示例#1
0
def main():

    lat = -23.575001
    lon = 152.524994
    doy = 180.0
    #
    ## Met data ...
    #
    (par, tair, vpd) = get_met_data(lat, lon, doy)
    wind = 2.5
    pressure = 101325.0
    Ca = 400.0

    lat = 61.8474
    lon = 24.2948

    fpath = "/Users/mdekauwe/Downloads/"
    fname = "Hyytiala_met_and_plant_data_drought_2003.csv"
    fn = os.path.join(fpath, fname)
    df = pd.read_csv(fn, skiprows=range(1, 2))

    dox = int(doy) * 48
    par = df.PPFD.iloc[dox:dox + 48].values

    tair = df.Tair.iloc[dox:dox + 48].values
    vpd = df.VPD.iloc[dox:dox + 48].values
    wind = 2.5
    pressure = 101325.0
    Ca = 400.0
    LAI = df.LAI[dox]

    #
    ## Parameters
    #
    g0 = 1E-09
    g1 = df.g1[0]
    D0 = 1.5  # kpa
    Vcmax25 = df.Vmax25[0]
    #g0 = 0.001
    #g1 = 2.0
    #D0 = 1.5 # kpa
    #Vcmax25 = 60.0
    Jmax25 = Vcmax25 * 1.67
    Rd25 = 2.0
    Eaj = 30000.0
    Eav = 60000.0
    deltaSj = 650.0
    deltaSv = 650.0
    Hdv = 200000.0
    Hdj = 200000.0
    Q10 = 2.0
    gamma = 0.0
    leaf_width = 0.02
    LAI = 1.5

    # Cambell & Norman, 11.5, pg 178
    # The solar absorptivities of leaves (-0.5) from Table 11.4 (Gates, 1980)
    # with canopies (~0.8) from Table 11.2 reveals a surprising difference.
    # The higher absorptivityof canopies arises because of multiple reflections
    # among leaves in a canopy and depends on the architecture of the canopy.
    SW_abs = 0.8  # use canopy absorptance of solar radiation

    ##
    ### Run Big-leaf
    ##

    B = BigLeaf(g0,
                g1,
                D0,
                gamma,
                Vcmax25,
                Jmax25,
                Rd25,
                Eaj,
                Eav,
                deltaSj,
                deltaSv,
                Hdv,
                Hdj,
                Q10,
                leaf_width,
                SW_abs,
                gs_model="medlyn")

    An_bl = np.zeros(48)
    gsw_bl = np.zeros(48)
    et_bl = np.zeros(48)
    tcan_bl = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        (An_bl[i], gsw_bl[i], et_bl[i],
         tcan_bl[i]) = B.main(tair[i], par[i], vpd[i], wind, pressure, Ca, doy,
                              hod, lat, lon, LAI)

        hod += 1
    ##
    ### Run 2-leaf
    ##

    T = TwoLeaf(g0,
                g1,
                D0,
                gamma,
                Vcmax25,
                Jmax25,
                Rd25,
                Eaj,
                Eav,
                deltaSj,
                deltaSv,
                Hdv,
                Hdj,
                Q10,
                leaf_width,
                SW_abs,
                gs_model="medlyn")

    An_tl = np.zeros(48)
    gsw_tl = np.zeros(48)
    et_tl = np.zeros(48)
    tcan_tl = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        (An_tl[i], gsw_tl[i], et_tl[i],
         tcan_tl[i]) = T.main(tair[i], par[i], vpd[i], wind, pressure, Ca, doy,
                              hod, lat, lon, LAI)

        hod += 1

    fig = plt.figure(figsize=(16, 4))
    fig.subplots_adjust(hspace=0.1)
    fig.subplots_adjust(wspace=0.2)
    plt.rcParams['text.usetex'] = False
    plt.rcParams['font.family'] = "sans-serif"
    plt.rcParams['font.sans-serif'] = "Helvetica"
    plt.rcParams['axes.labelsize'] = 14
    plt.rcParams['font.size'] = 14
    plt.rcParams['legend.fontsize'] = 10
    plt.rcParams['xtick.labelsize'] = 14
    plt.rcParams['ytick.labelsize'] = 14

    almost_black = '#262626'
    # change the tick colors also to the almost black
    plt.rcParams['ytick.color'] = almost_black
    plt.rcParams['xtick.color'] = almost_black

    # change the text colors also to the almost black
    plt.rcParams['text.color'] = almost_black

    # Change the default axis colors from black to a slightly lighter black,
    # and a little thinner (0.5 instead of 1)
    plt.rcParams['axes.edgecolor'] = almost_black
    plt.rcParams['axes.labelcolor'] = almost_black

    ax1 = fig.add_subplot(131)
    ax2 = fig.add_subplot(132)
    ax3 = fig.add_subplot(133)

    ax1.plot(np.arange(48) / 2., An_bl, label="Big leaf")
    ax1.plot(np.arange(48) / 2., An_tl, label="Two leaf")
    ax1.legend(numpoints=1, loc="best")
    ax1.set_ylabel("$A_{\mathrm{n}}$ ($\mathrm{\mu}$mol m$^{-2}$ s$^{-1}$)")

    ax2.plot(np.arange(48) / 2., et_bl * c.MOL_TO_MMOL, label="Big leaf")
    ax2.plot(np.arange(48) / 2., et_tl * c.MOL_TO_MMOL, label="Two leaf")
    ax2.set_ylabel("E (mmol m$^{-2}$ s$^{-1}$)")
    ax2.set_xlabel("Hour of day")

    ax3.plot(np.arange(48) / 2., tcan_bl, label="Tcanopy$_{1leaf}$")
    ax3.plot(np.arange(48) / 2., tcan_tl, label="Tcanopy$_{2leaf}$")
    ax3.plot(np.arange(48) / 2., tair, label="Tair")
    ax3.set_ylabel("Temperature (deg C)")
    ax3.legend(numpoints=1, loc="best")

    ax1.locator_params(nbins=6, axis="y")
    ax2.locator_params(nbins=6, axis="y")

    plt.show()
    fig.savefig("/Users/%s/Desktop/A_E_Tcan.pdf" % (os.getlogin()),
                bbox_inches='tight',
                pad_inches=0.1)
def main(met_fn, flx_fn, cab_fn, year_to_run, site):
    #(site)
    fpath = "/mnt/c/Users/Manon/Documents/CABLE_runs/"
    fname = "%s_met_and_plant_data_drought_2003.csv" % (site)
    fn = os.path.join(fpath, fname)
    df = pd.read_csv(fn, skiprows=range(1, 2))

    (df_cab) = read_cable_file(cab_fn)
    df_cab = df_cab[df_cab.index.year == year_to_run]

    (df_flx) = read_obs_file(flx_fn)
    df_flx = df_flx[df_flx.index.year == year_to_run]

    (df_met, lat, lon) = read_met_file(met_fn)
    df_met = df_met[df_met.index.year == year_to_run]

    par = df_met.PAR
    tair = df_met.Tair
    vpd = df_met.vpd
    wind = df_met.Wind
    pressure = df_met.PSurf
    Ca = 400.0
    #LAI = 3.0
    LAI = df.LAI
    #
    ## Parameters
    #
    g0 = 1E-09
    g1 = df.g1[0]  #4.12
    D0 = 1.5  # kpa
    Vcmax25 = df.Vmax25[0]
    Jmax25 = Vcmax25 * 1.67

    Rd25 = 2.0
    Eaj = 30000.0
    Eav = 60000.0
    deltaSj = 650.0
    deltaSv = 650.0
    Hdv = 200000.0
    Hdj = 200000.0
    Q10 = 2.0
    leaf_width = 0.02
    gamma = 0  # doesn't do anything

    # Cambell & Norman, 11.5, pg 178
    # The solar absorptivities of leaves (-0.5) from Table 11.4 (Gates, 1980)
    # with canopies (~0.8) from Table 11.2 reveals a surprising difference.
    # The higher absorptivityof canopies arises because of multiple reflections
    # among leaves in a canopy and depends on the architecture of the canopy.
    SW_abs = 0.8  # use canopy absorptance of solar radiation

    ##
    ### Run 2-leaf
    ##

    T = TwoLeaf(g0,
                g1,
                D0,
                gamma,
                Vcmax25,
                Jmax25,
                Rd25,
                Eaj,
                Eav,
                deltaSj,
                deltaSv,
                Hdv,
                Hdj,
                Q10,
                leaf_width,
                SW_abs,
                gs_model="medlyn")

    ndays = int(len(df_met) / 48)

    Anc_store = np.zeros(ndays)
    Ec_store = np.zeros(ndays)
    LAI_store = np.zeros(ndays)

    An_store = np.zeros(ndays)
    An_sun_store = np.zeros(ndays)
    An_sha_store = np.zeros(ndays)
    par_sun_store = np.zeros(ndays)
    par_sha_store = np.zeros(ndays)
    lai_sun_store = np.zeros(ndays)
    lai_sha_store = np.zeros(ndays)
    E_store = np.zeros(ndays)

    Anc_store = np.zeros(ndays)
    Anc_sun_store = np.zeros(ndays)
    Anc_sha_store = np.zeros(ndays)
    parc_sun_store = np.zeros(ndays)
    parc_sha_store = np.zeros(ndays)
    laic_sun_store = np.zeros(ndays)
    laic_sha_store = np.zeros(ndays)
    Ec_store = np.zeros(ndays)

    gpp_obs = np.zeros(ndays)
    e_obs = np.zeros(ndays)
    lai_obs = np.zeros(ndays)

    et_conv = c.MOL_WATER_2_G_WATER * c.G_TO_KG * 1800.
    an_conv = c.UMOL_TO_MOL * c.MOL_C_TO_GRAMS_C * 1800.

    cnt = 0
    for doy in range(ndays):

        Anx = 0.0
        Ex = 0.0
        anxsun = 0.0
        anxsha = 0.0
        parxsun = 0.0
        parxsha = 0.0
        laixsun = 0.0
        laixsha = 0.0

        Anc = 0.0
        Ec = 0.0
        Acabx = 0.0
        Ecabx = 0.0
        Lcabx = 0.0
        ancsun = 0.0
        ancsha = 0.0
        parcsun = 0.0
        parcsha = 0.0
        laicsun = 0.0
        laicsha = 0.0

        Aobsx = 0.0
        Eobsx = 0.0
        Lobsx = 0.0

        for i in range(48):

            if doy < 364:
                laix = LAI[cnt]
            else:
                laix = LAI[cnt - 1]

            #if doy  == 164:
            #    print(laix)

            #elif doy== 165:
            #    sys.exit()

            hod = float(i) / 2. + 1800. / 3600. / 2.

            (An, gsw, et, tcan, an_sun, an_sha, par_sun, par_sha, lai_sun,
             lai_sha) = T.main(tair[cnt], par[cnt], vpd[cnt], wind[cnt],
                               pressure[cnt], Ca, doy + 1, hod, lat, lon, laix)

            lambda_et = (c.H2OLV0 - 2.365E3 * tair[cnt]) * c.H2OMW

            Anx += An * an_conv
            anxsun += an_sun * an_conv
            anxsha += an_sha * an_conv
            parxsun += par_sun / c.UMOLPERJ / c.MJ_TO_J * 1800.0
            parxsha += par_sha / c.UMOLPERJ / c.MJ_TO_J * 1800.0  # MJ m-2 d-1
            laixsun += lai_sun
            laixsha += lai_sha

            Lobsx += laix
            Ex += et * et_conv

            #if not np.isclose(df_cab.LAI_shaded[cnt], lai_sha):
            #    print(cnt, df_cab.LAI_shaded[cnt], lai_sha)
            #    print(df_cab.LAI_shaded[cnt] + df_cab.LAI_sunlit[cnt], lai_sha + lai_sun)
            #    print(laix - (df_cab.LAI_shaded[cnt] + df_cab.LAI_sunlit[cnt]), laix - (lai_sha + lai_sun))

            Anc += df_cab.GPP[cnt] * an_conv
            ancsun += df_cab.GPP_sunlit[cnt] * an_conv
            ancsha += df_cab.GPP_shaded[cnt] * an_conv
            parcsun += df_cab.PAR_sunlit[cnt] / c.UMOLPERJ / c.MJ_TO_J * 1800.0
            parcsha += df_cab.PAR_shaded[
                cnt] / c.UMOLPERJ / c.MJ_TO_J * 1800.0  # MJ m-2 d-1
            laicsun += df_cab.LAI_sunlit[cnt]
            laicsha += df_cab.LAI_shaded[cnt]
            Lcabx += df_cab.LAI[cnt]
            Ec += et * et_conv

            Aobsx += df_flx.GPP[cnt] * an_conv
            Eobsx += df_flx.Qle[cnt] / lambda_et * et_conv

            if cnt < LAI.index[-1]:
                cnt += 1

            else:
                break

        An_store[doy] = Anx
        An_sun_store[doy] = anxsun
        An_sha_store[doy] = anxsha
        par_sun_store[doy] = parxsun
        par_sha_store[doy] = parxsha
        lai_sun_store[doy] = laixsun / 48.
        lai_sha_store[doy] = laixsha / 48.
        E_store[doy] = Ex

        Anc_store[doy] = Anc
        Anc_sun_store[doy] = ancsun
        Anc_sha_store[doy] = ancsha
        parc_sun_store[doy] = parcsun
        parc_sha_store[doy] = parcsha
        laic_sun_store[doy] = laicsun / 48.
        laic_sha_store[doy] = laicsha / 48.
        Ec_store[doy] = Ec

        gpp_obs[doy] = Aobsx
        e_obs[doy] = Eobsx
        lai_obs[doy] = Lobsx / 48

    #print(lai_sha_store - laic_sha_store)

    window = 3
    An_store = moving_average(An_store, n=window)
    An_sun_store = moving_average(An_sun_store, n=window)
    An_sha_store = moving_average(An_sha_store, n=window)
    par_sun_store = moving_average(par_sun_store, n=window)
    par_sha_store = moving_average(par_sha_store, n=window)
    lai_sun_store = moving_average(lai_sun_store, n=window)
    lai_sha_store = moving_average(lai_sha_store, n=window)
    E_store = moving_average(E_store, n=window)

    Anc_store = moving_average(Anc_store, n=window)
    Anc_sun_store = moving_average(Anc_sun_store, n=window)
    Anc_sha_store = moving_average(Anc_sha_store, n=window)
    parc_sun_store = moving_average(parc_sun_store, n=window)
    parc_sha_store = moving_average(parc_sha_store, n=window)
    laic_sun_store = moving_average(laic_sun_store, n=window)
    laic_sha_store = moving_average(laic_sha_store, n=window)
    Ec_store = moving_average(Ec_store, n=window)

    gpp_obs = moving_average(gpp_obs, n=window)
    e_obs = moving_average(e_obs, n=window)
    lai_obs = moving_average(lai_obs, n=window)

    fig = plt.figure(figsize=(14, 8))
    fig.subplots_adjust(hspace=0.1)
    fig.subplots_adjust(wspace=0.1)
    plt.rcParams['text.usetex'] = False
    plt.rcParams['font.family'] = "sans-serif"
    plt.rcParams['font.sans-serif'] = "Helvetica"
    plt.rcParams['axes.labelsize'] = 14
    plt.rcParams['font.size'] = 14
    plt.rcParams['legend.fontsize'] = 14
    plt.rcParams['xtick.labelsize'] = 14
    plt.rcParams['ytick.labelsize'] = 14

    ax1 = fig.add_subplot(321)
    ax2 = fig.add_subplot(322)
    ax3 = fig.add_subplot(323)
    ax4 = fig.add_subplot(324)
    ax5 = fig.add_subplot(325)
    ax6 = fig.add_subplot(326)

    #ax1.plot(An_store, label="2-leaf - Sun")
    #ax1.plot(Anc_store, label="2-leaf - CABLE")

    ax1.plot(An_sun_store, label="Me")
    ax1.plot(Anc_sun_store, label="CABLE")

    ax1.set_title("Sun")
    ax2.set_title("Shade")

    ax1.set_ylabel("GPP (g C m$^{-2}$ d$^{-1}$)")
    ax1.legend(numpoints=1, loc="best")

    ax2.plot(An_sha_store)
    ax2.plot(Anc_sha_store)

    ax3.plot(par_sun_store)
    ax3.plot(parc_sun_store)
    ax3.set_ylabel("PAR (MJ m$^{-2}$ d$^{-1}$)")

    ax4.plot(par_sha_store)
    ax4.plot(parc_sha_store)

    ax5.plot(lai_sun_store)
    ax5.plot(laic_sun_store)
    ax5.set_ylabel("LAI (m$^{2}$ m$^{-2}$)")

    ax6.plot(lai_sha_store)
    ax6.plot(laic_sha_store)

    ax1.locator_params(nbins=6, axis="y")
    ax2.locator_params(nbins=6, axis="y")
    ax3.locator_params(nbins=6, axis="y")
    ax4.locator_params(nbins=6, axis="y")
    ax5.locator_params(nbins=6, axis="y")
    ax6.locator_params(nbins=6, axis="y")

    plt.setp(ax1.get_xticklabels(), visible=False)
    plt.setp(ax2.get_xticklabels(), visible=False)
    plt.setp(ax3.get_xticklabels(), visible=False)
    plt.setp(ax4.get_xticklabels(), visible=False)

    plt.show()
def main(met_fn, flx_fn, cab_fn, year_to_run, site):

    fpath = "/Users/mdekauwe/Downloads/"
    fname = "%s_met_and_plant_data_drought_2003.csv" % (site)
    fn = os.path.join(fpath, fname)
    df = pd.read_csv(fn, skiprows=range(1, 2))

    (df_cab, p.lat, p.lon) = read_cable_file(cab_fn)
    df_cab = df_cab[df_cab.index.year == year_to_run]

    (df_flx) = read_obs_file(flx_fn)
    df_flx = df_flx[df_flx.index.year == year_to_run]

    (df_met, lat, lon) = read_met_file(met_fn)
    df_met = df_met[df_met.index.year == year_to_run]

    par = df_met.PAR
    tair = df_met.Tair
    vpd = df_met.vpd
    wind = df_met.Wind
    pressure = df_met.PSurf
    Ca = 400.0
    #LAI = 3.0
    LAI = df.LAI
    #
    ## Parameters
    #
    p.g0 = 1E-09
    p.g1 = df.g1[0]  #4.12
    p.D0 = 1.5  # kpa
    p.Vcmax25 = df.Vmax25[0]
    p.Jmax25 = p.Vcmax25 * 1.67

    p.Rd25 = None  # Vcmax * 0.015
    #p.Eaj = 30000.0
    #p.Eav = 60000.0
    #p.deltaSj = 650.0
    #p.deltaSv = 650.0
    #p.Hdv = 200000.0
    #p.Hdj = 200000.0

    p.Eaj = 50300.0
    p.Eav = 73637.0
    p.deltaSj = 495.0
    p.deltaSv = 486.0
    p.Hdv = 149252.0
    p.Hdj = 152044.0

    ##
    ### Run 2-leaf
    ##
    T = TwoLeaf(p, gs_model="medlyn")

    ndays = int(len(df_met) / 48)

    Anc_store = np.zeros(ndays)
    Ec_store = np.zeros(ndays)
    LAI_store = np.zeros(ndays)

    An_store = np.zeros(ndays)
    An_sun_store = np.zeros(ndays)
    An_sha_store = np.zeros(ndays)
    par_sun_store = np.zeros(ndays)
    par_sha_store = np.zeros(ndays)
    lai_sun_store = np.zeros(ndays)
    lai_sha_store = np.zeros(ndays)
    E_store = np.zeros(ndays)

    Anc_store = np.zeros(ndays)
    Anc_sun_store = np.zeros(ndays)
    Anc_sha_store = np.zeros(ndays)
    parc_sun_store = np.zeros(ndays)
    parc_sha_store = np.zeros(ndays)
    laic_sun_store = np.zeros(ndays)
    laic_sha_store = np.zeros(ndays)
    Ec_store = np.zeros(ndays)

    gpp_obs = np.zeros(ndays)
    e_obs = np.zeros(ndays)
    lai_obs = np.zeros(ndays)

    et_conv = c.MOL_WATER_2_G_WATER * c.G_TO_KG * 1800.
    an_conv = c.UMOL_TO_MOL * c.MOL_C_TO_GRAMS_C * 1800.

    cnt = 0
    for doy in range(ndays - 1):

        Anx = 0.0
        Ex = 0.0
        anxsun = 0.0
        anxsha = 0.0
        parxsun = 0.0
        parxsha = 0.0
        laixsun = 0.0
        laixsha = 0.0

        Anc = 0.0
        Ec = 0.0
        Acabx = 0.0
        Ecabx = 0.0
        Lcabx = 0.0
        ancsun = 0.0
        ancsha = 0.0
        parcsun = 0.0
        parcsha = 0.0
        laicsun = 0.0
        laicsha = 0.0

        Aobsx = 0.0
        Eobsx = 0.0
        Lobsx = 0.0

        for i in range(48):

            if doy < 364:
                laix = LAI[cnt]
            else:
                #print(cnt, len(LAI), LAI[17518])
                laix = LAI[17518]

            hod = float(i) / 2. + 1800. / 3600. / 2.

            (An, et, Tcan, apar,
             lai_leaf) = T.main(tair[cnt], par[cnt], vpd[cnt], wind[cnt],
                                pressure[cnt], Ca, doy + 1, hod, laix)

            lambda_et = (c.H2OLV0 - 2.365E3 * tair[cnt]) * c.H2OMW

            Anx += np.sum(An) * an_conv
            anxsun += An[c.SUNLIT] * an_conv
            anxsha += An[c.SHADED] * an_conv
            parxsun += apar[c.SUNLIT] / c.UMOLPERJ / c.MJ_TO_J * 1800.0
            parxsha += apar[
                c.SHADED] / c.UMOLPERJ / c.MJ_TO_J * 1800.0  # MJ m-2 d-1
            laixsun += lai_leaf[c.SUNLIT]
            laixsha += lai_leaf[c.SHADED]

            Lobsx += laix
            Ex += np.sum(et) * et_conv

            Anc += df_cab.GPP[cnt] * an_conv
            ancsun += df_cab.GPP_sunlit[cnt] * an_conv
            ancsha += df_cab.GPP_shaded[cnt] * an_conv
            parcsun += df_cab.PAR_sunlit[cnt] / c.UMOLPERJ / c.MJ_TO_J * 1800.0
            parcsha += df_cab.PAR_shaded[
                cnt] / c.UMOLPERJ / c.MJ_TO_J * 1800.0  # MJ m-2 d-1
            laicsun += df_cab.LAI_sunlit[cnt]
            laicsha += df_cab.LAI_shaded[cnt]
            Lcabx += df_cab.LAI[cnt]
            #Ec += et * et_conv

            Aobsx += df_flx.GPP[cnt] * an_conv
            Eobsx += df_flx.Qle[cnt] / lambda_et * et_conv

            cnt += 1

        An_store[doy] = Anx
        An_sun_store[doy] = anxsun
        An_sha_store[doy] = anxsha
        par_sun_store[doy] = parxsun
        par_sha_store[doy] = parxsha
        lai_sun_store[doy] = laixsun / 48.
        lai_sha_store[doy] = laixsha / 48.
        E_store[doy] = Ex

        Anc_store[doy] = Anc
        Anc_sun_store[doy] = ancsun
        Anc_sha_store[doy] = ancsha
        parc_sun_store[doy] = parcsun
        parc_sha_store[doy] = parcsha
        laic_sun_store[doy] = laicsun / 48.
        laic_sha_store[doy] = laicsha / 48.
        Ec_store[doy] = Ec

        gpp_obs[doy] = Aobsx
        e_obs[doy] = Eobsx
        lai_obs[doy] = Lobsx / 48

    window = 3
    An_store = moving_average(An_store, n=window)
    An_sun_store = moving_average(An_sun_store, n=window)
    An_sha_store = moving_average(An_sha_store, n=window)
    par_sun_store = moving_average(par_sun_store, n=window)
    par_sha_store = moving_average(par_sha_store, n=window)
    lai_sun_store = moving_average(lai_sun_store, n=window)
    lai_sha_store = moving_average(lai_sha_store, n=window)
    E_store = moving_average(E_store, n=window)

    Anc_store = moving_average(Anc_store, n=window)
    Anc_sun_store = moving_average(Anc_sun_store, n=window)
    Anc_sha_store = moving_average(Anc_sha_store, n=window)
    parc_sun_store = moving_average(parc_sun_store, n=window)
    parc_sha_store = moving_average(parc_sha_store, n=window)
    laic_sun_store = moving_average(laic_sun_store, n=window)
    laic_sha_store = moving_average(laic_sha_store, n=window)
    Ec_store = moving_average(Ec_store, n=window)

    gpp_obs = moving_average(gpp_obs, n=window)
    e_obs = moving_average(e_obs, n=window)
    lai_obs = moving_average(lai_obs, n=window)

    fig = plt.figure(figsize=(14, 8))
    fig.subplots_adjust(hspace=0.1)
    fig.subplots_adjust(wspace=0.1)
    plt.rcParams['text.usetex'] = False
    plt.rcParams['font.family'] = "sans-serif"
    plt.rcParams['font.sans-serif'] = "Helvetica"
    plt.rcParams['axes.labelsize'] = 14
    plt.rcParams['font.size'] = 14
    plt.rcParams['legend.fontsize'] = 14
    plt.rcParams['xtick.labelsize'] = 14
    plt.rcParams['ytick.labelsize'] = 14

    ax1 = fig.add_subplot(321)
    ax2 = fig.add_subplot(322)
    ax3 = fig.add_subplot(323)
    ax4 = fig.add_subplot(324)
    ax5 = fig.add_subplot(325)
    ax6 = fig.add_subplot(326)

    #ax1.plot(An_store, label="2-leaf - Sun")
    #ax1.plot(Anc_store, label="2-leaf - CABLE")

    ax1.plot(An_sun_store, label="Me")
    ax1.plot(Anc_sun_store, label="CABLE")
    #

    ax1.set_title("Sun")
    ax2.set_title("Shade")

    ax1.set_ylabel("GPP (g C m$^{-2}$ d$^{-1}$)")
    ax1.legend(numpoints=1, loc="best")

    ax2.plot(An_sha_store)
    ax2.plot(Anc_sha_store)

    ax3.plot(par_sun_store)
    ax3.plot(parc_sun_store)
    ax3.set_ylabel("PAR (MJ m$^{-2}$ d$^{-1}$)")

    ax4.plot(par_sha_store)
    ax4.plot(parc_sha_store)

    ax5.plot(lai_sun_store)
    ax5.plot(laic_sun_store)
    ax5.set_ylabel("LAI (m$^{2}$ m$^{-2}$)")

    ax6.plot(lai_sha_store)
    ax6.plot(laic_sha_store)

    ax1.locator_params(nbins=6, axis="y")
    ax2.locator_params(nbins=6, axis="y")
    ax3.locator_params(nbins=6, axis="y")
    ax4.locator_params(nbins=6, axis="y")
    ax5.locator_params(nbins=6, axis="y")
    ax6.locator_params(nbins=6, axis="y")

    plt.setp(ax1.get_xticklabels(), visible=False)
    plt.setp(ax2.get_xticklabels(), visible=False)
    plt.setp(ax3.get_xticklabels(), visible=False)
    plt.setp(ax4.get_xticklabels(), visible=False)

    plt.show()
def main(met_fn, flx_fn, cab_fn, year_to_run, site):

    fpath = "/Users/mdekauwe/Downloads/"
    fname = "%s_met_and_plant_data_drought_2003.csv" % (site)
    fn = os.path.join(fpath, fname)
    df = pd.read_csv(fn, skiprows=range(1, 2))

    (df_flx) = read_obs_file(flx_fn)
    df_flx = df_flx[df_flx.index.year == year_to_run]

    (df_met, lat, lon) = read_met_file(met_fn)
    df_met = df_met[df_met.index.year == year_to_run]

    par = df_met.PAR
    tair = df_met.Tair
    vpd = df_met.vpd
    wind = df_met.Wind
    pressure = df_met.PSurf
    Ca = 400.0
    #LAI = 3.0
    LAI = df.LAI

    #
    ## Parameters
    #
    p.g0 = 1E-09
    p.g1 = df.g1[0]  #4.12
    p.D0 = 1.5  # kpa
    p.Vcmax25 = df.Vmax25[0]
    p.Jmax25 = p.Vcmax25 * 1.67

    p.Rd25 = None  # Vcmax * 0.015
    p.Eaj = 30000.0
    p.Eav = 60000.0
    p.deltaSj = 650.0
    p.deltaSv = 650.0
    p.Hdv = 200000.0
    p.Hdj = 200000.0

    ##
    ### Run 2-leaf
    ##
    T = TwoLeaf(p, gs_model="medlyn")
    C = TwoLeafCable(p, gs_model="medlyn")

    ndays = int(len(df_met) / 48)

    Anc_store = np.zeros(ndays)
    Ec_store = np.zeros(ndays)

    An_store = np.zeros(ndays)
    An_sun_store = np.zeros(ndays)
    An_sha_store = np.zeros(ndays)
    par_sun_store = np.zeros(ndays)
    par_sha_store = np.zeros(ndays)
    lai_sun_store = np.zeros(ndays)
    lai_sha_store = np.zeros(ndays)
    E_store = np.zeros(ndays)
    Tcan_store = np.zeros(ndays)

    Anc_store = np.zeros(ndays)
    Anc_sun_store = np.zeros(ndays)
    Anc_sha_store = np.zeros(ndays)
    parc_sun_store = np.zeros(ndays)
    parc_sha_store = np.zeros(ndays)
    laic_sun_store = np.zeros(ndays)
    laic_sha_store = np.zeros(ndays)
    Ec_store = np.zeros(ndays)
    Tcanc_store = np.zeros(ndays)
    Sunc_store = np.zeros(ndays)
    Shac_store = np.zeros(ndays)
    gpp_obs = np.zeros(ndays)
    e_obs = np.zeros(ndays)
    lai_obs = np.zeros(ndays)

    et_conv = c.MOL_WATER_2_G_WATER * c.G_TO_KG * 1800.
    an_conv = c.UMOL_TO_MOL * c.MOL_C_TO_GRAMS_C * 1800.

    cnt = 0
    for doy in range(ndays - 1):

        Anx = 0.0
        Ex = 0.0
        anxsun = 0.0
        anxsha = 0.0
        parxsun = 0.0
        parxsha = 0.0
        laixsun = 0.0
        laixsha = 0.0
        Tcanx = 0.0

        Anc = 0.0
        Ec = 0.0
        Acabx = 0.0
        Ecabx = 0.0
        Lcabx = 0.0
        ancsun = 0.0
        ancsha = 0.0
        parcsun = 0.0
        parcsha = 0.0
        laicsun = 0.0
        laicsha = 0.0
        Tcancx = 0.0

        Aobsx = 0.0
        Eobsx = 0.0
        Lobsx = 0.0

        Sun_fracC = 0.0
        Sha_fracC = 0.0

        if doy == 0:
            tsoil = np.mean(tair[cnt:cnt + 48])
        else:
            tsoil = np.mean(tair[cnt - 48:cnt])

        hr_cnt = 0
        for i in range(48):

            if doy < 364:
                laix = LAI[cnt]
            else:
                #print(cnt, len(LAI), LAI[17518])
                laix = LAI[17518]

            hod = float(i) / 2. + 1800. / 3600. / 2.

            (An, et, Tcan, apar,
             lai_leaf) = T.main(tair[cnt], par[cnt], vpd[cnt], wind[cnt],
                                pressure[cnt], Ca, doy + 1, hod, laix, tsoil)

            lambda_et = (c.H2OLV0 - 2.365E3 * tair[cnt]) * c.H2OMW

            Anx += np.sum(An) * an_conv
            anxsun += An[c.SUNLIT] * an_conv
            anxsha += An[c.SHADED] * an_conv
            parxsun += apar[c.SUNLIT] / c.UMOLPERJ / c.MJ_TO_J * 1800.0
            parxsha += apar[
                c.SHADED] / c.UMOLPERJ / c.MJ_TO_J * 1800.0  # MJ m-2 d-1
            laixsun += lai_leaf[c.SUNLIT]
            laixsha += lai_leaf[c.SHADED]
            sun_frac = lai_leaf[c.SUNLIT] / np.sum(lai_leaf)
            sha_frac = lai_leaf[c.SHADED] / np.sum(lai_leaf)

            if par[cnt] > 0.0:
                Tcanx += (Tcan[c.SUNLIT] * sun_frac) + (Tcan[c.SHADED] *
                                                        sha_frac)

            Lobsx += laix
            Ex += np.sum(et) * et_conv

            (An, et, Tcan, apar,
             lai_leaf) = C.main(tair[cnt], par[cnt], vpd[cnt], wind[cnt],
                                pressure[cnt], Ca, doy + 1, hod, laix, tsoil)

            Anc += np.sum(An) * an_conv
            ancsun += An[c.SUNLIT] * an_conv
            ancsha += An[c.SHADED] * an_conv
            parcsun += apar[c.SUNLIT] / c.UMOLPERJ / c.MJ_TO_J * 1800.0
            parcsha += apar[
                c.SHADED] / c.UMOLPERJ / c.MJ_TO_J * 1800.0  # MJ m-2 d-1
            laicsun += lai_leaf[c.SUNLIT]
            laicsha += lai_leaf[c.SHADED]

            if par[cnt] > 0.0:
                Tcancx += Tcan
            Ec += et * et_conv
            Sun_fracC += sun_frac
            Sha_fracC += sha_frac

            Aobsx += df_flx.GPP[cnt] * an_conv
            Eobsx += df_flx.Qle[cnt] / lambda_et * et_conv

            cnt += 1
            if par[cnt] > 0.0:
                hr_cnt += 1

        An_store[doy] = Anx
        An_sun_store[doy] = anxsun
        An_sha_store[doy] = anxsha
        par_sun_store[doy] = parxsun
        par_sha_store[doy] = parxsha
        lai_sun_store[doy] = laixsun / 48.
        lai_sha_store[doy] = laixsha / 48.
        E_store[doy] = Ex

        Tcan_store[doy] = (Tcanx / float(hr_cnt))

        Anc_store[doy] = Anc
        Anc_sun_store[doy] = ancsun
        Anc_sha_store[doy] = ancsha
        parc_sun_store[doy] = parcsun
        parc_sha_store[doy] = parcsha
        laic_sun_store[doy] = laicsun / 48.
        laic_sha_store[doy] = laicsha / 48.
        Ec_store[doy] = Ec
        Tcanc_store[doy] = (Tcancx / float(hr_cnt))
        Sunc_store[doy] = Sun_fracC / 48.
        Shac_store[doy] = Sha_fracC / 48.

        gpp_obs[doy] = Aobsx
        e_obs[doy] = Eobsx
        lai_obs[doy] = Lobsx / 48

    window = 3
    An_store = moving_average(An_store, n=window)
    An_sun_store = moving_average(An_sun_store, n=window)
    An_sha_store = moving_average(An_sha_store, n=window)
    par_sun_store = moving_average(par_sun_store, n=window)
    par_sha_store = moving_average(par_sha_store, n=window)
    lai_sun_store = moving_average(lai_sun_store, n=window)
    lai_sha_store = moving_average(lai_sha_store, n=window)
    E_store = moving_average(E_store, n=window)
    Tcan_store = moving_average(Tcan_store, n=window)

    Anc_store = moving_average(Anc_store, n=window)
    Anc_sun_store = moving_average(Anc_sun_store, n=window)
    Anc_sha_store = moving_average(Anc_sha_store, n=window)
    parc_sun_store = moving_average(parc_sun_store, n=window)
    parc_sha_store = moving_average(parc_sha_store, n=window)
    laic_sun_store = moving_average(laic_sun_store, n=window)
    laic_sha_store = moving_average(laic_sha_store, n=window)
    Ec_store = moving_average(Ec_store, n=window)
    Sunc_store = moving_average(Sunc_store, n=window)
    Shac_store = moving_average(Shac_store, n=window)
    Tcanc_store = moving_average(Tcanc_store, n=window)

    #gpp_obs = moving_average(gpp_obs, n=window)
    #e_obs = moving_average(e_obs, n=window)
    #lai_obs = moving_average(lai_obs, n=window)

    fig = plt.figure(figsize=(9, 10))
    fig.subplots_adjust(hspace=0.3)
    fig.subplots_adjust(wspace=0.3)
    plt.rcParams['text.usetex'] = False
    plt.rcParams['font.family'] = "sans-serif"
    plt.rcParams['font.sans-serif'] = "Helvetica"
    plt.rcParams['axes.labelsize'] = 12
    plt.rcParams['font.size'] = 12
    plt.rcParams['legend.fontsize'] = 12
    plt.rcParams['xtick.labelsize'] = 12
    plt.rcParams['ytick.labelsize'] = 12

    ax1 = fig.add_subplot(411)
    ax2 = fig.add_subplot(412)
    ax3 = fig.add_subplot(413)
    ax4 = fig.add_subplot(414)

    ax1.plot(An_store, label="2-leaf - Me")
    ax1.plot(Anc_store, label="2-leaf - CABLE")
    ax1.set_ylabel("GPP (g C m$^{-2}$ d$^{-1}$)")
    ax1.legend(numpoints=1, loc="best")

    ax2.plot(E_store, label="2-leaf - Me")
    ax2.plot(Ec_store, label="2-leaf - CABLE")
    ax2.set_ylabel("E (mm d$^{-1}$)")

    ax3.plot(Tcan_store, label="2-leaf - Me")
    ax3.plot(Tcanc_store, label="2-leaf - CABLE")
    ax3.set_ylabel("T$_{canopy}$ (degrees C)")

    print(np.mean(np.abs(Tcan_store - Tcanc_store)))

    ax4.plot(Sunc_store, label="Sun")
    ax4.plot(Shac_store, label="Shade")
    ax4.set_ylabel("Frac (-)")
    ax4.legend(numpoints=1, loc="best")

    ax1.locator_params(nbins=6, axis="y")
    ax2.locator_params(nbins=6, axis="y")
    ax3.locator_params(nbins=6, axis="y")
    ax4.locator_params(nbins=6, axis="y")

    #plt.setp(ax1.get_xticklabels(), visible=False)
    #plt.setp(ax2.get_xticklabels(), visible=False)
    #plt.setp(ax3.get_xticklabels(), visible=False)
    #plt.setp(ax4.get_xticklabels(), visible=False)

    plt.show()
示例#5
0
def main():

    doy = 180.
    #
    ## Met data ...
    #
    (par, tair, vpd) = get_met_data(p.lat, p.lon, doy)

    # more realistic VPD
    rh = 40.
    esat = calc_esat(tair)
    ea = rh / 100. * esat
    vpd = (esat - ea) * c.PA_2_KPA
    vpd = np.where(vpd < 0.05, 0.05, vpd)

    #
    ##  Fixed met stuff
    #
    wind = 2.5
    pressure = 101325.0
    Ca = 400.0
    LAI = p.LAI

    ##
    ### Run Big-leaf
    ##
    B = BigLeaf(p, gs_model="medlyn")

    An_bl = np.zeros(48)
    gsw_bl = np.zeros(48)
    et_bl = np.zeros(48)
    tcan_bl = np.zeros(48)

    for i in range(len(par)):

        hod = float(i) / 2. + 1800. / 3600. / 2.

        (An, gsw, et, Tcan) = B.main(p, tair[i], par[i], vpd[i], wind,
                                     pressure, Ca, doy, hod, LAI)

        An_bl[i] = An
        et_bl[i] = et
        tcan_bl[i] = Tcan

    ##
    ### Run 2-leaf
    ##
    T = TwoLeaf(p, gs_model="medlyn")

    An_tl = np.zeros(48)
    et_tl = np.zeros(48)
    tcan_tl = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        (An, et, Tcan, apar, lai_leaf) = T.main(p, tair[i], par[i], vpd[i],
                                                wind, pressure, Ca, doy,
                                                hod / 2., LAI)

        sun_frac = lai_leaf[c.SUNLIT] / np.sum(lai_leaf)
        sha_frac = lai_leaf[c.SHADED] / np.sum(lai_leaf)
        An_tl[i] = np.sum(An)
        et_tl[i] = np.sum(et)
        tcan_tl[i] = (Tcan[c.SUNLIT] * sun_frac) + (Tcan[c.SHADED] * sha_frac)

        hod += 1

    fig = plt.figure(figsize=(16, 4))
    fig.subplots_adjust(hspace=0.1)
    fig.subplots_adjust(wspace=0.2)
    plt.rcParams['text.usetex'] = False
    plt.rcParams['font.family'] = "sans-serif"
    plt.rcParams['font.sans-serif'] = "Helvetica"
    plt.rcParams['axes.labelsize'] = 14
    plt.rcParams['font.size'] = 14
    plt.rcParams['legend.fontsize'] = 10
    plt.rcParams['xtick.labelsize'] = 14
    plt.rcParams['ytick.labelsize'] = 14

    almost_black = '#262626'
    # change the tick colors also to the almost black
    plt.rcParams['ytick.color'] = almost_black
    plt.rcParams['xtick.color'] = almost_black

    # change the text colors also to the almost black
    plt.rcParams['text.color'] = almost_black

    # Change the default axis colors from black to a slightly lighter black,
    # and a little thinner (0.5 instead of 1)
    plt.rcParams['axes.edgecolor'] = almost_black
    plt.rcParams['axes.labelcolor'] = almost_black

    ax1 = fig.add_subplot(131)
    ax2 = fig.add_subplot(132)
    ax3 = fig.add_subplot(133)

    ax1.plot(np.arange(48) / 2., An_bl, label="Big leaf")
    ax1.plot(np.arange(48) / 2., An_tl, label="Two leaf")
    ax1.legend(numpoints=1, loc="best")
    ax1.set_ylabel("$A_{\mathrm{n}}$ ($\mathrm{\mu}$mol m$^{-2}$ s$^{-1}$)")

    ax2.plot(np.arange(48) / 2., et_bl * c.MOL_TO_MMOL, label="Big leaf")
    ax2.plot(np.arange(48) / 2., et_tl * c.MOL_TO_MMOL, label="Two leaf")
    ax2.set_ylabel("E (mmol m$^{-2}$ s$^{-1}$)")
    ax2.set_xlabel("Hour of day")

    ax3.plot(np.arange(48) / 2., tcan_bl, label="Tcanopy$_{1leaf}$")
    ax3.plot(np.arange(48) / 2., tcan_tl, label="Tcanopy$_{2leaf}$")
    ax3.plot(np.arange(48) / 2., tair, label="Tair")
    ax3.set_ylabel("Temperature (deg C)")
    ax3.legend(numpoints=1, loc="best")

    ax1.locator_params(nbins=6, axis="y")
    ax2.locator_params(nbins=6, axis="y")

    plt.show()
    fig.savefig("/Users/%s/Desktop/A_E_Tcan.pdf" % (os.getlogin()),
                bbox_inches='tight',
                pad_inches=0.1)
示例#6
0
    fname = "met_constant_forcing_eCO2.csv"
    fn = os.path.join(fpath, fname)
    df = pd.read_csv(fn)
    #df = df.drop(df.columns[0], axis=1)
    df.index = pd.to_datetime(df.DateTime)

    # Add an LAI field, i.e. converting from per tree to m2 m-2
    df = df.assign(lai=lambda x: x.leafArea / p.footprint)

    ##  Fixed met stuff
    #
    #wind = 2.5
    #pressure = 101325.0
    #Ca = 400.0

    T = TwoLeaf(p, gs_model="medlyn")

    chambers = np.unique(df.chamber)
    for chamber in chambers:
        print(chamber)
        dfx = df[(df.T_treatment == "ambient")
                 & (df.Water_treatment == "control") &
                 (df.chamber == chamber)].copy()

        (out) = run_treatment(T, dfx, p, vary_vj=False)

        if not os.path.exists(output_dir):
            os.mkdir(output_dir)

        ofname = os.path.join(output_dir, "wtc_two_leaf_%s.csv" % (chamber))
        if os.path.isfile(ofname):
示例#7
0
def main():

    lat = -23.575001
    lon = 152.524994
    doy = 180.0
    #
    ## Met data ...
    #
    (par, tair, vpd) = get_met_data(lat, lon, doy)
    wind = 2.5
    pressure = 101325.0
    Ca = 400.0

    # more realistic VPD
    rh = 40.
    esat = calc_esat(tair)
    ea = rh / 100. * esat
    vpd = (esat - ea) * c.PA_2_KPA
    vpd = np.where(vpd < 0.05, 0.05, vpd)

    #plt.plot(vpd)
    #plt.show()
    #sys.exit()

    ## Parameters
    #
    g0 = 0.001
    g1 = 1.5635  # Puechabon
    D0 = 1.5  # kpa
    Vcmax25 = 60.0
    Jmax25 = Vcmax25 * 1.67
    Rd25 = 2.0
    Eaj = 30000.0
    Eav = 60000.0
    deltaSj = 650.0
    deltaSv = 650.0
    Hdv = 200000.0
    Hdj = 200000.0
    Q10 = 2.0
    gamma = 0.0
    leaf_width = 0.02
    LAI = 3.

    # Cambell & Norman, 11.5, pg 178
    # The solar absorptivities of leaves (-0.5) from Table 11.4 (Gates, 1980)
    # with canopies (~0.8) from Table 11.2 reveals a surprising difference.
    # The higher absorptivityof canopies arises because of multiple reflections
    # among leaves in a canopy and depends on the architecture of the canopy.
    SW_abs = 0.8  # use canopy absorptance of solar radiation

    ##
    ### Run Big-leaf
    ##

    B = BigLeaf(g0,
                g1,
                D0,
                gamma,
                Vcmax25,
                Jmax25,
                Rd25,
                Eaj,
                Eav,
                deltaSj,
                deltaSv,
                Hdv,
                Hdj,
                Q10,
                leaf_width,
                SW_abs,
                gs_model="medlyn")

    An_bl = np.zeros(48)
    gsw_bl = np.zeros(48)
    et_bl = np.zeros(48)
    tcan_bl = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        (An_bl[i], gsw_bl[i], et_bl[i],
         tcan_bl[i]) = B.main(tair[i], par[i], vpd[i], wind, pressure, Ca, doy,
                              hod, lat, lon, LAI)

        hod += 1

    ##
    ### Run 2-leaf
    ##

    T = TwoLeaf(g0,
                g1,
                D0,
                gamma,
                Vcmax25,
                Jmax25,
                Rd25,
                Eaj,
                Eav,
                deltaSj,
                deltaSv,
                Hdv,
                Hdj,
                Q10,
                leaf_width,
                SW_abs,
                gs_model="medlyn")

    An_tl = np.zeros(48)
    gsw_tl = np.zeros(48)
    et_tl = np.zeros(48)
    tcan_tl = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        (An_tl[i], gsw_tl[i], et_tl[i],
         tcan_tl[i]) = T.main(tair[i], par[i], vpd[i], wind, pressure, Ca, doy,
                              hod, lat, lon, LAI)

        hod += 1

    ##
    ### Run 2-leaf opt
    ##

    T = TwoLeafOpt(g0,
                   g1,
                   D0,
                   gamma,
                   Vcmax25,
                   Jmax25,
                   Rd25,
                   Eaj,
                   Eav,
                   deltaSj,
                   deltaSv,
                   Hdv,
                   Hdj,
                   Q10,
                   leaf_width,
                   SW_abs,
                   gs_model="medlyn")

    An_tlo = np.zeros(48)
    gsw_tlo = np.zeros(48)
    et_tlo = np.zeros(48)
    tcan_tlo = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        (An_tlo[i], gsw_tlo[i], et_tlo[i],
         tcan_tlo[i]) = T.main(tair[i], par[i], vpd[i], wind, pressure, Ca,
                               doy, hod, lat, lon, LAI)

        hod += 1

    ##
    ### Run 2-leaf Manon
    ##

    Ao = np.zeros(48)
    gso = np.zeros(48)
    Eo = np.zeros(48)

    Aob = np.zeros(48)
    gsob = np.zeros(48)
    Eob = np.zeros(48)

    hod = 0
    for i in range(len(par)):

        cos_zenith = calculate_solar_geometry(doy, hod, lat, lon)
        zenith_angle = np.rad2deg(np.arccos(cos_zenith))
        elevation = 90.0 - zenith_angle
        if elevation > 0.0 and par[i] > 50.0:

            p = declared_params()

            p.PPFD = par[i]
            p.sw_rad_day = par[i] * c.PAR_2_SW
            p.LAI = LAI
            p.coszen = cos_zenith
            p.VPD = vpd[i]
            p.precip = 0
            p.Tair = tair[i]
            p.Vmax25 = Vcmax25
            p.g1 = g1
            p.CO2 = Ca / 1000 * 101.325
            p.JV = 1.67
            p.Rlref = Rd25
            p.Ej = Eaj
            p.Ev = Eav
            p.deltaSv = deltaSv
            p.deltaSj = deltaSj
            p.max_leaf_width = leaf_width
            p.gamstar25 = 4.33  # 42.75 / 101.25 umol m-2 s-1
            p.Kc25 = 41.0264925  # 404.9 umol m-2 s-1
            p.Ko25 = 28208.88  # 278.4 mmol mol-1
            p.O2 = 21.27825  # 210 *1000. / 101.25 210 mmol mol-1
            p.alpha = 0.3
            p.albedo = 0.2
            p.Egamstar = 37830.0
            p.Ec = 79430.0
            p.Eo = 36380.0
            p.P50 = 2.02  # Puechabon
            p.P88 = 4.17
            p.kmax = 0.862457122856143

            _, _, fscale2can = absorbed_radiation_2_leaves(p)
            p = p.append(pd.Series([np.nansum(fscale2can)], index=['fscale']))

            Eo[i], gso[i], Ao[i], __, __ = solve_std(p, p.fc, photo='Farquhar')

            #"""
            try:
                fstom_opt_psi, Eo[i], gso[i], Ao[i], _, _ = profit_psi(
                    p, photo='Farquhar', res='med', case=2)
                p = p.append(
                    pd.Series([fstom_opt_psi], index=['fstom_opt_psi']))

            except (ValueError, AttributeError):
                (Eo[i], gso[i], Ao[i]) = (0., 0., 0.)

            #"""

        hod += 1

    fig = plt.figure(figsize=(16, 4))
    fig.subplots_adjust(hspace=0.1)
    fig.subplots_adjust(wspace=0.2)
    plt.rcParams['text.usetex'] = False
    plt.rcParams['font.family'] = "sans-serif"
    plt.rcParams['font.sans-serif'] = "Helvetica"
    plt.rcParams['axes.labelsize'] = 14
    plt.rcParams['font.size'] = 14
    plt.rcParams['legend.fontsize'] = 10
    plt.rcParams['xtick.labelsize'] = 14
    plt.rcParams['ytick.labelsize'] = 14

    almost_black = '#262626'
    # change the tick colors also to the almost black
    plt.rcParams['ytick.color'] = almost_black
    plt.rcParams['xtick.color'] = almost_black

    # change the text colors also to the almost black
    plt.rcParams['text.color'] = almost_black

    # Change the default axis colors from black to a slightly lighter black,
    # and a little thinner (0.5 instead of 1)
    plt.rcParams['axes.edgecolor'] = almost_black
    plt.rcParams['axes.labelcolor'] = almost_black

    ax1 = fig.add_subplot(131)
    ax2 = fig.add_subplot(132)
    ax3 = fig.add_subplot(133)

    #ax1.plot(np.arange(48)/2., An_bl, label="Big leaf")
    ax1.plot(np.arange(48) / 2., An_tl, label="Two leaf")
    ax1.plot(np.arange(48) / 2., An_tlo, label="Two leaf Opt")
    ax1.plot(np.arange(48) / 2., Ao, label="Two leaf Manon")
    ax1.legend(numpoints=1, loc="best")
    ax1.set_ylabel("$A_{\mathrm{n}}$ ($\mathrm{\mu}$mol m$^{-2}$ s$^{-1}$)")

    #ax2.plot(np.arange(48)/2., et_bl * c.MOL_TO_MMOL, label="Big leaf")
    ax2.plot(np.arange(48) / 2., et_tl * c.MOL_TO_MMOL, label="Two leaf")
    ax2.plot(np.arange(48) / 2., et_tlo * c.MOL_TO_MMOL, label="Two leaf opt")
    ax2.plot(np.arange(48) / 2., Eo, label="Two leaf Manon")
    ax2.set_ylabel("E (mmol m$^{-2}$ s$^{-1}$)")
    ax2.set_xlabel("Hour of day")

    #ax3.plot(np.arange(48)/2., tcan_bl, label="Tcanopy$_{1leaf}$")
    ax3.plot(np.arange(48) / 2., tcan_tl, label="Tcanopy$_{2leaf}$")
    ax3.plot(np.arange(48) / 2., tair, label="Tair")
    ax3.set_ylabel("Temperature (deg C)")
    ax3.legend(numpoints=1, loc="best")

    ax1.locator_params(nbins=6, axis="y")
    ax2.locator_params(nbins=6, axis="y")

    plt.show()
    fig.savefig("/Users/%s/Desktop/A_E_Tcan.pdf" % (os.getlogin()),
                bbox_inches='tight',
                pad_inches=0.1)
# among leaves in a canopy and depends on the architecture of the canopy.
SW_abs = 0.8  # use canopy absorptance of solar radiation

##
### Run 2-leaf
##

T = TwoLeaf(g0,
            g1,
            D0,
            gamma,
            Vcmax25,
            Jmax25,
            Rd25,
            Eaj,
            Eav,
            deltaSj,
            deltaSv,
            Hdv,
            Hdj,
            Q10,
            leaf_width,
            SW_abs,
            gs_model="medlyn")

B = BigLeaf(g0,
            g1,
            D0,
            gamma,
            Vcmax25,
            Jmax25,
示例#9
0
def main(p, met, lai):

    days = met.doy
    hod = met.hod
    ndays = int(len(days) / 24.)
    nhours = len(met)
    hours_in_day = int(nhours / float(ndays))

    if hours_in_day == 24:
        met_timestep = 60.
    else:
        met_timestep = 30.
    timestep_sec = 60. * met_timestep

    T = TwoLeaf(p, gs_model="medlyn")
    #T = TwoLeaf(p, gs_model="leuning")

    out, store = setup_output_dataframe(ndays, hours_in_day, p)

    i = 0
    hour_cnt = 1  # hour count
    day_cnt = 0
    while i < len(met):
        year = met.index.year[i]
        doy = met.doy[i]
        hod = met.hod[i] + 1

        if day_cnt - 1 == -1:
            beta = calc_beta(p.theta_sat, p.theta_fc, p.theta_wp)
        else:
            beta = calc_beta(out.sw[day_cnt - 1], p.theta_fc, p.theta_wp)
            #beta = calc_beta(store.sw[hour_cnt-1])

        (An, et, Tcan, apar, lai_leaf) = T.main(met.tair[i],
                                                met.par[i],
                                                met.vpd[i],
                                                met.wind[i],
                                                met.press[i],
                                                met.ca[i],
                                                doy,
                                                hod,
                                                lai[i],
                                                beta=beta)

        if hour_cnt == hours_in_day:  # End of the day

            store_hourly(hour_cnt - 1, An, et, lai_leaf, met.precip[i], store,
                         hours_in_day)

            store_daily(year, doy, day_cnt, store, beta, out, p)

            hour_cnt = 1
            day_cnt += 1
        else:
            store_hourly(hour_cnt - 1, An, et, lai_leaf, met.precip[i], store,
                         hours_in_day)

            hour_cnt += 1

        i += 1

    return (out)