D with shape [batch, out_channel, out_height, out_width]
    """
    batch, in_c, in_h, in_w = a_np.shape
    _, out_c, filter_h, filter_w = w_np.shape
    if isinstance(stride, int):
        stride_h = stride_w = stride
    else:
        stride_h, stride_w = stride
    if isinstance(output_padding, int):
        opad_h = opad_w = output_padding
    else:
        opad_h, opad_w = output_padding
    assert opad_h < stride_h and opad_w < stride_w
    # dilate stage
    dilated_a_np = tvm.topi.testing.dilate_python(a_np,
                                                  [1, 1, stride_h, stride_w])
    # padding stage
    fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(
        padding, (filter_h, filter_w))
    bpad_top = filter_h - 1 - fpad_top
    bpad_bottom = filter_h - 1 - fpad_bottom + opad_h
    bpad_left = filter_w - 1 - fpad_left
    bpad_right = filter_w - 1 - fpad_right + opad_w
    padded_a_np = np.zeros((batch, in_c, dilated_a_np.shape[2]+bpad_top+bpad_bottom, \
                            dilated_a_np.shape[3]+bpad_left+bpad_right))
    padded_a_np[:, :, bpad_top:dilated_a_np.shape[2]+bpad_top, \
                bpad_left:dilated_a_np.shape[3]+bpad_left] = dilated_a_np
    # convolution stage
    out_h = (in_h - 1) * stride_h - fpad_top - fpad_bottom + filter_h + opad_h
    out_w = (in_w - 1) * stride_w - fpad_left - fpad_right + filter_w + opad_w
    b_np = np.zeros((batch, out_c, out_h, out_w))
    for n in range(batch):
        for f in range(out_c):
            for c in range(in_c):
                out = scipy.signal.convolve2d(padded_a_np[n, c],
                                              w_np[c, f],
                                              mode='valid')
                b_np[n, f] += out
    return b_np
示例#12
0
def depthwise_conv2d_with_workload_nchw(batch,
                                        in_channel,
                                        in_height,
                                        channel_multiplier,
                                        filter_height,
                                        stride,
                                        padding,
                                        dilation=1):
    in_width = in_height
    filter_channel = in_channel
    filter_width = filter_height
    stride_h = stride_w = stride

    if dilation == 1:
        # here we transform the padding argument from 'str' to  'tuple' ,
        # because we need this to match the "workload" tuple to the records in TopHub
        pad_h, pad_w, _, _ = get_pad_tuple(padding,
                                           (filter_height, filter_width))
        padding_args = (pad_h, pad_w)
    else:
        padding_args = padding

    # placeholder
    Input = te.placeholder((batch, in_channel, in_height, in_width),
                           name='Input')
    Filter = te.placeholder(
        (filter_channel, channel_multiplier, filter_height, filter_width),
        name='Filter')
    Scale = te.placeholder((in_channel * channel_multiplier, ), name='Scale')
    Shift = te.placeholder((in_channel * channel_multiplier, ), name='Shift')

    dtype = 'float32'

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)

        impl_list = tvm.topi.testing.dispatch(
            device, _depthwise_conv2d_nchw_implement)[:]
        if device == "llvm" and channel_multiplier == 1 and dilation == 1:
            impl_list.append((topi.x86.depthwise_conv2d_nchw,
                              topi.x86.schedule_depthwise_conv2d_nchw))

        for fcompute, fschedule in impl_list:
            with tvm.target.create(device):
                # declare
                DepthwiseConv2d = fcompute(Input, Filter, (stride_h, stride_w),
                                           padding_args, dilation, dtype)
                ScaleShift = topi.nn.scale_shift_nchw(DepthwiseConv2d, Scale,
                                                      Shift)
                Relu = topi.nn.relu(ScaleShift)
                # schedule
                s1 = fschedule(DepthwiseConv2d)
                s2 = fschedule(ScaleShift)
                s3 = fschedule(Relu)
            # build the kernels
            f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
            f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift],
                           device)
            f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device)

            # Prepare pod type for test data closure
            input_shape = get_const_tuple(Input.shape)
            filter_shape = get_const_tuple(Filter.shape)
            scale_shape = get_const_tuple(Scale.shape)
            shift_shape = get_const_tuple(Shift.shape)
            scale_shift_shape = get_const_tuple(ScaleShift.shape)

            # Use memoize, pickle the test data for next time use.
            @memoize("topi.tests.test_topi_depthwise_conv2d.nchw")
            def get_ref_data():
                input_np = np.random.uniform(size=input_shape).astype(dtype)
                filter_np = np.random.uniform(size=filter_shape).astype(dtype)
                dilated_filter_np = tvm.topi.testing.dilate_python(
                    filter_np, (1, 1, dilation, dilation))
                scale_np = np.random.uniform(size=scale_shape).astype(dtype)
                shift_np = np.random.uniform(size=shift_shape).astype(dtype)
                # correctness with scipy
                depthwise_conv2d_scipy = tvm.topi.testing.depthwise_conv2d_python_nchw(
                    input_np, dilated_filter_np, stride, padding)
                scale_shift_scipy = np.zeros(shape=scale_shift_shape)
                for c in range(in_channel * channel_multiplier):
                    scale_shift_scipy[:,
                                      c, :, :] = depthwise_conv2d_scipy[:, c, :, :] * scale_np[
                                          c] + shift_np[c]
                    relu_scipy = np.maximum(scale_shift_scipy, 0)
                return (input_np, filter_np, scale_np, shift_np,
                        depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy)

            # Get the test data
            (input_np, filter_np, scale_np, shift_np, depthwise_conv2d_scipy,
             scale_shift_scipy, relu_scipy) = get_ref_data()

            input_tvm = tvm.nd.array(input_np, ctx)
            filter_tvm = tvm.nd.array(filter_np, ctx)
            scale_tvm = tvm.nd.array(scale_np, ctx)
            shift_tvm = tvm.nd.array(shift_np, ctx)
            depthwise_conv2d_tvm = tvm.nd.array(
                np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape),
                         dtype=DepthwiseConv2d.dtype), ctx)
            scale_shift_tvm = tvm.nd.array(
                np.zeros(shape=get_const_tuple(ScaleShift.shape),
                         dtype=ScaleShift.dtype), ctx)
            relu_tvm = tvm.nd.array(
                np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype),
                ctx)
            # launch kernel 1 (depthwise_conv2d)
            timer_1 = f1.time_evaluator(f1.entry_name, ctx, number=1)
            tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean
            # launch kernel 2 (depthwise_conv2d + scale_shift)
            timer_2 = f2.time_evaluator(f2.entry_name, ctx, number=1)
            tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm,
                              scale_shift_tvm).mean
            # launch kernel 3 (depthwise_conv2d + scale_shift + relu)
            timer_3 = f3.time_evaluator(f3.entry_name, ctx, number=1)
            tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm,
                              relu_tvm).mean
            tvm.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(),
                                        depthwise_conv2d_scipy,
                                        rtol=1e-5)
            tvm.testing.assert_allclose(scale_shift_tvm.asnumpy(),
                                        scale_shift_scipy,
                                        rtol=1e-5)
            tvm.testing.assert_allclose(relu_tvm.asnumpy(),
                                        relu_scipy,
                                        rtol=1e-5)

    for device in get_all_backend():
        with autotvm.tophub.context(
                device):  # load tophub pre-tuned parameters
            check_device(device)
示例#13
0
def depthwise_conv2d_with_workload_NCHWc(batch,
                                         in_channel,
                                         in_height,
                                         channel_multiplier,
                                         filter_height,
                                         stride,
                                         padding,
                                         dilation=1):
    in_width = in_height
    filter_channel = in_channel
    filter_width = filter_height
    stride_h = stride_w = stride

    assert channel_multiplier == 1, "depthwise_conv2d_NCHWc currently does not support channel multiplier > 1."
    pad_h, pad_w, _, _ = get_pad_tuple(padding, (filter_height, filter_width))
    padding_args = (pad_h, pad_w)

    out_channel = filter_channel * channel_multiplier
    # for testing functionality,
    # we choose arbitrary block size that can divide the channel,
    # regardless of the performance.
    oc_block = 1
    for bn in range(16, 0, -1):
        if out_channel % bn == 0:
            oc_block = bn
            break

    ic_block = 1
    for bn in range(oc_block, 0, -1):
        if in_channel % bn == 0:
            ic_block = bn
            break

    # placeholder
    Input = te.placeholder(
        (batch, in_channel // ic_block, in_height, in_width, ic_block),
        name='Input')
    Filter = te.placeholder(
        (out_channel // oc_block, 1, filter_height, filter_width, 1, oc_block),
        name='Filter')
    in_layout = "NCHW%dc" % ic_block
    out_layout = "NCHW%dc" % oc_block
    dtype = 'float32'

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.create(device):
            # declare
            DepthwiseConv2d = topi.x86.depthwise_conv2d_NCHWc(
                Input, Filter, (stride_h, stride_w), padding,
                (dilation, dilation), in_layout, out_layout, dtype)
            # TODO: add scale_shift implement for NCHWc and add test here
            Relu = topi.nn.relu(DepthwiseConv2d)
            # schedule
            s1 = topi.x86.schedule_depthwise_conv2d_NCHWc(DepthwiseConv2d)
            s2 = topi.x86.schedule_depthwise_conv2d_NCHWc(Relu)
        # build the kernels
        f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
        f2 = tvm.build(s2, [Input, Filter, Relu], device)

        # Prepare pod type for test data closure
        input_shape = (batch, in_channel, in_height, in_width)
        filter_shape = (filter_channel, channel_multiplier, filter_height,
                        filter_width)

        # Use memoize, pickle the test data for next time use.
        @memoize("topi.tests.test_topi_depthwise_conv2d.NCHWc")
        def get_ref_data():
            input_np = np.random.uniform(size=input_shape).astype(dtype)
            filter_np = np.random.uniform(size=filter_shape).astype(dtype)
            # correctness with scipy
            dw_np = tvm.topi.testing.dilate_python(
                filter_np, (1, 1, dilation, dilation)).astype(dtype)
            depthwise_conv2d_scipy = tvm.topi.testing.depthwise_conv2d_python_nchw(
                input_np, dw_np, stride, padding)
            relu_scipy = np.maximum(depthwise_conv2d_scipy, 0)
            return (_transform_data(input_np, ic_block),
                    _transform_kernel(filter_np, oc_block),
                    _transform_data(depthwise_conv2d_scipy, oc_block),
                    _transform_data(relu_scipy, oc_block))

        # Get the test data
        (input_np, filter_np, depthwise_conv2d_scipy,
         relu_scipy) = get_ref_data()

        input_tvm = tvm.nd.array(input_np, ctx)
        filter_tvm = tvm.nd.array(filter_np, ctx)

        depthwise_conv2d_tvm = tvm.nd.array(
            np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape),
                     dtype=DepthwiseConv2d.dtype), ctx)
        relu_tvm = tvm.nd.array(
            np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), ctx)
        # launch kernel 1 (depthwise_conv2d)
        f1(input_tvm, filter_tvm, depthwise_conv2d_tvm)
        # launch kernel 2 (depthwise_conv2d + relu)
        f2(input_tvm, filter_tvm, relu_tvm)
        tvm.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(),
                                    depthwise_conv2d_scipy,
                                    rtol=1e-5)
        tvm.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)

    # test llvm only for now since depthwise_conv2d_NCHWc implement is missing in other backend.
    for device in ["llvm"]:
        with autotvm.tophub.context(
                device):  # load tophub pre-tuned parameters
            check_device(device)
def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False,\
        use_cudnn=False):

    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" %
          (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum,
           dilation))

    in_height = in_width = in_size

    A = te.placeholder((batch, in_channel, in_height, in_width), name='A')
    W = te.placeholder((num_filter, in_channel, kernel, kernel), name='W')
    bias = te.placeholder((num_filter, 1, 1), name='bias')

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    bias_shape = get_const_tuple(bias.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_nchw.verify_conv2d_nchw")
    def get_ref_data():
        a_np = np.random.uniform(size=a_shape).astype(dtype)
        w_np = np.random.uniform(size=w_shape).astype(dtype)
        b_np = np.random.uniform(size=bias_shape).astype(dtype)
        dw_np = tvm.topi.testing.dilate_python(w_np,
                                               (1, 1, dilation, dilation))
        c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride,
                                                   padding)
        if add_bias:
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)
        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)

        if "cudnn" in device:
            fcompute, fschedule = topi.cuda.conv2d_cudnn, topi.cuda.schedule_conv2d_cudnn
        else:
            fcompute, fschedule = tvm.topi.testing.get_conv2d_nchw_implement(
                device)

        with tvm.target.create(device):
            if "cudnn" in device:
                C = fcompute(A, W, (stride, stride), padding,
                             (dilation, dilation), 1, "NCHW", dtype)
            else:
                C = fcompute(A, W, (stride, stride), padding,
                             (dilation, dilation), dtype)
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
            s = fschedule([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)

        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype),
                         ctx)
        if add_bias:
            func = tvm.build(s, [A, W, bias, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, b, c)
        else:
            func = tvm.build(s, [A, W, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, c)
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-4)

    for device in get_all_backend():
        with autotvm.tophub.context(
                device):  # load tophub pre-tuned parameters
            check_device(device)

    if use_cudnn:
        check_device("cuda -model=unknown -libs=cudnn")
示例#15
0
def conv2d_direct_simd_compute(cfg, data, kernel, strides, padding, dilation,
                               out_dtype):
    """Compute function for Cortex-M7 SIMD implementation of conv2d."""
    assert isinstance(strides, int) or len(strides) == 2
    assert isinstance(dilation, int) or len(dilation) == 2

    if isinstance(strides, int):
        stride_h = stride_w = strides
    else:
        stride_h, stride_w = strides

    if isinstance(dilation, int):
        dilation_h = dilation_w = dilation
    else:
        dilation_h, dilation_w = dilation

    batch_size, in_height, in_width, in_channels = data.shape
    kernel_h, kernel_w, out_channels, _ = kernel.shape

    # compute the output shape
    dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
    dilated_kernel_w = (kernel_w - 1) * dilation_w + 1
    pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
        padding, (dilated_kernel_h, dilated_kernel_w))
    out_height = simplify(
        (in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1)
    out_width = simplify(
        (in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1)

    pad_before = [0, pad_top, pad_left, 0]
    pad_after = [0, pad_down, pad_right, 0]
    padded_data = pad(data, pad_before, pad_after, name="padded_data")

    rc = te.reduce_axis((0, in_channels), name="rc")
    ry = te.reduce_axis((0, kernel_h), name="ry")
    rx = te.reduce_axis((0, kernel_w), name="rx")

    conv = te.compute(
        (batch_size, out_height, out_width, out_channels),
        lambda nn, yy, xx, ff: te.sum(
            padded_data[nn, yy * stride_h + ry * dilation_h, xx * stride_w + rx
                        * dilation_w, rc].astype(out_dtype) * kernel[
                            ry, rx, ff, rc].astype(out_dtype),
            axis=[ry, rx, rc],
        ),
        name="conv2d",
        tag="conv2d_nhwc",
    )

    ###########################
    # Config Space Definition #
    ###########################
    n, oh, ow, co = (
        cfg.axis(batch_size.value),
        cfg.axis(out_height.value),
        cfg.axis(out_width.value),
        cfg.axis(out_channels.value),
    )
    kh, kw, ci = (
        cfg.reduce_axis(kernel_h.value),
        cfg.reduce_axis(kernel_w.value),
        cfg.reduce_axis(in_channels.value),
    )

    assert in_channels.value % 4 == 0
    owo, owi = cfg.define_split("tile_ow", ow, policy="factors", num_outputs=2)
    cio, cii = cfg.define_split("tile_ci",
                                ci,
                                policy="factors",
                                num_outputs=2,
                                filter=lambda x: x.size[-1] % 4 == 0)
    coo, coi = cfg.define_split("tile_co", co, policy="factors", num_outputs=2)

    cfg.define_reorder(
        "reorder_0_simd",
        [n, oh, owo, owi, coo, coi, kh, kw, cio, cii],
        policy="candidate",
        candidate=[
            [n, oh, kh, kw, owo, coo, cio, owi, coi, cii],
            [n, oh, kh, kw, coo, owo, cio, owi, coi, cii],
            [n, kh, kw, oh, owo, coo, cio, owi, coi, cii],
            [n, kh, kw, oh, coo, owo, cio, owi, coi, cii],
        ],
    )

    cfg.define_knob("auto_unroll_max_step", [0, 2, 4, 8, 16, 32])
    cfg.define_knob("unroll_explicit", [0, 1])

    return conv
def verify_conv2d_nchw(
    batch,
    in_channel,
    in_size,
    num_filter,
    kernel,
    stride,
    padding,
    dilation=1,
    add_bias=False,
    add_relu=False,
    devices=["cuda", "llvm -device=arm_cpu", "opencl -device=mali"],
):
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" %
          (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum,
           dilation))

    in_height = in_width = in_size

    A = te.placeholder((batch, in_channel, in_height, in_width), name="A")
    W = te.placeholder((num_filter, in_channel, kernel, kernel), name="W")
    bias = te.placeholder((num_filter, 1, 1), name="bias")

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    bias_shape = get_const_tuple(bias.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_nchw.verify_conv2d_nchw")
    def get_ref_data():
        a_np = np.random.uniform(size=a_shape).astype(dtype)
        w_np = np.random.uniform(size=w_shape).astype(dtype)
        b_np = np.random.uniform(size=bias_shape).astype(dtype)
        dw_np = tvm.topi.testing.dilate_python(w_np,
                                               (1, 1, dilation, dilation))
        c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride,
                                                   padding)
        if add_bias:
            b_np = np.random.uniform(size=bias_shape).astype(dtype)
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)
        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not tvm.testing.device_enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.Target(device):
            fcompute, fschedule = tvm.topi.testing.dispatch(
                device, _conv2d_nchw_winograd_implement)
            C = fcompute(A, W, stride, padding, dilation, dtype)
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
            s = fschedule([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype),
                         ctx)
        if add_bias:
            func = tvm.build(
                s,
                [A, W, bias, C],
                device,
                name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                (batch, in_channel, in_size, num_filter, kernel, stride,
                 padding_sum, dilation),
            )
            func(a, w, b, c)
        else:
            func = tvm.build(
                s,
                [A, W, C],
                device,
                name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                (batch, in_channel, in_size, num_filter, kernel, stride,
                 padding_sum, dilation),
            )
            func(a, w, c)

        rtol = 1e-3
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=rtol)

    for device in devices:
        check_device(device)
示例#17
0
def deformable_conv2d_nchw_python(a_np, offset_np, w_np, stride, padding,
                                  dilation, deformable_groups, groups):
    """Deformable convolution operator in NCHW layout.

    Parameters
    ----------
    a_np : numpy.ndarray
        4-D with shape [batch, in_channel, in_height, in_width]

    offset_np : numpy.ndarray
        4-D with shape [batch, deformable_groups * filter_height * filter_width * 2,
                        out_height, out_width]

    w_np : numpy.ndarray
        4-D with shape [num_filter, in_channel, filter_height, filter_width]

    stride : int or a list/tuple of two ints
        Stride size, or [stride_height, stride_width]

    padding : int or str or a list/tuple of 2 or 4 ints
        Padding size, or ['VALID', 'SAME'], or
        [pad_height, pad_width] for 2 ints, or
        [pad_top, pad_left, pad_bottom, pad_right] for 2 ints

    dilation : int or a list/tuple of two ints
        Dilation size, or [dilate_height, dilate_width]

    deformable_groups : int
        Number of deformable groups

    groups : int
        Number of groups

    Returns
    -------
    b_np : np.ndarray
        4-D with shape [batch, out_channel, out_height, out_width]
    """
    batch, in_channel, in_height, in_width = a_np.shape
    out_channel, _, kernel_h, kernel_w = w_np.shape
    out_height, out_width = offset_np.shape[-2:]
    dtype = a_np.dtype
    ic_per_dgroup = in_channel // deformable_groups
    assert groups == 1, "deformable_conv2d_nchw_python does not support groups > 1"

    if isinstance(stride, int):
        stride_h = stride_w = stride
    else:
        stride_h, stride_w = stride

    pad_top, pad_left, _, _ = get_pad_tuple(padding, (kernel_h, kernel_w))

    if isinstance(dilation, int):
        dilation_h = dilation_w = dilation
    else:
        dilation_h, dilation_w = dilation

    def _bilinear(n, c, h, w):
        low_h, low_w = int(h), int(w)
        high_h = min(low_h + 1, in_height - 1)
        high_w = min(low_w + 1, in_width - 1)
        y_lerp = h - low_h
        x_lerp = w - low_w

        bottom = (1 - x_lerp) * a_np[n, c, low_h, low_w] + x_lerp * a_np[
            n, c, low_h, high_w]
        top = (1 - x_lerp) * a_np[n, c, high_h,
                                  low_w] + x_lerp * a_np[n, c, high_h, high_w]
        return (1 - y_lerp) * bottom + y_lerp * top

    a_deform = np.zeros(
        (batch, in_channel, out_height, out_width, kernel_h, kernel_w),
        dtype=dtype)
    for n, h, w in itertools.product(range(batch), range(out_height),
                                     range(out_width)):
        offset = offset_np[n, :, h, w].reshape(deformable_groups, kernel_h,
                                               kernel_w, 2)
        in_h = h * stride_h - pad_top
        in_w = w * stride_w - pad_left

        index_h_base, index_w_base = np.meshgrid(
            np.arange(in_h,
                      in_h + kernel_h * dilation_h,
                      dilation_h,
                      dtype=offset_np.dtype),
            np.arange(in_w,
                      in_w + kernel_w * dilation_w,
                      dilation_w,
                      dtype=offset_np.dtype),
            indexing="ij",
        )

        for c, kh, kw in itertools.product(range(in_channel), range(kernel_h),
                                           range(kernel_w)):
            dg = c // ic_per_dgroup
            index_h = index_h_base + offset[dg, ..., 0]
            index_w = index_w_base + offset[dg, ..., 1]

            y, x = index_h[kh, kw], index_w[kh, kw]
            if y < 0 or y >= in_height or x < 0 or x >= in_width:
                continue
            a_deform[n, c, h, w, kh, kw] = _bilinear(n, c, y, x)

    b_np = np.zeros((batch, out_channel, out_height, out_width), dtype=dtype)
    for n, c, f, h, w in itertools.product(range(batch), range(in_channel),
                                           range(out_channel),
                                           range(out_height),
                                           range(out_width)):
        b_np[n, f, h, w] += np.tensordot(a_deform[n, c, h, w], w_np[f, c])

    return b_np
示例#18
0
def verify_conv2d_nhwc(batch,
                       in_channel,
                       in_size,
                       num_filter,
                       kernel,
                       stride,
                       padding,
                       dilation=1,
                       add_bias=False,
                       add_relu=False,
                       devices='cuda',
                       bgemm="direct"):
    """Test the conv2d with winograd for nhwc layout"""
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" %
          (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum,
           dilation))

    in_height = in_width = in_size

    A = te.placeholder((batch, in_height, in_width, in_channel), name='A')
    W = te.placeholder((kernel, kernel, in_channel, num_filter), name='W')
    bias = te.placeholder((1, 1, 1, num_filter), name='bias')

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    bias_shape = get_const_tuple(bias.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d_nhwc.verify_conv2d_nhwc")
    def get_ref_data():
        a_np = np.random.uniform(size=a_shape).astype(dtype)
        w_np = np.random.uniform(size=w_shape).astype(dtype)
        b_np = np.random.uniform(size=bias_shape).astype(dtype)
        dw_np = tvm.topi.testing.dilate_python(w_np,
                                               (dilation, dilation, 1, 1))
        c_np = tvm.topi.testing.conv2d_nhwc_python(a_np, dw_np, stride,
                                                   padding)
        if add_bias:
            b_np = np.random.uniform(size=bias_shape).astype(dtype)
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)
        return a_np, w_np, b_np, c_np

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        print("Running on target: %s" % device)
        with tvm.target.Target(device):
            if bgemm == "direct":
                fcompute, fschedule = tvm.topi.testing.dispatch(
                    device, _conv2d_nhwc_winograd_direct)
            elif bgemm == "tensorcore":
                fcompute, fschedule = tvm.topi.testing.dispatch(
                    device, _conv2d_nhwc_winograd_tensorcore)
            C = fcompute(A, W, stride, padding, dilation, 'float32')
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
            s = fschedule([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype),
                         ctx)
        if add_bias:
            func = tvm.build(s, [A, W, bias, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, b, c)
        else:
            func = tvm.build(s, [A, W, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, c)

        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=2e-3)

    check_device(devices)
def verify_conv2d_NCHWc(batch,
                        in_channel,
                        in_size,
                        num_filter,
                        kernel,
                        stride,
                        padding,
                        dilation=1,
                        add_bias=False,
                        add_relu=False,
                        dtype="float32"):
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(
        padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    in_height = in_width = in_size
    print(
        "Workload: (%d, %d, %d, %d, %d, %d, %d)" %
        (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum))

    # for testing functionality,
    # we choose arbitrary block size that can divide the channel,
    # regardless of the performance.
    oc_block = 1
    for bn in range(16, 0, -1):
        if num_filter % bn == 0:
            oc_block = bn
            break

    ic_block = 1
    for bn in range(oc_block, 0, -1):
        if in_channel % bn == 0:
            ic_block = bn
            break

    A = te.placeholder(
        (batch, in_channel // ic_block, in_height, in_width, ic_block),
        name='A')
    W = te.placeholder((num_filter // oc_block, in_channel // ic_block, kernel,
                        kernel, ic_block, oc_block),
                       name='W')
    bias = te.placeholder((num_filter // oc_block, 1, 1, oc_block),
                          name='bias')

    @memoize("topi.tests.test_topi_conv2d_NCHWc.verify_conv2d_NCHWc")
    def get_ref_data():
        a_np = np.random.uniform(size=(batch, in_channel, in_height,
                                       in_width)).astype(dtype)
        w_np = np.random.uniform(size=(num_filter, in_channel, kernel,
                                       kernel)).astype(dtype)
        b_np = np.random.uniform(size=(num_filter, 1, 1)).astype(dtype)
        dw_np = tvm.topi.testing.dilate_python(w_np,
                                               (1, 1, dilation, dilation))
        c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride,
                                                   padding)
        if add_bias:
            c_np += b_np
        if add_relu:
            c_np = np.maximum(c_np, 0)
        return _transform_data(a_np, ic_block), _transform_kernel(w_np, ic_block, oc_block), \
               _transform_bias(b_np, oc_block), _transform_data(c_np, oc_block)

    a_np, w_np, b_np, c_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not tvm.testing.device_enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        with tvm.target.Target(device):
            C = topi.x86.conv2d_NCHWc(A, W, (stride, stride), padding,
                                      (dilation, dilation),
                                      'NCHW%dc' % ic_block,
                                      "NCHW%dc" % oc_block, dtype)
            if add_bias:
                C = topi.add(C, bias)
            if add_relu:
                C = topi.nn.relu(C)
            s = topi.x86.schedule_conv2d_NCHWc([C])

        a = tvm.nd.array(a_np, ctx)
        w = tvm.nd.array(w_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype),
                         ctx)
        if add_bias:
            func = tvm.build(s, [A, W, bias, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, b, c)
        else:
            func = tvm.build(s, [A, W, C],
                             device,
                             name="relu_%d_%d_%d_%d_%d_%d_%d_%d" %
                             (batch, in_channel, in_size, num_filter, kernel,
                              stride, padding_sum, dilation))
            func(a, w, c)
        tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-3)

    # test llvm only for now since conv2d_NCHWc implement is missing in other backend.
    for device in ["llvm"]:
        with autotvm.tophub.context(
                device):  # load tophub pre-tuned parameters
            check_device(device)
示例#20
0
def verify_conv2d_hwnc(
    batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, dtype="int4"
):
    """Test the conv2d with tensorcore for hwnc layout"""
    pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel, kernel))
    padding_sum = pad_top + pad_left + pad_bottom + pad_right
    print(
        "Workload: (%d, %d, %d, %d, %d, %d, %d, %d)"
        % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation)
    )
    # choose dtype from int4, int8
    assert dtype in ["int4", "int8"]

    in_height = in_width = in_size

    A = te.placeholder((in_height, in_width, batch, in_channel), name="A", dtype=dtype)
    W = te.placeholder((kernel, kernel, num_filter, in_channel), name="W", dtype=dtype)

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)

    @memoize("topi.tests.test_topi_conv2d_hwnc.verify_conv2d_hwnc")
    def get_ref_data():
        if dtype == "int4":
            a_np = np.random.randint(low=-8, high=7, size=a_shape).transpose((2, 0, 1, 3))
            w_np = np.random.randint(low=-8, high=7, size=w_shape)
            dw_np = topi.testing.dilate_python(
                w_np.transpose((0, 1, 3, 2)), (1, 1, dilation, dilation)
            )
        elif dtype == "int8":
            a_np = (
                np.random.randint(low=-128, high=127, size=a_shape)
                .transpose((2, 0, 1, 3))
                .astype(dtype)
            )
            w_np = np.random.randint(low=-128, high=127, size=w_shape).astype(dtype)
            dw_np = topi.testing.dilate_python(
                w_np.transpose((0, 1, 3, 2)), (1, 1, dilation, dilation)
            )

        c_np = topi.testing.conv2d_nhwc_python(a_np, dw_np, stride, padding)
        return a_np, w_np, c_np

    def convert_int32_into_int4(a_int32):
        """convert int32 values into int4
        Parameters
        ----------
        a_int32 : int

        Return
        ------
        a_int4 : int
        """
        I, J, K, L = a_int32.shape
        a_int4 = np.zeros(shape=(I, J, K, L // 8), dtype=np.int32)
        for i in range(I):
            for j in range(J):
                for k in range(K):
                    for l in range(L // 8):
                        for m in range(min(8, L - l * 8)):
                            a_int4[i, j, k, l] = a_int4[i, j, k, l] | (
                                (a_int32[i, j, k, l * 8 + m] & 0xF) << ((7 - m) * 4)
                            )
        return a_int4

    a_np, w_np, c_np = get_ref_data()
    if dtype == "int4":
        a_np = convert_int32_into_int4(a_np)
        w_np = convert_int32_into_int4(w_np)

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not tvm.testing.device_enabled(device):
            print("Skip because %s is not enabled" % device)
            return
        if not nvcc.have_tensorcore(ctx.compute_version):
            print("skip because gpu does not support Tensor Cores")
            return
        print("Running on target: %s" % device)
        with tvm.target.Target(device):
            fcompute, fschedule = topi.testing.dispatch(device, _conv2d_hwnc_tensorcore_implement)
            C = fcompute(A, W, stride, padding, dilation, dtype, "int32")
            s = fschedule([C])

        a = tvm.nd.array(a_np.transpose((1, 2, 0, 3)), ctx)
        w = tvm.nd.array(w_np, ctx)
        c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)

        func = tvm.build(
            s,
            [A, W, C],
            device,
            name="relu_%d_%d_%d_%d_%d_%d_%d_%d"
            % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation),
        )
        func(a, w, c)

        rtol = 1e-3
        tvm.testing.assert_allclose(c.asnumpy().transpose((2, 0, 1, 3)), c_np, rtol=rtol)

    check_device("cuda")