def test_sha1(self): """ L{hashlib.sha1} returns an object which can be used to compute a SHA1 hash as defined by U{RFC 3174<http://tools.ietf.org/rfc/rfc3174.txt>}. """ def format(s): return ''.join(s.split()).lower() # Test the result using values from section 7.3 of the RFC. self.assertEqual( sha1("abc").hexdigest(), format( "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D")) self.assertEqual( sha1("abcdbcdecdefdefgefghfghighijhi" "jkijkljklmklmnlmnomnopnopq").hexdigest(), format( "84 98 3E 44 1C 3B D2 6E BA AE 4A A1 F9 51 29 E5 E5 46 70 F1")) # It should have digest and update methods, too. self.assertEqual( sha1("abc").digest().encode('hex'), format( "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D")) hash = sha1() hash.update("abc") self.assertEqual( hash.digest().encode('hex'), format( "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D")) # Instances of it should have a digest_size attribute. self.assertEqual(sha1().digest_size, 20)
def test_sha1(self): """ L{hashlib.sha1} returns an object which can be used to compute a SHA1 hash as defined by U{RFC 3174<http://tools.ietf.org/rfc/rfc3174.txt>}. """ def format(s): return ''.join(s.split()).lower() # Test the result using values from section 7.3 of the RFC. self.assertEqual( sha1("abc").hexdigest(), format( "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D")) self.assertEqual( sha1("abcdbcdecdefdefgefghfghighijhi" "jkijkljklmklmnlmnomnopnopq").hexdigest(), format( "84 98 3E 44 1C 3B D2 6E BA AE 4A A1 F9 51 29 E5 E5 46 70 F1")) # It should have digest and update methods, too. self.assertEqual( sha1("abc").digest().encode('hex'), format( "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D")) hash = sha1() hash.update("abc") self.assertEqual( hash.digest().encode('hex'), format( "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D")) # Instances of it should have a digest_size attribute. self.assertEqual( sha1().digest_size, 20)
def _getKey(self, c, sharedSecret, exchangeHash): """ Get one of the keys for authentication/encryption. @type c: C{str} @type sharedSecret: C{str} @type exchangeHash: C{str} """ k1 = sha1(sharedSecret + exchangeHash + c + self.sessionID) k1 = k1.digest() k2 = sha1(sharedSecret + exchangeHash + k1).digest() return k1 + k2
def _continueKEXDH_REPLY(self, ignored, pubKey, f, signature): """ The host key has been verified, so we generate the keys. @param pubKey: the public key blob for the server's public key. @type pubKey: C{str} @param f: the server's Diffie-Hellman public key. @type f: C{long} @param signature: the server's signature, verifying that it has the correct private key. @type signature: C{str} """ serverKey = keys.Key.fromString(pubKey) sharedSecret = _MPpow(f, self.x, DH_PRIME) h = sha1() h.update(NS(self.ourVersionString)) h.update(NS(self.otherVersionString)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.otherKexInitPayload)) h.update(NS(pubKey)) h.update(self.e) h.update(MP(f)) h.update(sharedSecret) exchangeHash = h.digest() if not serverKey.verify(signature, exchangeHash): self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, 'bad signature') return self._keySetup(sharedSecret, exchangeHash)
def testDigest(self): """ Test digest authentication. Set up a stream, and act as if authentication succeeds. """ d = self.init.initialize() # The initializer should have sent query to find out auth methods. iq = self.output[-1] # Send server response iq['type'] = 'result' iq.query.addElement('username') iq.query.addElement('digest') iq.query.addElement('resource') self.xmlstream.dataReceived(iq.toXml()) # Upon receiving the response, the initializer can start authentication iq = self.output[-1] self.assertEquals('iq', iq.name) self.assertEquals('set', iq['type']) self.assertEquals(('jabber:iq:auth', 'query'), (iq.children[0].uri, iq.children[0].name)) self.assertEquals('user', unicode(iq.query.username)) self.assertEquals(sha1('12345secret').hexdigest(), unicode(iq.query.digest)) self.assertEquals('resource', unicode(iq.query.resource)) # Send server response self.xmlstream.dataReceived("<iq type='result' id='%s'/>" % iq['id']) return d
def _continueGEX_REPLY(self, ignored, pubKey, f, signature): """ The host key has been verified, so we generate the keys. @param pubKey: the public key blob for the server's public key. @type pubKey: C{str} @param f: the server's Diffie-Hellman public key. @type f: C{long} @param signature: the server's signature, verifying that it has the correct private key. @type signature: C{str} """ serverKey = keys.Key.fromString(pubKey) sharedSecret = _MPpow(f, self.x, self.p) h = sha1() h.update(NS(self.ourVersionString)) h.update(NS(self.otherVersionString)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.otherKexInitPayload)) h.update(NS(pubKey)) h.update('\x00\x00\x08\x00') h.update(MP(self.p)) h.update(MP(self.g)) h.update(self.e) h.update(MP(f)) h.update(sharedSecret) exchangeHash = h.digest() if not serverKey.verify(signature, exchangeHash): self.sendDisconnect(DISCONNECT_KEY_EXCHANGE_FAILED, 'bad signature') return self._keySetup(sharedSecret, exchangeHash)
def testDigest(self): """ Test digest authentication. Set up a stream, and act as if authentication succeeds. """ d = self.init.initialize() # The initializer should have sent query to find out auth methods. iq = self.output[-1] # Send server response iq['type'] = 'result' iq.query.addElement('username') iq.query.addElement('digest') iq.query.addElement('resource') self.xmlstream.dataReceived(iq.toXml()) # Upon receiving the response, the initializer can start authentication iq = self.output[-1] self.assertEquals('iq', iq.name) self.assertEquals('set', iq['type']) self.assertEquals(('jabber:iq:auth', 'query'), (iq.children[0].uri, iq.children[0].name)) self.assertEquals('user', unicode(iq.query.username)) self.assertEquals( sha1('12345secret').hexdigest(), unicode(iq.query.digest)) self.assertEquals('resource', unicode(iq.query.resource)) # Send server response self.xmlstream.dataReceived("<iq type='result' id='%s'/>" % iq['id']) return d
def verify(self, signature, data): """ Returns true if the signature for data is valid for this Key. @type signature: C{str} @type data: C{str} @rtype: C{bool} """ if len(signature) == 40: # DSA key with no padding signatureType, signature = 'ssh-dss', common.NS(signature) else: signatureType, signature = common.getNS(signature) if signatureType != self.sshType(): return False if self.type() == 'RSA': numbers = common.getMP(signature) digest = pkcs1Digest(data, self.keyObject.size() / 8) elif self.type() == 'DSA': signature = common.getNS(signature)[0] numbers = [ Util.number.bytes_to_long(n) for n in signature[:20], signature[20:] ] digest = sha1(data).digest() return self.keyObject.verify(digest, numbers)
def pkcs1Digest(data, messageLength): """ Create a message digest using the SHA1 hash algorithm according to the PKCS#1 standard. @type data: C{str} @type messageLength: C{str} """ digest = sha1(data).digest() return pkcs1Pad(ID_SHA1+digest, messageLength)
def pkcs1Digest(data, messageLength): """ Create a message digest using the SHA1 hash algorithm according to the PKCS#1 standard. @type data: C{str} @type messageLength: C{str} """ digest = sha1(data).digest() return pkcs1Pad(ID_SHA1 + digest, messageLength)
def test_pkcs1(self): """ Test Public Key Cryptographic Standard #1 functions. """ data = 'ABC' messageSize = 6 self.assertEqual(keys.pkcs1Pad(data, messageSize), '\x01\xff\x00ABC') hash = sha1().digest() messageSize = 40 self.assertEqual(keys.pkcs1Digest('', messageSize), '\x01\xff\xff\xff\x00' + keys.ID_SHA1 + hash)
def ssh_KEX_DH_GEX_REQUEST_OLD(self, packet): """ This represents two different key exchange methods that share the same integer value. KEXDH_INIT (for diffie-hellman-group1-sha1 exchanges) payload:: integer e (the client's Diffie-Hellman public key) We send the KEXDH_REPLY with our host key and signature. KEX_DH_GEX_REQUEST_OLD (for diffie-hellman-group-exchange-sha1) payload:: integer ideal (ideal size for the Diffie-Hellman prime) We send the KEX_DH_GEX_GROUP message with the group that is closest in size to ideal. If we were told to ignore the next key exchange packet by ssh_KEXINIT, drop it on the floor and return. """ if self.ignoreNextPacket: self.ignoreNextPacket = 0 return if self.kexAlg == 'diffie-hellman-group1-sha1': # this is really KEXDH_INIT clientDHpublicKey, foo = getMP(packet) y = Util.number.getRandomNumber(512, randbytes.secureRandom) serverDHpublicKey = _MPpow(DH_GENERATOR, y, DH_PRIME) sharedSecret = _MPpow(clientDHpublicKey, y, DH_PRIME) h = sha1() h.update(NS(self.otherVersionString)) h.update(NS(self.ourVersionString)) h.update(NS(self.otherKexInitPayload)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.factory.publicKeys[self.keyAlg].blob())) h.update(MP(clientDHpublicKey)) h.update(serverDHpublicKey) h.update(sharedSecret) exchangeHash = h.digest() self.sendPacket( MSG_KEXDH_REPLY, NS(self.factory.publicKeys[self.keyAlg].blob()) + serverDHpublicKey + NS(self.factory.privateKeys[self.keyAlg].sign(exchangeHash))) self._keySetup(sharedSecret, exchangeHash) elif self.kexAlg == 'diffie-hellman-group-exchange-sha1': self.dhGexRequest = packet ideal = struct.unpack('>L', packet)[0] self.g, self.p = self.factory.getDHPrime(ideal) self.sendPacket(MSG_KEX_DH_GEX_GROUP, MP(self.p) + MP(self.g)) else: raise error.ConchError('bad kexalg: %s' % self.kexAlg)
def test_signDSA(self): """ Test that DSA keys return appropriate signatures. """ data = 'data' key, sig = self._signDSA(data) sigData = sha1(data).digest() v = key.sign(sigData, '\x55' * 19) self.assertEquals(sig, common.NS('ssh-dss') + common.NS( Crypto.Util.number.long_to_bytes(v[0], 20) + Crypto.Util.number.long_to_bytes(v[1], 20))) return key, sig
def test_signDSA(self): """ Test that DSA keys return appropriate signatures. """ data = 'data' key, sig = self._signDSA(data) sigData = sha1(data).digest() v = key.sign(sigData, '\x55' * 19) self.assertEqual(sig, common.NS('ssh-dss') + common.NS( Crypto.Util.number.long_to_bytes(v[0], 20) + Crypto.Util.number.long_to_bytes(v[1], 20))) return key, sig
def onAuthSet(iq): """ Called when the initializer sent the authentication request. The server checks the credentials and responds with an empty result signalling success. """ self.assertEquals("user", unicode(iq.query.username)) self.assertEquals(sha1("12345secret").hexdigest(), unicode(iq.query.digest).encode("utf-8")) self.assertEquals("resource", unicode(iq.query.resource)) # Send server response response = xmlstream.toResponse(iq, "result") self.pipe.source.send(response)
def hashPassword(sid, password): """ Create a SHA1-digest string of a session identifier and password. @param sid: The stream session identifier. @type sid: C{unicode}. @param password: The password to be hashed. @type password: C{unicode}. """ if not isinstance(sid, unicode): raise TypeError("The session identifier must be a unicode object") if not isinstance(password, unicode): raise TypeError("The password must be a unicode object") input = u"%s%s" % (sid, password) return sha1(input.encode('utf-8')).hexdigest()
def onAuthSet(iq): """ Called when the initializer sent the authentication request. The server checks the credentials and responds with an empty result signalling success. """ self.assertEquals('user', unicode(iq.query.username)) self.assertEquals(sha1('12345secret').hexdigest(), unicode(iq.query.digest).encode('utf-8')) self.assertEquals('resource', unicode(iq.query.resource)) # Send server response response = xmlstream.toResponse(iq, 'result') self.pipe.source.send(response)
def verify(self, signature, data): """ Returns true if the signature for data is valid for this Key. @type signature: C{str} @type data: C{str} @rtype: C{bool} """ signatureType, signature = common.getNS(signature) if signatureType != self.sshType(): return False if self.type() == 'RSA': numbers = common.getMP(signature) digest = pkcs1Digest(data, self.keyObject.size() / 8) elif self.type() == 'DSA': signature = common.getNS(signature)[0] numbers = [Util.number.bytes_to_long(n) for n in signature[:20], signature[20:]] digest = sha1(data).digest() return self.keyObject.verify(digest, numbers)
def testHandshake(self): """ Test basic operations of component handshake. """ d = self.init.initialize() # the initializer should have sent the handshake request handshake = self.output[-1] self.assertEqual('handshake', handshake.name) self.assertEqual('test:component', handshake.uri) self.assertEqual(sha1("%s%s" % ('12345', 'secret')).hexdigest(), unicode(handshake)) # successful authentication handshake.children = [] self.xmlstream.dataReceived(handshake.toXml()) return d
def testHandshake(self): """ Test basic operations of component handshake. """ d = self.init.initialize() # the initializer should have sent the handshake request handshake = self.output[-1] self.assertEquals('handshake', handshake.name) self.assertEquals('test:component', handshake.uri) self.assertEquals( sha1("%s%s" % ('12345', 'secret')).hexdigest(), unicode(handshake)) # successful authentication handshake.children = [] self.xmlstream.dataReceived(handshake.toXml()) return d
def ssh_KEX_DH_GEX_INIT(self, packet): """ Called when we get a MSG_KEX_DH_GEX_INIT message. Payload:: integer e (client DH public key) We send the MSG_KEX_DH_GEX_REPLY message with our host key and signature. """ clientDHpublicKey, foo = getMP(packet) # TODO: we should also look at the value they send to us and reject # insecure values of f (if g==2 and f has a single '1' bit while the # rest are '0's, then they must have used a small y also). # TODO: This could be computed when self.p is set up # or do as openssh does and scan f for a single '1' bit instead pSize = Util.number.size(self.p) y = Util.number.getRandomNumber(pSize, randbytes.secureRandom) serverDHpublicKey = _MPpow(self.g, y, self.p) sharedSecret = _MPpow(clientDHpublicKey, y, self.p) h = sha1() h.update(NS(self.otherVersionString)) h.update(NS(self.ourVersionString)) h.update(NS(self.otherKexInitPayload)) h.update(NS(self.ourKexInitPayload)) h.update(NS(self.factory.publicKeys[self.keyAlg].blob())) h.update(self.dhGexRequest) h.update(MP(self.p)) h.update(MP(self.g)) h.update(MP(clientDHpublicKey)) h.update(serverDHpublicKey) h.update(sharedSecret) exchangeHash = h.digest() self.sendPacket( MSG_KEX_DH_GEX_REPLY, NS(self.factory.publicKeys[self.keyAlg].blob()) + serverDHpublicKey + NS(self.factory.privateKeys[self.keyAlg].sign(exchangeHash))) self._keySetup(sharedSecret, exchangeHash)
def sign(self, data): """ Returns a signature with this Key. @type data: C{str} @rtype: C{str} """ if self.type() == 'RSA': digest = pkcs1Digest(data, self.keyObject.size()/8) signature = self.keyObject.sign(digest, '')[0] ret = common.NS(Util.number.long_to_bytes(signature)) elif self.type() == 'DSA': digest = sha1(data).digest() randomBytes = randbytes.secureRandom(19) sig = self.keyObject.sign(digest, randomBytes) # SSH insists that the DSS signature blob be two 160-bit integers # concatenated together. The sig[0], [1] numbers from obj.sign # are just numbers, and could be any length from 0 to 160 bits. # Make sure they are padded out to 160 bits (20 bytes each) ret = common.NS(Util.number.long_to_bytes(sig[0], 20) + Util.number.long_to_bytes(sig[1], 20)) return common.NS(self.sshType()) + ret
def sign(self, data): """ Returns a signature with this Key. @type data: C{str} @rtype: C{str} """ if self.type() == 'RSA': digest = pkcs1Digest(data, self.keyObject.size() / 8) signature = self.keyObject.sign(digest, '')[0] ret = common.NS(Util.number.long_to_bytes(signature)) elif self.type() == 'DSA': digest = sha1(data).digest() randomBytes = randbytes.secureRandom(19) sig = self.keyObject.sign(digest, randomBytes) # SSH insists that the DSS signature blob be two 160-bit integers # concatenated together. The sig[0], [1] numbers from obj.sign # are just numbers, and could be any length from 0 to 160 bits. # Make sure they are padded out to 160 bits (20 bytes each) ret = common.NS( Util.number.long_to_bytes(sig[0], 20) + Util.number.long_to_bytes(sig[1], 20)) return common.NS(self.sshType()) + ret
def testAuth(self): self.authComplete = False outlist = [] ca = component.ConnectComponentAuthenticator("cjid", "secret") xs = xmlstream.XmlStream(ca) xs.transport = DummyTransport(outlist) xs.addObserver(xmlstream.STREAM_AUTHD_EVENT, self.authPassed) # Go... xs.connectionMade() xs.dataReceived("<stream:stream xmlns='jabber:component:accept' xmlns:stream='http://etherx.jabber.org/streams' from='cjid' id='12345'>") # Calculate what we expect the handshake value to be hv = sha1("%s%s" % ("12345", "secret")).hexdigest() self.assertEqual(outlist[1], "<handshake>%s</handshake>" % (hv)) xs.dataReceived("<handshake/>") self.assertEqual(self.authComplete, True)
def hashPassword(sid, password): """ Create a SHA1-digest string of a session identifier and password. """ from twisted.python.hashlib import sha1 return sha1("%s%s" % (sid, password)).hexdigest()
def _secureEnoughString(): """ Create a pseudorandom, 16-character string for use in secure filenames. """ return armor(sha1(randomBytes(64)).digest())[:16]
def image_key(self, url): year,month = url.split('/')[-5],url.split('/')[-6] image_guid = hashlib.sha1(url).hexdigest() img_path = "%s/%s/%s" % (year,month,'tt') return '%s/%s.jpg' % (img_path, self.image_name)