示例#1
0
def test_const_fold3():
    # Test that using ints with logic operations is forbidden
    x = tvm.var("x")
    for val in [0, 1]:
        for func in [tvm.all, tvm.any]:
            check_throws(lambda: func(tvm.const(val, 'uint1'), x))
            check_throws(lambda: func(x, tvm.const(val, 'uint1')))

    # Test const folding when both arguments are const
    for tvm_func, py_func in [(tvm.all, lambda a, b: a and b),
                              (tvm.any, lambda a, b: a or b)]:
        for v1 in [0, 1]:
            for v2 in [0, 1]:
                assert tvm.ir_pass.Equal(
                    tvm_func(tvm.const(v1, 'uint1'), tvm.const(v2, 'uint1')),
                    tvm.const(py_func(v1, v2), 'uint1'))

    x = tvm.var("x", 'uint1')
    true = tvm.const(1, 'uint1')
    false = tvm.const(0, 'uint1')

    assert tvm.all(x, true).same_as(x)
    assert tvm.all(true, x).same_as(x)
    assert tvm.any(x, false).same_as(x)
    assert tvm.any(false, x).same_as(x)

    assert tvm.all(x, false).same_as(false)
    assert tvm.all(false, x).same_as(false)
    assert tvm.any(x, true).same_as(true)
    assert tvm.any(true, x).same_as(true)
示例#2
0
def test_attr_stmt():
    ib = tvm.ir_builder.create()
    dshape = (32, 64)
    data = ib.pointer("float32", name="data")
    l = tvm.var('l')
    m = tvm.var('m')
    n = tvm.var('n')

    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    ib.scope_attr(tx, "thread_extent", dshape[0])
    ib.scope_attr(bx, "thread_extent", dshape[1])
    with ib.for_range(0, l, "i") as i:
        with ib.for_range(0, m, "j") as j:
            with ib.for_range(0, n, "k") as k:
                with ib.if_scope(tvm.any(i < 4, j >= 8)):
                    data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.5
                with ib.else_scope():
                    data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.0

    stmt = ib.get()
    new_stmt = tvm.ir_pass.HoistIfThenElse(stmt)
    expected_struct = {
        ('For', 'k'): (None, ),
        ('IfThenElse', ('i', 'j')): (('For', 'k'), ('For', 'k')),
        ('For', 'j'): (('IfThenElse', ('i', 'j')), ),
        ('For', 'i'): (('For', 'j'), ),
        ('AttrStmt', 'thread_extent', 64): (('For', 'i'), ),
        ('AttrStmt', 'thread_extent', 32):
        (('AttrStmt', 'thread_extent', 64), )
    }
    verify_structure(new_stmt, expected_struct)
示例#3
0
def test_nested_for():
    ib = tvm.ir_builder.create()
    data = ib.pointer("float32", name="data")

    with ib.for_range(0, 5, "i") as i:
        with ib.for_range(0, 10, "j") as j:
            with ib.if_scope(i >= 3):
                data[i * 3 + j] = data[i * 3 + j] + 0.5
                with ib.for_range(0, 15, "k") as k:
                    with ib.for_range(0, 20, "l") as l:
                        with ib.if_scope(tvm.any(i < 4, j >= 8)):
                            data[i * 3 + j + k +
                                 l] = data[i * 3 + j + k + l] * 2
                        with ib.else_scope():
                            data[i * 3 + j + k +
                                 l] = data[i * 3 + j + k + l] * 1.5

    stmt = ib.get()
    new_stmt = tvm.ir_pass.HoistIfThenElse(stmt)
    expected_struct = {
        ('IfThenElse', ('i', 'j')): (None, None),
        ('For', 'l'): (('IfThenElse', ('i', 'j')), ),
        ('For', 'k'): (('For', 'l'), ),
        ('For', 'j'): (None, ),
        ('IfThenElse', ('i', )): (('For', 'j'), None),
        ('For', 'i'): (('IfThenElse', ('i', )), )
    }
    verify_structure(new_stmt, expected_struct)
示例#4
0
def padding(X, ph, pw):
    assert len(X.shape) >= 2
    nh, nw = X.shape[-2:]
    return tvm.compute(
        (*X.shape[:-2], nh + ph * 2, nw + pw * 2),
        lambda *i: tvm.if_then_else(
            tvm.any(i[-2] < ph, i[-2] >= nh + ph, i[-1] < pw, i[-1] >= nw + pw
                    ), 0, X[i[:-2] + (i[-2] - ph, i[-1] - pw)]),
        name='PaddedX')
示例#5
0
def test_any():
    x = tvm.var('x')
    y = tvm.var('y')
    z = tvm.var('z')
    try:
        t = x or x
        assert False
    except ValueError:
        pass
    try:
        tvm.any()
        assert False
    except ValueError:
        pass
    assert str(tvm.any(x < y)) == '(%s < %s)' % (x.name, y.name)
    assert str(tvm.any(x < y, x > z)) == '((%s < %s) || (%s > %s))' % (
        x.name, y.name, x.name, z.name)
    assert str(tvm.any(x < y, y > z + 1, x < z * 2)) == \
        '(((%s < %s) || (%s > (%s + 1))) || (%s < (%s*2)))' % (
            x.name, y.name, y.name, z.name, x.name, z.name)
示例#6
0
def test_any():
    x = tvm.var('x')
    y = tvm.var('y')
    z = tvm.var('z')
    try:
        t = x or x
        assert False
    except ValueError:
        pass
    try:
        tvm.any()
        assert False
    except ValueError:
        pass
    assert str(tvm.any(x < y)) == '(%s < %s)' % (x.name, y.name)
    assert str(tvm.any(x < y, x > z)) == '((%s < %s) || (%s > %s))' % (
        x.name, y.name, x.name, z.name)
    assert str(tvm.any(x < y, y > z + 1, x < z * 2)) == \
        '(((%s < %s) || (%s > (%s + 1))) || (%s < (%s*2)))' % (
            x.name, y.name, y.name, z.name, x.name, z.name)
示例#7
0
def padding(X, ph, pw):
    """Pad X with 0s in 2-D

    ph, pw : height and width padding
    """
    assert len(X.shape) >= 2
    nh, nw = X.shape[-2], X.shape[-1]
    return tvm.compute(
            (*X.shape[0:-2], nh+ph*2, nw+pw*2),
            lambda *i: tvm.if_then_else(
                tvm.any(i[-2]<ph, i[-2]>=nh+ph, i[-1]<pw, i[-1]>=nw+pw),
                0, X[i[:-2]+(i[-2]-ph, i[-1]-pw)]),
            name='PaddedX')
示例#8
0
 def conv_compute(n, m, h_, w_):
     x = h_ * stride - padding + r
     y = w_ * stride - padding + s
     return tvm.sum(
         tvm.select(
             tvm.any(
                 x < 0,
                 y < 0,
                 x >= H,
                 y >= W,
             ),
             tvm.const(0, dtype),              # padding
             data[n, c, x, y] * filters[m, c, r, s]
         ), axis = [c, r, s]
     )
示例#9
0
def test_const_fold3():
    def check_throws(f):
        try:
            f()
        except tvm.TVMError:
            pass
        else:
            raise AssertionError("Should have raised an exception but didn't.")

    # Test that using ints with logic operations is forbidden
    x = tvm.var("x")
    for val in [0, 1]:
        for func in [tvm.all, tvm.any]:
            check_throws(lambda: func(tvm.const(val, 'uint1'), x))
            check_throws(lambda: func(x, tvm.const(val, 'uint1')))

    # Test const folding when both arguments are const
    for tvm_func, py_func in [(tvm.all, lambda a, b: a and b), (tvm.any, lambda a, b: a or b)]:
        for v1 in [0, 1]:
            for v2 in [0, 1]:
                assert tvm.ir_pass.Equal(tvm_func(tvm.const(v1, 'uint1'), tvm.const(v2, 'uint1')),
                                         tvm.const(py_func(v1, v2), 'uint1'))

    x = tvm.var("x", 'uint1')
    true = tvm.const(1, 'uint1')
    false = tvm.const(0, 'uint1')

    assert tvm.all(x, true).same_as(x)
    assert tvm.all(true, x).same_as(x)
    assert tvm.any(x, false).same_as(x)
    assert tvm.any(false, x).same_as(x)

    assert tvm.all(x, false).same_as(false)
    assert tvm.all(false, x).same_as(false)
    assert tvm.any(x, true).same_as(true)
    assert tvm.any(true, x).same_as(true)
示例#10
0
文件: nms.py 项目: gyuseokByeon/tvm
def nms_ir(data, sorted_index, valid_count, out, box_indices, max_output_size,
           iou_threshold, force_suppress, top_k, coord_start, id_index,
           score_index):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data : Buffer
        Buffer of output boxes with class and score.

    sort_index : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    max_output_size : int
        Max number of output valid boxes for each instance.
        By default all valid boxes are returned.

    iou_threshold : float
        Overlapping(IoU) threshold to suppress object with smaller score.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    top_k : int
        Keep maximum top k detections before nms, -1 for no limit.

    coord_start : int
        Start index of the consecutive 4 coordinates.

    id_index : int
        index of the class categories, -1 to disable.

    score_index : optional, int
        Index of the scores/confidence of boxes.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.max(
            0.0,
            tvm.min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2]) -
            tvm.max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.max(
            0.0,
            tvm.min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3]) -
            tvm.max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.expr.Select(u <= 0.0, 0.0, i / u)

    batch_size = data.shape[0]
    num_anchors = data.shape[1]
    box_data_length = data.shape[2]

    ib = tvm.ir_builder.create()

    data = ib.buffer_ptr(data)
    sorted_index = ib.buffer_ptr(sorted_index)
    valid_count = ib.buffer_ptr(valid_count)
    out = ib.buffer_ptr(out)
    box_indices = ib.buffer_ptr(box_indices)
    num_valid_boxes = ib.allocate("int32", (1, ),
                                  name="num_valid_boxes",
                                  scope="local")

    max_threads = int(
        tvm.target.current_target(allow_none=False).max_num_threads)
    nthread_tx = max_threads
    nthread_bx = num_anchors // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    j = bx * max_threads + tx

    iou_threshold = tvm.make.node("FloatImm",
                                  dtype="float32",
                                  value=iou_threshold)
    top_k = tvm.make.node("IntImm", dtype="int32", value=top_k)
    coord_start = tvm.make.node("IntImm", dtype="int32", value=coord_start)
    id_index = tvm.make.node("IntImm", dtype="int32", value=id_index)
    score_index = tvm.make.node("IntImm", dtype="int32", value=score_index)
    force_suppress = tvm.make.node("IntImm",
                                   dtype="int32",
                                   value=1 if force_suppress else 0)

    with ib.for_range(0, batch_size, for_type="unroll") as i:
        base_idx = i * num_anchors * box_data_length
        with ib.if_scope(tvm.all(iou_threshold > 0, valid_count[i] > 0)):
            # Reorder output
            nkeep = if_then_else( \
                    tvm.all(top_k > 0, top_k < valid_count[i]),
                    top_k, valid_count[i])
            with ib.if_scope(j < nkeep):
                with ib.for_range(0, box_data_length) as k:
                    out[(base_idx + j * box_data_length + k)] = \
                    data[(base_idx + sorted_index[i * num_anchors + j] \
                    * box_data_length + k)]
                box_indices[i * num_anchors +
                            j] = sorted_index[i * num_anchors + j]
            with ib.if_scope(tvm.all(top_k > 0, top_k < valid_count[i])):
                with ib.if_scope(j < valid_count[i] - nkeep):
                    with ib.for_range(0, box_data_length) as k:
                        out[(base_idx + (j + nkeep) * box_data_length +
                             k)] = -1.0
                    box_indices[i * num_anchors + (j + nkeep)] = -1
            # Apply nms
            with ib.for_range(0, valid_count[i]) as k:
                offset_k = k * box_data_length
                with ib.if_scope(tvm.all(out[base_idx + offset_k + score_index] > 0, \
                    tvm.any(id_index < 0, out[base_idx + offset_k + id_index] >= 0))):
                    with ib.if_scope(j < valid_count[i]):
                        offset_j = j * box_data_length
                        with ib.if_scope(tvm.all(j > k, \
                            out[base_idx + offset_j + score_index] > 0, \
                                                 tvm.any(id_index < 0, \
                                                    out[base_idx + offset_j + id_index] >= 0), \
       tvm.any(force_suppress > 0, id_index < 0, \
                                                         out[base_idx + offset_k + id_index] == \
                                                         out[base_idx + offset_j + id_index]))):
                            iou = calculate_overlap(
                                out, base_idx + offset_j + coord_start,
                                base_idx + offset_k + coord_start)
                            with ib.if_scope(iou >= iou_threshold):
                                out[base_idx + offset_j + score_index] = -1.0
                                with ib.if_scope(id_index >= 0):
                                    out[base_idx + offset_j + id_index] = -1.0
                                box_indices[i * num_anchors + j] = -1
        with ib.else_scope():
            with ib.if_scope(j < valid_count[i]):
                offset_j = j * box_data_length
                with ib.for_range(0, box_data_length) as k:
                    out[(base_idx + offset_j + k)] = data[base_idx + offset_j +
                                                          k]
                box_indices[i * num_anchors + j] = j
        # Set invalid entry to be -1
        with ib.if_scope(j < num_anchors - valid_count[i]):
            with ib.for_range(0, box_data_length) as k:
                out[base_idx + (j + valid_count[i]) * box_data_length +
                    k] = -1.0
            box_indices[i * num_anchors + j + valid_count[i]] = -1
        # Only return max_output_size number of valid boxes
        num_valid_boxes[0] = 0
        with ib.if_scope(max_output_size > 0):
            with ib.if_scope(j < valid_count[i]):
                offset_j = j * box_data_length
                with ib.if_scope(out[base_idx + offset_j] >= 0):
                    with ib.if_scope(num_valid_boxes[0] == max_output_size):
                        with ib.for_range(0, box_data_length) as k:
                            out[base_idx + offset_j + k] = -1.0
                        box_indices[i * num_anchors + j] = -1
                    with ib.else_scope():
                        num_valid_boxes[0] += 1

    return ib.get()
示例#11
0
文件: nms.py 项目: gyuseokByeon/tvm
def get_valid_counts_pre(data, flag, idx, score_threshold, id_index,
                         score_index):
    """Low level IR to Prepare get valid count of bounding boxes
    given a score threshold. Also moves valid boxes to the
    top of input data.

    Parameters
    ----------
    data: Buffer
        3D Buffer with shape [batch_size, num_anchors, elem_length], output of nms.

    flag : Buffer
        2D Buffer of flag indicating valid data with shape [batch_size, num_anchors].

    idx : Buffer
        2D Buffer of valid data indices with shape [batch_size, num_anchors].

    score_threshold : float32
        Lower limit of score for valid bounding boxes.

    id_index : optional, int
        index of the class categories, -1 to disable.

    score_index: optional, int
        Index of the scores/confidence of boxes.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    batch_size = data.shape[0]
    num_anchors = data.shape[1]
    box_data_length = data.shape[2]

    ib = tvm.ir_builder.create()

    data = ib.buffer_ptr(data)
    flag = ib.buffer_ptr(flag)
    idx = ib.buffer_ptr(idx)
    score_threshold = tvm.make.node("FloatImm",
                                    dtype="float32",
                                    value=score_threshold)
    id_index = tvm.make.node("IntImm", dtype="int32", value=id_index)
    score_index = tvm.make.node("IntImm", dtype="int32", value=score_index)

    max_threads = int(
        tvm.target.current_target(allow_none=False).max_num_threads)
    nthread_tx = max_threads
    nthread_bx = batch_size * num_anchors // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    tid = bx * max_threads + tx

    with ib.if_scope(tid < batch_size * num_anchors):
        with ib.if_scope(tvm.all(data[tid * box_data_length + score_index] > score_threshold, \
            tvm.any(id_index < 0, data[tid * box_data_length + id_index] >= 0))):
            flag[tid] = 1
            idx[tid] = 1
        with ib.else_scope():
            flag[tid] = 0
            idx[tid] = 0

    return ib.get()
示例#12
0
tvm.any
'''
import numpy as np
import tvm

print(any((0, 1, 2)), all((0, 1, 2)))

a = np.ones((3, 4), dtype='float32')
# applying a zero padding of size 1 to a
b = np.zeros((5, 6), dtype='float32')
b[1:-1, 1:-1] = a
print(b)

p = 1
n, m = tvm.var('n'), tvm.var('m')
A = tvm.placeholder((n, m), name='a')
B = tvm.compute(
    (n + p * 2, m + p * 2),
    lambda i, j: tvm.if_then_else(
        tvm.any(i < p, i >= n + p, j < p, j >= m + p), 0, A[i - p, j - p]),
    name='b')

s = tvm.create_schedule(B.op)
print(tvm.lower(s, [A, B], simple_mode=True))

mod = tvm.build(s, [A, B])

c = tvm.nd.array(np.empty_like(b))
mod(tvm.nd.array(a), c)
print(c)
    'equal':
    lambda a, b, *idx: a[idx] == b[idx],
    'not_equal':
    lambda a, b, *idx: a[idx] != b[idx],
    'greater':
    lambda a, b, *idx: a[idx] > b[idx],
    'less':
    lambda a, b, *idx: a[idx] < b[idx],
    'greater_equal':
    lambda a, b, *idx: a[idx] >= b[idx],
    'less_equal':
    lambda a, b, *idx: a[idx] <= b[idx],
    'logical_and':
    lambda a, b, *idx: tvm.all(a[idx] != 0, b[idx] != 0),
    'logical_or':
    lambda a, b, *idx: tvm.any(a[idx] != 0, b[idx] != 0),
    'logical_xor':
    lambda a, b, *idx: tvm.all(tvm.any(a[idx] != 0, b[idx] != 0),
                               tvm.any(a[idx] == 0, b[idx] == 0)),
}


def _compute_binary_logic(op, dtype, ndim):
    a = tvm.placeholder([tvm.size_var() for _ in range(ndim)],
                        dtype=dtype,
                        name='a')
    b = tvm.placeholder([tvm.size_var() for _ in range(ndim)],
                        dtype=dtype,
                        name='b')
    c = tvm.compute([tvm.size_var() for _ in range(ndim)],
                    lambda *idx: _bin_logic_op_map[op](a, b, *idx),
示例#14
0
文件: proposal.py 项目: bddppq/tvm
def predict_bbox_ir(cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, ratios,
                    feature_stride, rpn_min_size, iou_loss):
    """Predict bounding boxes based on anchors, scores and deltas.

    Parameters
    ----------
    cls_prob_buf : tvm.schedule.Buffer
        4-D with shape [batch, 2 * num_anchors, height, width]

    bbox_pred_buf : tvm.schedule.Buffer
        4-D with shape [batch, 4 * num_anchors, height, width]

    im_info_buf : tvm.schedule.Buffer
        2-D with shape [batch, 3]

    out_buf : tvm.schedule.Buffer
        3-D with shape [batch, num_bbox, 5]
        The last dimension is in format of [w_start, h_start, w_end, h_end, score]

    scales : list/tuple of float
        Scales of anchor windoes.

    ratios : list/tuple of float
        Ratios of anchor windoes.

    feature_stride : int
        The size of the receptive field each unit in the convolution layer of the rpn, for example
        the product of all stride's prior to this layer.

    rpn_min_size : int
        Minimum height or width in proposal.

    iou_loss : bool
        Usage of IoU loss.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    batch, num_anchors, height, width = get_const_tuple(cls_prob_buf.shape)
    num_anchors //= 2
    max_threads = int(tvm.target.current_target(allow_none=False).max_num_threads)
    nthread_tx = max_threads
    nthread_bx = (batch * height * width) // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    tid = bx * max_threads + tx
    ib = tvm.ir_builder.create()
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)

    p_score = ib.buffer_ptr(cls_prob_buf)
    p_delta = ib.buffer_ptr(bbox_pred_buf)
    p_im_info = ib.buffer_ptr(im_info_buf)
    p_out = ib.buffer_ptr(out_buf)

    with ib.if_scope(tid < batch * height * width):
        w = tid % width
        h = (tid // width) % height
        b = tid // width // height

        for k in range(num_anchors):
            out_index = tid * num_anchors + k
            ratio = ratios[k // len(scales)]
            scale = scales[k % len(scales)]
            anchor = generate_anchor(ratio, scale, feature_stride)
            im_height = p_im_info[b * 3]
            im_width = p_im_info[b * 3 + 1]
            x1 = anchor[0] + w * feature_stride
            y1 = anchor[1] + h * feature_stride
            x2 = anchor[2] + w * feature_stride
            y2 = anchor[3] + h * feature_stride

            delta = [p_delta[((((b * num_anchors + k) * 4 + i) * height + h) * width + w)]
                     for i in range(4)]
            regression_func = reg_iou if iou_loss else reg_bbox
            pred_x1, pred_y1, pred_x2, pred_y2 = regression_func(x1, y1, x2, y2, *delta)

            pred_x1 = tvm.max(tvm.min(pred_x1, im_width - 1.0), 0.0)
            pred_y1 = tvm.max(tvm.min(pred_y1, im_height - 1.0), 0.0)
            pred_x2 = tvm.max(tvm.min(pred_x2, im_width - 1.0), 0.0)
            pred_y2 = tvm.max(tvm.min(pred_y2, im_height - 1.0), 0.0)

            real_height = (im_height / feature_stride).astype('int32')
            real_width = (im_width / feature_stride).astype('int32')

            bbox_w = pred_x2 - pred_x1 + 1.0
            bbox_h = pred_y2 - pred_y1 + 1.0
            min_size = p_im_info[b * 3 + 2] * rpn_min_size

            pred_score = p_score[((b * num_anchors * 2 + num_anchors + k) * height + h) * width + w]
            pred_score = tvm.expr.Select(tvm.any(h >= real_height, w >= real_width),
                                         -1.0, pred_score)
            p_out[out_index * 5 + 0] = pred_x1
            p_out[out_index * 5 + 1] = pred_y1
            p_out[out_index * 5 + 2] = pred_x2
            p_out[out_index * 5 + 3] = pred_y2
            p_out[out_index * 5 + 4] = pred_score

            with ib.if_scope(tvm.any(bbox_w < min_size, bbox_h < min_size)):
                p_out[out_index * 5 + 0] -= min_size / 2.0
                p_out[out_index * 5 + 1] -= min_size / 2.0
                p_out[out_index * 5 + 2] += min_size / 2.0
                p_out[out_index * 5 + 3] += min_size / 2.0
                p_out[out_index * 5 + 4] = -1.0

    return ib.get()
示例#15
0
def nms_ir(data, sort_result, valid_count, out, nms_threshold, force_suppress,
           nms_topk):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data: Buffer
        Buffer of output boxes with class and score.

    sort_result : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    nms_threshold : float
        Non-maximum suppression threshold.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    nms_topk : int
        Keep maximum top k detections before nms, -1 for no limit.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.make.Max(
            0.0,
            tvm.make.Min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
            - tvm.make.Max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.make.Max(
            0.0,
            tvm.make.Min(out_tensor[box_a_idx + 3],
                         out_tensor[box_b_idx + 3]) -
            tvm.make.Max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.select(u <= 0.0, 0.0, i / u)

    ib = tvm.ir_builder.create()
    p_data = ib.buffer_ptr(data)
    p_sort_result = ib.buffer_ptr(sort_result)
    p_valid_count = ib.buffer_ptr(valid_count)
    p_out = ib.buffer_ptr(out)
    batch_size = out.shape[0]
    num_anchors = out.shape[1]

    nms_threshold_node = tvm.make.node("FloatImm",
                                       dtype="float32",
                                       value=nms_threshold)
    nms_topk_node = tvm.make.node("IntImm", dtype="int32", value=nms_topk)
    force_suppress_node = tvm.make.node("IntImm",
                                        dtype="int32",
                                        value=1 if force_suppress else 0)
    with ib.for_range(0, batch_size, for_type="parallel", name="n") as n:
        with ib.if_scope(
                tvm.all(nms_threshold_node > 0, nms_threshold_node < 1,
                        p_valid_count[0] > 0)):
            # Reorder output
            nkeep = tvm.select(
                tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n]),
                nms_topk, p_valid_count[n])
            with ib.for_range(0, nkeep, name="l") as l:
                with ib.for_range(0, 6, name="m") as m:
                    p_out[(n * num_anchors * 6 + l * 6 + m)] = p_data[(
                        n * num_anchors * 6 +
                        p_sort_result[n * num_anchors + l] * 6 + m)]
            with ib.if_scope(
                    tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n])):
                with ib.for_range(0, p_valid_count[n] - nkeep, name="l") as l:
                    with ib.for_range(0, 6, name="m") as m:
                        p_out[(n * num_anchors * 6 + (l + nkeep) * 6 +
                               m)] = p_data[(n * num_anchors * 6 +
                                             (l + nkeep) * 6 + m)]
            # Apply nms
            with ib.for_range(0, p_valid_count[n], name="l") as l:
                offset_l = l * 6
                with ib.if_scope(p_out[n * num_anchors * 6 + offset_l] >= 0):
                    with ib.for_range(0, p_valid_count[n], name="m") as m:
                        offset_m = m * 6
                        with ib.if_scope(
                                tvm.all(
                                    m > l,
                                    p_out[n * num_anchors * 6 + offset_m] >=
                                    0)):
                            with ib.if_scope(
                                    tvm.any(
                                        force_suppress_node > 0,
                                        p_out[n * num_anchors * 6 + offset_l]
                                        == p_out[n * num_anchors * 6 +
                                                 offset_m])):
                                # When force_suppress == True or class_id equals
                                iou = calculate_overlap(
                                    p_out, n * num_anchors * 6 + offset_l + 2,
                                    n * num_anchors * 6 + offset_m + 2)
                                with ib.if_scope(iou >= nms_threshold):
                                    p_out[n * num_anchors * 6 +
                                          offset_m] = -1.0
        with ib.else_scope():
            with ib.for_range(0, p_valid_count[n], name="l") as l:
                with ib.for_range(0, 6, name="m") as m:
                    p_out[(n * num_anchors * 6 + l * 6 +
                           m)] = p_data[n * num_anchors * 6 + l * 6 + m]
        # Set invalid entry to be -1
        with ib.for_range(0, num_anchors - p_valid_count[n], name="l") as l:
            with ib.for_range(0, 6, name="m") as m:
                p_out[n * num_anchors * 6 + (l + p_valid_count[n]) * 6 +
                      m] = -1.0
    return ib.get()
示例#16
0
 def _bilinear(i, c, y, x):
     outside = tvm.any(y < -1.0, x < -1.0, y > height, x > width)
     y = tvm.max(y, 0.0)
     x = tvm.max(x, 0.0)
     val = bilinear_sample_nchw(data, (i, c, y, x), height - 1, width - 1)
     return tvm.if_then_else(outside, 0.0, val)
示例#17
0
文件: nms.py 项目: bddppq/tvm
def nms_ir(data, sorted_index, valid_count, out, box_indices,
           max_output_size, iou_threshold, force_suppress,
           top_k, coord_start, id_index):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data : Buffer
        Buffer of output boxes with class and score.

    sort_index : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    max_output_size : int
        Max number of output valid boxes for each instance.
        By default all valid boxes are returned.

    iou_threshold : float
        Overlapping(IoU) threshold to suppress object with smaller score.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    top_k : int
        Keep maximum top k detections before nms, -1 for no limit.

    coord_start : int
        Start index of the consecutive 4 coordinates.

    id_index : int
        index of the class categories, -1 to disable.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
                    - tvm.max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3])
                    - tvm.max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.expr.Select(u <= 0.0, 0.0, i / u)

    batch_size = data.shape[0]
    num_anchors = data.shape[1]
    box_data_length = data.shape[2]

    ib = tvm.ir_builder.create()

    data = ib.buffer_ptr(data)
    sorted_index = ib.buffer_ptr(sorted_index)
    valid_count = ib.buffer_ptr(valid_count)
    out = ib.buffer_ptr(out)
    box_indices = ib.buffer_ptr(box_indices)
    num_valid_boxes = ib.allocate("int32", (1,), name="num_valid_boxes", scope="local")

    max_threads = int(math.sqrt(
        tvm.target.current_target(allow_none=False).max_num_threads))
    nthread_tx = max_threads
    nthread_bx = num_anchors // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    k = bx * max_threads + tx

    iou_threshold = tvm.make.node("FloatImm", dtype="float32", value=iou_threshold)
    top_k = tvm.make.node("IntImm", dtype="int32", value=top_k)
    coord_start = tvm.make.node("IntImm", dtype="int32", value=coord_start)
    id_index = tvm.make.node("IntImm", dtype="int32", value=id_index)
    force_suppress = tvm.make.node("IntImm", dtype="int32", value=1 if force_suppress else 0)

    with ib.for_range(0, batch_size, for_type="unroll") as i:
        base_idx = i * num_anchors * box_data_length
        with ib.if_scope(tvm.all(iou_threshold > 0, valid_count[i] > 0)):
            # Reorder output
            nkeep = if_then_else( \
                    tvm.all(top_k > 0, top_k < valid_count[i]),
                    top_k, valid_count[i])
            with ib.for_range(0, nkeep) as j:
                with ib.if_scope(k < box_data_length):
                    out[(base_idx + j * box_data_length + k)] = \
                    data[(base_idx + sorted_index[i * num_anchors + j] \
                    * box_data_length + k)]
                box_indices[i * num_anchors + j] = sorted_index[i * num_anchors + j]
            with ib.if_scope(tvm.all(top_k > 0, top_k < valid_count[i])):
                with ib.for_range(0, valid_count[i] - nkeep) as j:
                    with ib.if_scope(k < box_data_length):
                        out[(base_idx + (j + nkeep) * box_data_length + k)] = -1.0
                    box_indices[i * num_anchors + (j + nkeep)] = -1
            # Apply nms
            with ib.for_range(0, valid_count[i]) as j:
                offset_j = j * box_data_length
                with ib.if_scope(out[base_idx + offset_j] >= 0):
                    with ib.if_scope(k < valid_count[i]):
                        offset_k = k * box_data_length
                        with ib.if_scope(tvm.all(k > j, out[base_idx + offset_k] >= 0, \
						 tvm.any(force_suppress > 0, id_index < 0, \
                                                         out[base_idx + offset_j] == \
                                                         out[base_idx + offset_k]))):
                            iou = calculate_overlap(out, base_idx + offset_k + coord_start,
                                                    base_idx + offset_j + coord_start)
                            with ib.if_scope(iou >= iou_threshold):
                                out[base_idx + offset_k] = -1.0
                                box_indices[i * num_anchors + k] = -1
                ib.emit(tvm.make.Call(None, 'tvm_storage_sync',
                                      tvm.convert(['shared']),
                                      tvm.expr.Call.Intrinsic, None, 0))
        with ib.else_scope():
            with ib.for_range(0, valid_count[i]) as j:
                offset_j = j * box_data_length
                with ib.if_scope(k < box_data_length):
                    out[(base_idx + offset_j + k)] = data[base_idx + offset_j + k]
                box_indices[i * num_anchors + j] = j
        # Set invalid entry to be -1
        with ib.for_range(0, num_anchors - valid_count[i]) as j:
            with ib.if_scope(k < box_data_length):
                out[base_idx + (j + valid_count[i]) * box_data_length + k] = -1.0
            box_indices[i * num_anchors + j + valid_count[i]] = -1
        # Only return max_output_size number of valid boxes
        num_valid_boxes[0] = 0
        with ib.if_scope(max_output_size > 0):
            with ib.for_range(0, valid_count[i]) as j:
                offset_j = j * box_data_length
                with ib.if_scope(out[base_idx + offset_j] >= 0):
                    with ib.if_scope(num_valid_boxes[0] == max_output_size):
                        with ib.if_scope(k < box_data_length):
                            out[base_idx + offset_j + k] = -1.0
                        box_indices[i * num_anchors + j] = -1
                    with ib.else_scope():
                        num_valid_boxes[0] += 1
                ib.emit(tvm.make.Call(None, 'tvm_storage_sync',
                                      tvm.convert(['shared']),
                                      tvm.expr.Call.Intrinsic, None, 0))

    return ib.get()
示例#18
0
文件: roi_align.py 项目: bddppq/tvm
 def _bilinear(i, c, y, x):
     outside = tvm.any(y < -1.0, x < -1.0, y > height, x > width)
     y = tvm.max(y, 0.0)
     x = tvm.max(x, 0.0)
     val = bilinear_sample_nchw(data, (i, c, y, x), height - 1, width - 1)
     return tvm.if_then_else(outside, 0.0, val)
示例#19
0
 def _bilinear(n, c, h, w):
     outside = tvm.any(h < 0, w < 0, h >= in_height, w >= in_width)
     val = bilinear_sample_nchw(data, (n, c, h, w), in_height - 1,
                                in_width - 1)
     return tvm.if_then_else(outside, zero, val)
示例#20
0
def nms_ir(data, sort_result, valid_count, out, nms_threshold, force_suppress, nms_topk):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data: Buffer
        Buffer of output boxes with class and score.

    sort_result : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    nms_threshold : float
        Non-maximum suppression threshold.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    nms_topk : int
        Keep maximum top k detections before nms, -1 for no limit.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
                    - tvm.max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.max(0.0, tvm.min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3])
                    - tvm.max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.expr.Select(u <= 0.0, 0.0, i / u)

    max_threads = int(math.sqrt(
        tvm.target.current_target(allow_none=False).max_num_threads))
    ib = tvm.ir_builder.create()
    p_data = ib.buffer_ptr(data)
    p_sort_result = ib.buffer_ptr(sort_result)
    p_valid_count = ib.buffer_ptr(valid_count)
    p_out = ib.buffer_ptr(out)
    batch_size = out.shape[0]
    num_anchors = out.shape[1]
    nthread_tx = max_threads
    nthread_bx = num_anchors // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    i = bx * max_threads + tx

    nms_threshold_node = tvm.make.node(
        "FloatImm", dtype="float32", value=nms_threshold)
    nms_topk_node = tvm.make.node("IntImm", dtype="int32", value=nms_topk)
    force_suppress_node = tvm.make.node(
        "IntImm", dtype="int32", value=1 if force_suppress else 0)
    with ib.for_range(0, batch_size, for_type="unroll") as b:
        base_idx = b * num_anchors * 6
        with ib.if_scope( \
                tvm.all(nms_threshold_node > 0, nms_threshold_node < 1,
                        p_valid_count[0] > 0)):
            # Reorder output
            nkeep = tvm.if_then_else( \
                    tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[b]),
                    nms_topk, p_valid_count[b])
            with ib.for_range(0, nkeep) as l:
                with ib.if_scope(i < 6):
                    p_out[(base_idx + l * 6 + i)] = \
                            p_data[(base_idx + p_sort_result[b * num_anchors + l] * 6 + i)]
            with ib.if_scope(tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[b])):
                with ib.for_range(0, p_valid_count[b] - nkeep) as l:
                    with ib.if_scope(i < 6):
                        p_out[(base_idx + (l + nkeep) * 6 + i)] = -1.0
            # Apply nms
            with ib.for_range(0, p_valid_count[b]) as l:
                offset_l = l * 6
                with ib.if_scope(p_out[base_idx + offset_l] >= 0):
                    with ib.if_scope(i < p_valid_count[b]):
                        offset_i = i * 6
                        with ib.if_scope(tvm.all(i > l, p_out[base_idx
                                                              + offset_i] >= 0)):
                            with ib.if_scope(tvm.any(force_suppress_node > 0,
                                                     p_out[base_idx + offset_l] ==
                                                     p_out[base_idx + offset_i])):
                                # When force_suppress == True or class_id equals
                                iou = calculate_overlap(p_out, base_idx + offset_l + 2,
                                                        base_idx + offset_i + 2)
                                with ib.if_scope(iou >= nms_threshold):
                                    p_out[base_idx + offset_i] = -1.0
                ib.emit(tvm.make.Call(None, 'tvm_storage_sync',
                                      tvm.convert(['shared']),
                                      tvm.expr.Call.Intrinsic, None, 0))
        with ib.else_scope():
            with ib.for_range(0, p_valid_count[b]) as c:
                with ib.if_scope(i < 6):
                    p_out[(base_idx + c * 6 + i)] = p_data[base_idx + c * 6 + i]
        # Set invalid entry to be -1
        with ib.for_range(0, num_anchors - p_valid_count[b]) as c:
            with ib.if_scope(i < 6):
                p_out[base_idx + (c + p_valid_count[b]) * 6 + i] = -1.0
    body = ib.get()
    return body
示例#21
0
文件: nms.py 项目: LANHUIYING/tvm
def nms_ir(data, sort_result, valid_count, out, nms_threshold, force_suppress, nms_topk):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data: Buffer
        Buffer of output boxes with class and score.

    sort_result : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    nms_threshold : float
        Non-maximum suppression threshold.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    nms_topk : int
        Keep maximum top k detections before nms, -1 for no limit.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.make.Max(0.0, tvm.make.Min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
                         - tvm.make.Max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.make.Max(0.0, tvm.make.Min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3])
                         - tvm.make.Max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.select(u <= 0.0, 0.0, i / u)

    max_threads = int(math.sqrt(
        tvm.target.current_target(allow_none=False).max_num_threads))
    tx = tvm.thread_axis("threadIdx.x")
    ty = tvm.thread_axis("threadIdx.y")
    bx = tvm.thread_axis("blockIdx.x")
    by = tvm.thread_axis("blockIdx.y")
    ib = tvm.ir_builder.create()
    p_data = ib.buffer_ptr(data)
    p_sort_result = ib.buffer_ptr(sort_result)
    p_valid_count = ib.buffer_ptr(valid_count)
    p_out = ib.buffer_ptr(out)
    batch_size = out.shape[0]
    num_anchors = out.shape[1]
    nthread_tx = max_threads
    nthread_bx = num_anchors // max_threads + 1
    nthread_ty = max_threads
    nthread_by = 6 // max_threads + 1
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(ty, "thread_extent", nthread_ty)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    ib.scope_attr(by, "thread_extent", nthread_by)
    i = bx * max_threads + tx
    j = by * max_threads + ty

    nms_threshold_node = tvm.make.node(
        "FloatImm", dtype="float32", value=nms_threshold)
    nms_topk_node = tvm.make.node("IntImm", dtype="int32", value=nms_topk)
    force_suppress_node = tvm.make.node(
        "IntImm", dtype="int32", value=1 if force_suppress else 0)
    with ib.for_range(0, batch_size, for_type="unroll", name="n") as n:
        with ib.if_scope(
            tvm.all(nms_threshold_node > 0, nms_threshold_node < 1,
                    p_valid_count[0] > 0)):
            # Reorder output
            nkeep = tvm.select(
                tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n]),
                nms_topk, p_valid_count[n])
            with ib.if_scope(i < nkeep):
                with ib.if_scope(j < 6):
                    p_out[(n * num_anchors * 6
                           + i * 6 + j)] = p_data[(n * num_anchors * 6
                                                   + p_sort_result[n * num_anchors + i] * 6 + j)]
            with ib.if_scope(tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n])):
                with ib.if_scope(i < p_valid_count[n] - nkeep):
                    with ib.if_scope(j < 6):
                        p_out[(n * num_anchors * 6
                               + (i + nkeep) * 6 + j)] = p_data[(n * num_anchors * 6
                                                                 + (i + nkeep) * 6 + j)]
            # Apply nms
            with ib.if_scope(i < p_valid_count[n]):
                offset_i = i * 6
                with ib.if_scope(p_out[n * num_anchors * 6 + offset_i] >= 0):
                    with ib.if_scope(j < p_valid_count[n]):
                        offset_j = j * 6
                        with ib.if_scope(tvm.all(j > i, p_out[n * num_anchors * 6
                                                              + offset_j] >= 0)):
                            with ib.if_scope(tvm.any(force_suppress_node > 0,
                                                     p_out[n * num_anchors * 6 + offset_i] ==
                                                     p_out[n * num_anchors * 6 + offset_j])):
                                # When force_suppress == True or class_id equals
                                iou = calculate_overlap(
                                    p_out, n * num_anchors * 6 + offset_i + 2,
                                    n * num_anchors * 6 + offset_j + 2)
                                with ib.if_scope(iou >= nms_threshold):
                                    p_out[
                                        n * num_anchors * 6 + offset_j] = -1.0
        with ib.else_scope():
            with ib.if_scope(i < p_valid_count[n]):
                with ib.if_scope(j < 6):
                    p_out[(n * num_anchors * 6
                           + i * 6 + j)] = p_data[n * num_anchors * 6 + i * 6 + j]
        # Set invalid entry to be -1
        with ib.if_scope(i < num_anchors - p_valid_count[n]):
            with ib.if_scope(j < 6):
                p_out[n * num_anchors * 6 + (i +
                                             p_valid_count[n]) * 6 + j] = -1.0
    body = ib.get()
    return body
示例#22
0
def predict_bbox_ir(cls_prob_buf, bbox_pred_buf, im_info_buf, out_buf, scales, ratios,
                    feature_stride, rpn_min_size, iou_loss):
    """Predict bounding boxes based on anchors, scores and deltas.

    Parameters
    ----------
    cls_prob_buf : tvm.schedule.Buffer
        4-D with shape [batch, 2 * num_anchors, height, width]

    bbox_pred_buf : tvm.schedule.Buffer
        4-D with shape [batch, 4 * num_anchors, height, width]

    im_info_buf : tvm.schedule.Buffer
        2-D with shape [batch, 3]

    out_buf : tvm.schedule.Buffer
        3-D with shape [batch, num_bbox, 5]
        The last dimension is in format of [w_start, h_start, w_end, h_end, score]

    scales : list/tuple of float
        Scales of anchor windoes.

    ratios : list/tuple of float
        Ratios of anchor windoes.

    feature_stride : int
        The size of the receptive field each unit in the convolution layer of the rpn, for example
        the product of all stride's prior to this layer.

    rpn_min_size : int
        Minimum height or width in proposal.

    iou_loss : bool
        Usage of IoU loss.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    batch, num_anchors, height, width = get_const_tuple(cls_prob_buf.shape)
    num_anchors //= 2
    max_threads = int(tvm.target.Target.current(allow_none=False).max_num_threads)
    nthread_tx = max_threads
    nthread_bx = (batch * height * width) // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    tid = bx * max_threads + tx
    ib = tvm.ir_builder.create()
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)

    p_score = ib.buffer_ptr(cls_prob_buf)
    p_delta = ib.buffer_ptr(bbox_pred_buf)
    p_im_info = ib.buffer_ptr(im_info_buf)
    p_out = ib.buffer_ptr(out_buf)

    idxm = tvm.indexmod
    idxd = tvm.indexdiv

    with ib.if_scope(tid < batch * height * width):
        w = idxm(tid, width)
        h = idxm(idxd(tid, width), height)
        b = idxd(idxd(tid, width), height)

        for k in range(num_anchors):
            out_index = tid * num_anchors + k
            ratio = ratios[k // len(scales)]
            scale = scales[k % len(scales)]
            anchor = generate_anchor(ratio, scale, feature_stride)
            im_height = p_im_info[b * 3]
            im_width = p_im_info[b * 3 + 1]
            x1 = anchor[0] + w * feature_stride
            y1 = anchor[1] + h * feature_stride
            x2 = anchor[2] + w * feature_stride
            y2 = anchor[3] + h * feature_stride

            delta = [p_delta[((((b * num_anchors + k) * 4 + i) * height + h) * width + w)]
                     for i in range(4)]
            regression_func = reg_iou if iou_loss else reg_bbox
            pred_x1, pred_y1, pred_x2, pred_y2 = regression_func(x1, y1, x2, y2, *delta)

            pred_x1 = tvm.max(tvm.min(pred_x1, im_width - 1.0), 0.0)
            pred_y1 = tvm.max(tvm.min(pred_y1, im_height - 1.0), 0.0)
            pred_x2 = tvm.max(tvm.min(pred_x2, im_width - 1.0), 0.0)
            pred_y2 = tvm.max(tvm.min(pred_y2, im_height - 1.0), 0.0)

            real_height = (im_height / feature_stride).astype('int32')
            real_width = (im_width / feature_stride).astype('int32')

            bbox_w = pred_x2 - pred_x1 + 1.0
            bbox_h = pred_y2 - pred_y1 + 1.0
            min_size = p_im_info[b * 3 + 2] * rpn_min_size

            pred_score = p_score[((b * num_anchors * 2 + num_anchors + k) * height + h) * width + w]
            pred_score = tvm.expr.Select(tvm.any(h >= real_height, w >= real_width),
                                         -1.0, pred_score)
            p_out[out_index * 5 + 0] = pred_x1
            p_out[out_index * 5 + 1] = pred_y1
            p_out[out_index * 5 + 2] = pred_x2
            p_out[out_index * 5 + 3] = pred_y2
            p_out[out_index * 5 + 4] = pred_score

            with ib.if_scope(tvm.any(bbox_w < min_size, bbox_h < min_size)):
                p_out[out_index * 5 + 0] -= min_size / 2.0
                p_out[out_index * 5 + 1] -= min_size / 2.0
                p_out[out_index * 5 + 2] += min_size / 2.0
                p_out[out_index * 5 + 3] += min_size / 2.0
                p_out[out_index * 5 + 4] = -1.0

    return ib.get()
示例#23
0
def nms_ir(data, sort_result, valid_count, out, nms_threshold, force_suppress,
           nms_topk):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data: Buffer
        Buffer of output boxes with class and score.

    sort_result : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    nms_threshold : float
        Non-maximum suppression threshold.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    nms_topk : int
        Keep maximum top k detections before nms, -1 for no limit.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.make.Max(
            0.0,
            tvm.make.Min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
            - tvm.make.Max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.make.Max(
            0.0,
            tvm.make.Min(out_tensor[box_a_idx + 3],
                         out_tensor[box_b_idx + 3]) -
            tvm.make.Max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.select(u <= 0.0, 0.0, i / u)

    max_threads = int(
        math.sqrt(tvm.target.current_target(allow_none=False).max_num_threads))
    tx = tvm.thread_axis("threadIdx.x")
    ty = tvm.thread_axis("threadIdx.y")
    bx = tvm.thread_axis("blockIdx.x")
    by = tvm.thread_axis("blockIdx.y")
    ib = tvm.ir_builder.create()
    p_data = ib.buffer_ptr(data)
    p_sort_result = ib.buffer_ptr(sort_result)
    p_valid_count = ib.buffer_ptr(valid_count)
    p_out = ib.buffer_ptr(out)
    batch_size = out.shape[0]
    num_anchors = out.shape[1]
    nthread_tx = max_threads
    nthread_bx = num_anchors // max_threads + 1
    nthread_ty = max_threads
    nthread_by = 6 // max_threads + 1
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(ty, "thread_extent", nthread_ty)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    ib.scope_attr(by, "thread_extent", nthread_by)
    i = bx * max_threads + tx
    j = by * max_threads + ty

    nms_threshold_node = tvm.make.node("FloatImm",
                                       dtype="float32",
                                       value=nms_threshold)
    nms_topk_node = tvm.make.node("IntImm", dtype="int32", value=nms_topk)
    force_suppress_node = tvm.make.node("IntImm",
                                        dtype="int32",
                                        value=1 if force_suppress else 0)
    with ib.for_range(0, batch_size, for_type="unroll", name="n") as n:
        with ib.if_scope(
                tvm.all(nms_threshold_node > 0, nms_threshold_node < 1,
                        p_valid_count[0] > 0)):
            # Reorder output
            nkeep = tvm.select(
                tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n]),
                nms_topk, p_valid_count[n])
            with ib.if_scope(i < nkeep):
                with ib.if_scope(j < 6):
                    p_out[(n * num_anchors * 6 + i * 6 + j)] = p_data[(
                        n * num_anchors * 6 +
                        p_sort_result[n * num_anchors + i] * 6 + j)]
            with ib.if_scope(
                    tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n])):
                with ib.if_scope(i < p_valid_count[n] - nkeep):
                    with ib.if_scope(j < 6):
                        p_out[(n * num_anchors * 6 + (i + nkeep) * 6 +
                               j)] = p_data[(n * num_anchors * 6 +
                                             (i + nkeep) * 6 + j)]
            # Apply nms
            with ib.if_scope(i < p_valid_count[n]):
                offset_i = i * 6
                with ib.if_scope(p_out[n * num_anchors * 6 + offset_i] >= 0):
                    with ib.if_scope(j < p_valid_count[n]):
                        offset_j = j * 6
                        with ib.if_scope(
                                tvm.all(
                                    j > i,
                                    p_out[n * num_anchors * 6 + offset_j] >=
                                    0)):
                            with ib.if_scope(
                                    tvm.any(
                                        force_suppress_node > 0,
                                        p_out[n * num_anchors * 6 + offset_i]
                                        == p_out[n * num_anchors * 6 +
                                                 offset_j])):
                                # When force_suppress == True or class_id equals
                                iou = calculate_overlap(
                                    p_out, n * num_anchors * 6 + offset_i + 2,
                                    n * num_anchors * 6 + offset_j + 2)
                                with ib.if_scope(iou >= nms_threshold):
                                    p_out[n * num_anchors * 6 +
                                          offset_j] = -1.0
        with ib.else_scope():
            with ib.if_scope(i < p_valid_count[n]):
                with ib.if_scope(j < 6):
                    p_out[(n * num_anchors * 6 + i * 6 +
                           j)] = p_data[n * num_anchors * 6 + i * 6 + j]
        # Set invalid entry to be -1
        with ib.if_scope(i < num_anchors - p_valid_count[n]):
            with ib.if_scope(j < 6):
                p_out[n * num_anchors * 6 + (i + p_valid_count[n]) * 6 +
                      j] = -1.0
    body = ib.get()
    return body
示例#24
0
文件: nms.py 项目: LANHUIYING/tvm
def nms_ir(data, sort_result, valid_count, out, nms_threshold, force_suppress, nms_topk):
    """Low level IR routing for transform location in multibox_detection operator.

    Parameters
    ----------
    data: Buffer
        Buffer of output boxes with class and score.

    sort_result : Buffer
        Buffer of output box indexes sorted by score.

    valid_count : Buffer
        Buffer of number of valid output boxes.

    out : Buffer
        Output buffer.

    nms_threshold : float
        Non-maximum suppression threshold.

    force_suppress : boolean
        Whether to suppress all detections regardless of class_id.

    nms_topk : int
        Keep maximum top k detections before nms, -1 for no limit.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    def calculate_overlap(out_tensor, box_a_idx, box_b_idx):
        """Calculate overlap of two boxes.
        """
        w = tvm.make.Max(0.0, tvm.make.Min(out_tensor[box_a_idx + 2], out_tensor[box_b_idx + 2])
                         - tvm.make.Max(out_tensor[box_a_idx], out_tensor[box_b_idx]))
        h = tvm.make.Max(0.0, tvm.make.Min(out_tensor[box_a_idx + 3], out_tensor[box_b_idx + 3])
                         - tvm.make.Max(out_tensor[box_a_idx + 1], out_tensor[box_b_idx + 1]))
        i = w * h
        u = (out_tensor[box_a_idx + 2] - out_tensor[box_a_idx]) * \
            (out_tensor[box_a_idx + 3] - out_tensor[box_a_idx + 1]) + \
            (out_tensor[box_b_idx + 2] - out_tensor[box_b_idx]) * \
            (out_tensor[box_b_idx + 3] - out_tensor[box_b_idx + 1]) - i
        return tvm.select(u <= 0.0, 0.0, i / u)

    ib = tvm.ir_builder.create()
    p_data = ib.buffer_ptr(data)
    p_sort_result = ib.buffer_ptr(sort_result)
    p_valid_count = ib.buffer_ptr(valid_count)
    p_out = ib.buffer_ptr(out)
    batch_size = out.shape[0]
    num_anchors = out.shape[1]

    nms_threshold_node = tvm.make.node("FloatImm", dtype="float32", value=nms_threshold)
    nms_topk_node = tvm.make.node("IntImm", dtype="int32", value=nms_topk)
    force_suppress_node = tvm.make.node("IntImm", dtype="int32", value=1 if force_suppress else 0)
    with ib.for_range(0, batch_size, for_type="parallel", name="n") as n:
        with ib.if_scope(tvm.all(nms_threshold_node > 0, nms_threshold_node < 1,
                                 p_valid_count[0] > 0)):
            # Reorder output
            nkeep = tvm.select(tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n]),
                               nms_topk, p_valid_count[n])
            with ib.for_range(0, nkeep, name="l") as l:
                with ib.for_range(0, 6, name="m") as m:
                    p_out[(n * num_anchors * 6
                           + l * 6 + m)] = p_data[(n * num_anchors * 6
                                                   + p_sort_result[n * num_anchors + l] * 6 + m)]
            with ib.if_scope(tvm.all(nms_topk_node > 0, nms_topk < p_valid_count[n])):
                with ib.for_range(0, p_valid_count[n] - nkeep, name="l") as l:
                    with ib.for_range(0, 6, name="m") as m:
                        p_out[(n * num_anchors * 6
                               + (l + nkeep) * 6 + m)] = p_data[(n * num_anchors * 6
                                                                 + (l + nkeep) * 6 + m)]
            # Apply nms
            with ib.for_range(0, p_valid_count[n], name="l") as l:
                offset_l = l * 6
                with ib.if_scope(p_out[n * num_anchors * 6 + offset_l] >= 0):
                    with ib.for_range(0, p_valid_count[n], name="m") as m:
                        offset_m = m * 6
                        with ib.if_scope(tvm.all(m > l, p_out[n * num_anchors * 6
                                                              + offset_m] >= 0)):
                            with ib.if_scope(tvm.any(force_suppress_node > 0,
                                                     p_out[n * num_anchors * 6 + offset_l] ==
                                                     p_out[n * num_anchors * 6 + offset_m])):
                                # When force_suppress == True or class_id equals
                                iou = calculate_overlap(p_out, n * num_anchors * 6 + offset_l + 2,
                                                        n * num_anchors * 6 + offset_m + 2)
                                with ib.if_scope(iou >= nms_threshold):
                                    p_out[n * num_anchors * 6 + offset_m] = -1.0
        with ib.else_scope():
            with ib.for_range(0, p_valid_count[n], name="l") as l:
                with ib.for_range(0, 6, name="m") as m:
                    p_out[(n * num_anchors * 6
                           + l * 6 + m)] = p_data[n * num_anchors * 6 + l * 6 + m]
        # Set invalid entry to be -1
        with ib.for_range(0, num_anchors - p_valid_count[n], name="l") as l:
            with ib.for_range(0, 6, name="m") as m:
                p_out[n * num_anchors * 6 + (l + p_valid_count[n]) * 6 + m] = -1.0
    return ib.get()
示例#25
0
 def _bilinear(n, c, h, w):
     outside = tvm.any(h < 0, w < 0, h >= in_height, w >= in_width)
     val = bilinear_sample_nchw(data, (n, c, h, w), in_height - 1, in_width - 1)
     return tvm.if_then_else(outside, zero, val)
示例#26
0
def get_valid_counts_ir(data, valid_count, flag, score_threshold, id_index,
                        score_index):
    """Low level IR to get valid count of bounding boxes
    given a score threshold. Also prepares to move valid boxes to the
    top of input data.

    Parameters
    ----------
    data : Buffer
        Input data. 3-D Buffer with shape [batch_size, num_anchors, elem_length].

    valid_count : Buffer
        1D buffer for valid number of boxes with shape [batch_size, ].

    flag : Buffer
        2D Buffer of flag indicating valid data with shape [batch_size, num_anchors].

    score_threshold : float32
        Lower limit of score for valid bounding boxes.

    id_index : optional, int
        index of the class categories, -1 to disable.

    score_index: optional, int
        Index of the scores/confidence of boxes.

    Returns
    -------
    stmt : Stmt
        The result IR statement.
    """
    batch_size = data.shape[0]
    num_anchors = data.shape[1]
    elem_length = data.shape[2]

    ib = tvm.ir_builder.create()

    data = ib.buffer_ptr(data)

    valid_count = ib.buffer_ptr(valid_count)
    flag = ib.buffer_ptr(flag)
    atomic_add_return = ib.allocate(valid_count.dtype, (1, ),
                                    name='atomic_add_return',
                                    scope='local')
    one_count = tvm.const(1, dtype=valid_count.dtype)
    score_threshold = tvm.make.node("FloatImm",
                                    dtype="float32",
                                    value=score_threshold)
    id_index = tvm.make.node("IntImm", dtype="int32", value=id_index)
    score_index = tvm.make.node("IntImm", dtype="int32", value=score_index)

    max_threads = int(
        tvm.target.Target.current(allow_none=False).max_num_threads)
    nthread_tx = max_threads
    nthread_bx = batch_size * num_anchors // max_threads + 1
    tx = tvm.thread_axis("threadIdx.x")
    bx = tvm.thread_axis("blockIdx.x")
    ib.scope_attr(tx, "thread_extent", nthread_tx)
    ib.scope_attr(bx, "thread_extent", nthread_bx)
    tid = bx * max_threads + tx
    idxd = tvm.indexdiv

    # initialize valid_count
    with ib.if_scope(tid < batch_size):
        valid_count[tid] = 0
    # initialize flag
    with ib.if_scope(tid < batch_size * num_anchors):
        flag[tid] = 0
    with ib.if_scope(tid < batch_size * num_anchors):
        i = idxd(tid, num_anchors)
        with ib.if_scope(
                tvm.all(
                    data[tid * elem_length + score_index] > score_threshold,
                    tvm.any(id_index < 0,
                            data[tid * elem_length + id_index] >= 0))):
            flag[tid] = 1
            atomic_add_return[0] = atomic_add(
                tvm.call_pure_intrin("handle", "tvm_address_of",
                                     valid_count[i]), one_count)

    return ib.get()