示例#1
0
class Test_Data(unittest.TestCase):
    def setUp(self):
        self.tweets_data_path = 'test/sample.json'
        self.db = './test.sqlite'
        self.feels_db = TweetData(self.db)

    def tearDown(self):
        os.remove(self.db)

    def test_file_creation(self):
        self.assertTrue(os.path.exists(self.db))

    def test_fields(self):
        f = self.feels_db.fields
        self.assertTrue(isinstance(f, tuple))
        self.assertTrue(len(f) >= 11)

    def test_scrub(self):
        data = {'a': 1, 'b': 2}
        scrubbed = self.feels_db.scrub(data)
        self.assertTrue(isinstance(scrubbed, str))

    def test_data_operation(self):
        twt = {
            'created_at': 'Sun Feb 19 19:14:18 +0000 2017',
            'id_str': '833394296418082817',
            'text': 'All the feels!'
        }
        t = Tweet(twt)
        self.assertEqual(len(t.keys()), 3)
        self.feels_db.insert_tweet(t)
        df = self.feels_db.queue
        self.assertEqual(len(df), 1)
        df.sentiment = 0.9
        for row in df.itertuples():
            self.feels_db.update_tweet({
                'id_str': row.id_str,
                'sentiment': row.sentiment
            })
        self.assertEqual(len(self.feels_db.queue), 0)
        self.assertEqual(len(self.feels_db.all), 1)
示例#2
0
class Test_Data(unittest.TestCase):
    def setUp(self):
        self.tweets_data_path = 'test/sample.json'
        self.db = './test.sqlite'
        self.feels_db = TweetData(self.db)
        self.tweets = [
            {
                'created_at': 'Sun Feb 19 19:14:18 +0000 2017',
                'id_str': '833394296418082817',
                'text': 'Tweetfeels is tremendous! Believe me. I know.',
                'user': {
                    'followers_count': '100',
                    'friends_count': '200',
                    'location': None
                }
            },  # sentiment value = 0
            {
                'created_at': 'Sun Feb 20 19:14:19 +0000 2017',
                'id_str': '833394296418082818',
                'text': 'Fake news. Sad!',
                'user': {
                    'followers_count': '200',
                    'friends_count': '200',
                    'location': None
                }
            },  # sentiment value = -0.7351
            {
                'created_at': 'Sun Feb 21 19:14:20 +0000 2017',
                'id_str': '833394296418082819',
                'text': 'I hate it.',
                'user': {
                    'followers_count': '200',
                    'friends_count': '200',
                    'location': None
                }
            }  # sentiment value = -0.5719
        ]
        self.mock_tweets = [Tweet(t) for t in self.tweets]

    def tearDown(self):
        os.remove(self.db)

    def test_file_creation(self):
        self.assertTrue(os.path.exists(self.db))

    def test_fields(self):
        f = self.feels_db.fields
        self.assertTrue(isinstance(f, tuple))
        self.assertTrue(len(f) >= 11)

    def test_start(self):
        self.assertTrue(isinstance(self.feels_db.start, datetime))

    def test_dates(self):
        for t in self.mock_tweets:
            self.feels_db.insert_tweet(t)
        self.assertEqual(len(self.feels_db.tweet_dates), 3)

        tweets = []
        with open(self.tweets_data_path) as tweets_file:
            lines = filter(None, (line.rstrip() for line in tweets_file))
            for line in lines:
                try:
                    tweets.append(Tweet(json.loads(line)))
                except KeyError:
                    pass
        for t in tweets:
            self.feels_db.insert_tweet(t)
        self.assertEqual(len(self.feels_db.tweet_dates), 105)
        df = self.feels_db.tweet_dates
        timebox = timedelta(seconds=60)
        second = timedelta(seconds=1)
        df = df.groupby(pd.TimeGrouper(freq=f'{int(timebox/second)}S')).size()
        df = df[df != 0]
        print(df)
        self.assertEqual(len(df), 3)
        self.assertEqual(df.iloc[0], 103)

    def test_fetch(self):
        tweets = []
        with open(self.tweets_data_path) as tweets_file:
            lines = filter(None, (line.rstrip() for line in tweets_file))
            for line in lines:
                try:
                    tweets.append(Tweet(json.loads(line)))
                except KeyError:
                    pass
        for t in tweets:
            self.feels_db.insert_tweet(t)

        for t in self.mock_tweets:
            self.feels_db.insert_tweet(t)

        it = self.feels_db.fetchbin(binsize=timedelta(minutes=30))
        cur = next(it)
        self.assertEqual(cur.end - cur.start, timedelta(minutes=30))
        self.assertEqual(len(cur), 103)
        cur = next(it)
        self.assertEqual(len(cur), 1)
        cur = next(it)
        self.assertEqual(len(cur), 1)

    def test_empty(self):
        for t in self.mock_tweets:
            self.feels_db.insert_tweet(t)
        it = self.feels_db.fetchbin(binsize=timedelta(hours=12), empty=True)
        cur = next(it)
        self.assertEqual(len(cur), 1)
        cur = next(it)
        self.assertEqual(len(cur), 0)
        cur = next(it)
        self.assertEqual(len(cur), 1)
        cur = next(it)
        cur = next(it)
        self.assertEqual(len(cur), 1)

    def test_bin(self):
        for t in self.mock_tweets:
            self.feels_db.insert_tweet(t)
        it = self.feels_db.fetchbin(binsize=timedelta(hours=12), empty=True)
        cur = next(it)
        self.assertEqual(cur.influence, 300)
        cur = next(it)
        self.assertEqual(cur.influence, 0)
        cur = next(it)
        self.assertEqual(cur.influence, 400)
        cur = next(it)
        cur = next(it)
        self.assertEqual(cur.influence, 400)

    def test_data_operation(self):
        twt = {
            'created_at': 'Sun Feb 19 19:14:18 +0000 2017',
            'id_str': '833394296418082817',
            'text': 'All the feels!'
        }
        t = Tweet(twt)
        self.assertEqual(len(t.keys()), 7)
        self.feels_db.insert_tweet(t)
        b = self.feels_db.tweets_since(datetime.now())
        self.assertEqual(len(b), 0)
        b = self.feels_db.tweets_since(0)
        self.assertEqual(len(b), 1)
        b.df.sentiment = 0.9
        for row in b.df.itertuples():
            self.feels_db.update_tweet({
                'id_str': row.id_str,
                'sentiment': row.sentiment
            })

        start = datetime(2017, 2, 17, 0, 0, 0)
        before = datetime(2017, 2, 18, 0, 0, 0)
        after = datetime(2017, 2, 20, 0, 0, 0)
        b = self.feels_db.tweets_between(start, before)
        self.assertEqual(len(b), 0)

        b = self.feels_db.tweets_between(start, after)
        self.assertEqual(len(b), 1)
示例#3
0
class TweetFeels(object):
    """
    The controller.

    :param credentials: A list of your 4 credential components.
    :param tracking: A list of keywords to track.
    :param db: A sqlite database to store data. Will be created if it doesn't
               already exist. Will append if it exists.
    :ivar calc_every_n: Wont calculate new sentiment until there are n records
                        in the queue.
    :ivar lang: A list of languages to include in tweet gathering.
    """
    def __init__(self, credentials, tracking=[], db='feels.sqlite'):
        self._listener = TweetListener(self.on_data, self.on_error)
        self._feels = TweetData(db)
        _auth = OAuthHandler(credentials[0], credentials[1])
        _auth.set_access_token(credentials[2], credentials[3])
        self._stream = Stream(_auth, self._listener)
        self.tracking = tracking
        self.lang = ['en']
        self._sentiment = 0
        self._filter_level = 'low'
        self.calc_every_n = 10

    def start(self, seconds=None):
        def delayed_stop():
            time.sleep(seconds)
            print('Timer completed. Disconnecting now...')
            self.stop()

        if len(self.tracking) == 0:
            print('Nothing to track!')
        else:
            self._stream.filter(track=self.tracking,
                                languages=self.lang,
                                async=True)
#  This does not work due to upstream bug in tweepy 3.5.0. They have fixed it in
#  https://github.com/tweepy/tweepy/pull/783
#            self._stream.filter(
#               track=self.tracking, languages=self.lang, async=True,
#               filter_level=self._filter_level
#               )
        if seconds is not None:
            t = Thread(target=delayed_stop)
            t.start()

    def stop(self):
        self._stream.disconnect()

    def on_data(self, data):
        """
        Note: Due to upstream bug in tweepy for python3, it cannot handle the
        `filter_level` parameter in the `Stream.filter` function. Therefore,
        we'll take care of it here. The problem has been identified and fixed
        by the tweepy team here: https://github.com/tweepy/tweepy/pull/783
        """
        filter_value = {'none': 0, 'low': 1, 'medium': 2}
        value = filter_value[data['filter_level']]

        if value >= filter_value[self._filter_level]:
            self._feels.insert_tweet(data)

    def on_error(self, status):
        pass

    def _intensity(self, tweet):
        t = clean(tweet)
        return SentimentIntensityAnalyzer().polarity_scores(t)['compound']

    @property
    def sentiment(self):
        df = self._feels.queue
        if (len(df) > self.calc_every_n):
            df.sentiment = df.text.apply(self._intensity)
            for row in df.itertuples():
                self._feels.update_tweet({
                    'id_str': row.id_str,
                    'sentiment': row.sentiment
                })
            df = df.loc[df.sentiment != 0]  # drop rows having 0 sentiment
            df = df.groupby('created_at')
            df = df.apply(
                lambda x: np.average(x.sentiment, weights=x.followers_count))
            df = df.sort_index()
            for row in df.iteritems():
                self._sentiment = self._sentiment * 0.99 + row[1] * 0.01
        return self._sentiment
示例#4
0
class Test_Feels(unittest.TestCase):
    def setUp(self):
        TweetFeels._db_factory = (lambda db: MagicMock())
        TweetFeels._auth_factory = (lambda cred: MagicMock())
        TweetFeels._listener_factory = (lambda ctrl: MagicMock())
        TweetFeels._stream_factory = (lambda auth, listener: MagicMock())
        self.tweets_data_path = 'test/sample.json'
        self.tweets = [
            {'created_at': 'Sun Feb 19 09:14:18 +0000 2017',
             'id_str': '833394296418082817',
             'text': 'Tweetfeels is tremendous! Believe me. I know.',
             'user': {'followers_count': '100', 'friends_count': '200',
                      'location':None}
            }, # sentiment value = 0
            {'created_at': 'Sun Feb 21 18:14:19 +0000 2017',
             'id_str': '833394296418082818',
             'text': 'Fake news. Sad!',
             'user': {'followers_count': '100', 'friends_count': '200',
                      'location':None}
            }, # sentiment value = -0.7351
            {'created_at': 'Sun Feb 21 19:14:20 +0000 2017',
             'id_str': '833394296418082819',
             'text': 'I hate it.',
             'user': {'followers_count': '100', 'friends_count': '200',
                      'location':None}
            } # sentiment value = -0.5719
            ]
        self.mock_feels = TweetFeels('abcd')
        self.feels_db = TweetData(file='./test/db.sqlite')
        self.mock_feels._feels = self.feels_db
        self.mock_tweets = [Tweet(t) for t in self.tweets]
        for t in self.mock_tweets:
            self.feels_db.insert_tweet(t)
        self.mock_feels.clear_buffer()

    def tearDown(self):
        os.remove('./test/db.sqlite')

    def test_start(self):
        mock_feels = TweetFeels("abcd")
        mock_feels.tracking = []
        mock_feels.start(selfupdate=0)
        mock_feels._stream.filter.assert_not_called()
        mock_feels.tracking = ['tsla']
        mock_feels.start(selfupdate=0)
        mock_feels._stream.filter.assert_called_once()

    def test_stop(self):
        mock_feels = TweetFeels("abcd")
        mock_feels.stop()
        mock_feels._stream.disconnect.assert_called_once()

    def test_on_data(self):
        mock_feels = TweetFeels("abcd")
        mock_feels.buffer_limit = 0
        data = {'filter_level': 'low', 'text': 'test data'}
        mock_feels.on_data(data)
        mock_feels._feels.insert_tweet.assert_called_once()

        # test filtering levels
        mock_feels2 = TweetFeels("abcd")
        mock_feels2._filter_level = 'medium'
        mock_feels2.on_data(data)
        mock_feels2._feels.insert_tweet.assert_not_called()

        # test buffer limit. no inserts until we are over limit
        mock_feels2.buffer_limit = 2
        mock_feels2.filter_level = 'low'
        mock_feels2.on_data(data)
        mock_feels2._feels.insert_tweet.assert_not_called()
        mock_feels2.on_data(data)
        mock_feels2.on_data(data)
        mock_feels._feels.insert_tweet.assert_called_once()

    def test_sentiment(self):
        mock_feels = TweetFeels("abcd")
        mock_feels._feels.tweets_since = MagicMock(return_value=[])
        mock_feels._sentiment = Sentiment(0.5, 0, 0, 0)
        mock_feels._latest_calc = datetime(2017, 1, 1, 0, 0, 0)
        mock_feels._feels.start = datetime(2017, 1, 1, 0, 0, 0)
        mock_feels._feels.end = datetime(2017, 1, 1, 0, 0, 0)
        self.assertEqual(mock_feels.sentiment.value, 0.5)

    def test_buffer(self):
        mock_feels = TweetFeels('abcd')
        mock_feels.buffer_limit = 5
        feels_db = TweetData(file='sample.sqlite')
        mock_feels._feels = feels_db
        with open(self.tweets_data_path) as tweets_file:
            lines = list(filter(None, (line.rstrip() for line in tweets_file)))
            for line in lines[0:3]:
                t = Tweet(json.loads(line))
                mock_feels.on_data(t)
            self.assertEqual(len(mock_feels._tweet_buffer), 3)
            for line in lines[3:6]:
                t = Tweet(json.loads(line))
                mock_feels.on_data(t)
            time.sleep(1) #this waits for items to finish popping off the buffer
            self.assertEqual(len(mock_feels._tweet_buffer), 0)
            dfs = [df for df in mock_feels._feels.all]
            self.assertEqual(len(dfs[0]), 6)
        os.remove('sample.sqlite')

    def test_sentiment_comprehensive(self):
        sentiment = 0.0
        for t in self.mock_tweets:
            if t['sentiment']!=0:
                sentiment = 0.99*sentiment + 0.01*t['sentiment']
        # calc = 0*0.99**2 + 0.01*0.99*-0.7531 + 0.01*-0.5719
        #      = -0.01299649
        self.mock_feels._latest_calc = self.mock_feels._feels.start
        self.assertTrue(np.isclose(self.mock_feels.sentiment.value, sentiment))
        # first observation is at 2017-2-19 19:14:18 and we are using default
        # 60 second bins, therefore the observation at 2017-2-21 19:14:20 will
        # never get saved but will always be recalculated.
        self.assertEqual(self.mock_feels._latest_calc,
                         datetime(2017, 2, 21, 19, 14, 0))

        # repeat the calculation, nothing changes
        self.assertTrue(np.isclose(self.mock_feels.sentiment.value, sentiment))
        self.assertEqual(self.mock_feels._latest_calc,
                         datetime(2017, 2, 21, 19, 14, 0))
        self.assertEqual(self.mock_feels.sentiment.start,
                         self.mock_feels._latest_calc)

    def test_sentiment_factor(self):
        sentiment = 0.0
        self.mock_feels.factor = 0.75
        for t in self.mock_tweets:
            if t['sentiment']!=0:
                sentiment = 0.75*sentiment + 0.25*t['sentiment']

        # calc = 0*0.75**2 + 0.25*0.75*-0.7531 + 0.25*-0.5719
        #      = -0.28418125
        mock_sentiment = self.mock_feels.sentiment.value
        self.assertTrue(np.isclose(mock_sentiment, sentiment))

    def test_sentiment_binsize(self):
        T = self.mock_tweets
        A = T[1]['sentiment']
        B = T[2]['sentiment']
        sentiment = 0.75*0 + 0.25*(A+B)/2

        self.mock_feels.factor = 0.75
        self.mock_feels.binsize = timedelta(days=2.5)
        mock_sentiment = self.mock_feels.sentiment.value
        self.assertTrue(np.isclose(mock_sentiment, sentiment))

    def test_nans(self):
        sentiments = self.mock_feels.sentiments(
            delta_time=timedelta(hours=24), nans=True)
        s = next(sentiments)
        self.assertEqual(s.value, 0)
        s = next(sentiments)
        self.assertTrue(np.isnan(s.value))  # can return nans
        # does not affect current sentiment
        self.assertEqual(self.mock_feels._sentiment.value, 0)
        s = next(sentiments)
        self.assertTrue(s.value<0)

    def test_sentiments(self):
        start = datetime(2017, 2, 19, 0, 0, 0)
        dt = timedelta(minutes=30)
        sentiment = self.mock_feels.sentiments(strt=start, delta_time=dt)
        self.assertTrue(np.isclose(next(sentiment).value, 0))
        self.assertTrue(np.isclose(next(sentiment).value, -0.007351))
        self.assertTrue(np.isclose(next(sentiment).value, -0.01299649))
        for s in sentiment:
            print(s)
        # we are starting at 2017-2-19 19:00:00 and using bins with length 30
        # minutes, therefore our latest calc will be just prior to the final
        # observation.
        self.assertEqual(self.mock_feels._latest_calc,
                         datetime(2017, 2, 21, 19, 0, 0))