ws.Copy(ws.iy_main_agenda, ws.iy_main_agenda__Emission) ws.Copy(ws.propmat_clearsky_agenda, ws.propmat_clearsky_agenda__OnTheFly) # General Settings # For the wind retrievals, the forward model calculations are performed on a 3D atmosphere grid. # Radiation is assumed to be unpolarized. ws.atmosphere_dim = 3 ws.stokes_dim = 1 ws.iy_unit = "RJBT" # Absorption # We only consider absorption from ozone in this example. The lineshape data is available from # the ARTS testdata available in `controlfiles/testdata`. ws.abs_speciesSet(["O3", "H2O-PWR98"]) ws.abs_lineshapeDefine("Voigt_Kuntz6", "VVH", 750e9) ws.ReadXML(ws.abs_lines, "testdata/ozone_line.xml") ws.abs_lines_per_speciesCreateFromLines() # Atmosphere (A Priori) # We create a pressure grid using the `PFromZSimple` function to create a grid of approximate pressure levels # corresponding to altitudes in the range # z = 0.0, 2000.0, ..., 94000.0 z_toa = 95e3 z_surf = 1e3 z_grid = np.arange(z_surf - 1e3, z_toa, 2e3) ws.PFromZSimple(ws.p_grid, z_grid) ws.lat_grid = np.arange(-40.0, 1.0, 40.0) ws.lon_grid = np.arange(40.0, 61.0, 20.0) ws.z_surface = z_surf * np.ones( (np.asarray(ws.lat_grid).size, np.asarray(ws.lon_grid).size))
def main(): """Main program.""" args = parse_args() outdir = args.outdir recalc_lookups = args.recalc os.makedirs(outdir, exist_ok=True) plt.rc('text', usetex=not args.notex) matplotlib.rcParams['text.latex.preamble'] = [ r'\usepackage{sansmath}', r'\sansmath' ] plt.style.use(typhon.plots.styles('typhon')) ws = Workspace(verbosity=2) ws.verbosityInit() print('Performing ARTS calculation') arts_common_setup(ws, args.nfreq, args.lineshape) y_all = {} for planet, item in PLANET_SETUP.items(): arts_calc_atmfields(ws, **item) lookup_file = os.path.join(outdir, planet + '_lookup.xml') if os.path.isfile(lookup_file) and not recalc_lookups: ws.ReadXML(ws.abs_lookup, filename=lookup_file) ws.abs_lookupAdapt() else: ws.ReadXML(ws.abs_cia_data, filename='spectroscopy/cia/hitran2011/' 'hitran_cia2012_adapted.xml.gz') ws.abs_linesReadFromSplitArtscat(basename='spectroscopy/Perrin/', fmin=0., fmax=1e12) ws.abs_lines_per_speciesCreateFromLines() arts_calc_lookup_table(ws) ws.WriteXML('binary', ws.abs_lookup, lookup_file) ws.propmat_clearsky_agenda_checkedCalc() ws.yCalc() ws.WriteXML("ascii", ws.y, filename=os.path.join(outdir, planet + '.y.xml')) y_all[planet] = { 'f_grid': ws.f_grid.to_typhon(), 'y': ws.y.to_typhon(), } print('Plotting') fig, ax = plt.subplots() plot_spectra(y_all) ax.set_xlim(F_MIN, F_MAX) annotate_lines(y_all) filename = os.path.join(outdir, 'planet_spectra.pdf') print(f'Saving {filename}') fig.savefig(filename, dpi=300) if args.show: plt.show()
ws.Copy(ws.iy_surface_agenda, ws.iy_surface_agenda__UseSurfaceRtprop) ws.Copy(ws.iy_main_agenda, ws.iy_main_agenda__Emission) ws.Copy(ws.propmat_clearsky_agenda, ws.propmat_clearsky_agenda__OnTheFly) # General Settings # For the wind retrievals, the forward model calculations are performed on a 3D atmosphere grid. # Radiation is assumed to be unpolarized. ws.atmosphere_dim = 3 ws.stokes_dim = 1 ws.iy_unit = "RJBT" # Absorption # We only consider absorption from ozone in this example. ws.abs_speciesSet(["O3", "H2O-PWR98"]) ws.abs_lineshapeDefine("Voigt_Kuntz6", "VVH", 750e9) ws.ReadXML(ws.abs_lines, os.path.join(data_dir, 'Perrin_O3_142.xml')) ws.abs_lines_per_speciesCreateFromLines() # Atmosphere (A Priori) # We create a pressure grid using the `PFromZSimple` function to create a grid of approximate pressure levels # corresponding to altitudes in the range # z = 0.0, 2000.0, ..., 94000.0 z_toa = 100e3 z_surf = 1e3 z_grid = np.arange(z_surf - 1e3, z_toa, 2e3) ws.PFromZSimple(ws.p_grid, z_grid) ws.lat_grid = np.array([-30, -22.5, -22, -21.5, -14]) ws.lon_grid = np.array([40, 54, 55, 56, 70]) ws.z_surface = z_surf * np.ones( (np.asarray(ws.lat_grid).size, np.asarray(ws.lon_grid).size))
def test_wind_3d_demo(): ws = Workspace() ws.execute_controlfile("general/general.arts") ws.verbositySet(0, 0, 0, 0) ws.execute_controlfile("general/agendas.arts") ws.execute_controlfile("general/continua.arts") ws.execute_controlfile("general/planet_earth.arts") ws.Copy(ws.abs_xsec_agenda, ws.abs_xsec_agenda__noCIA) ws.Copy(ws.ppath_agenda, ws.ppath_agenda__FollowSensorLosPath) ws.Copy(ws.ppath_step_agenda, ws.ppath_step_agenda__GeometricPath) ws.Copy(ws.iy_space_agenda, ws.iy_space_agenda__CosmicBackground) ws.Copy(ws.iy_surface_agenda, ws.iy_surface_agenda__UseSurfaceRtprop) ws.Copy(ws.iy_main_agenda, ws.iy_main_agenda__Emission) ws.Copy(ws.propmat_clearsky_agenda, ws.propmat_clearsky_agenda__OnTheFly) # General Settings # For the wind retrievals, the forward model calculations are performed on a 3D atmosphere grid. # Radiation is assumed to be unpolarized. ws.atmosphere_dim = 3 ws.stokes_dim = 1 ws.iy_unit = "RJBT" # Absorption # We only consider absorption from ozone in this example. The lineshape data is available from # the ARTS testdata available in `controlfiles/testdata`. ws.abs_speciesSet(["O3", "H2O-PWR98"]) ws.abs_lineshapeDefine("Voigt_Kuntz6", "VVH", 750e9) ws.ReadXML(ws.abs_lines, "testdata/ozone_line.xml") ws.abs_lines_per_speciesCreateFromLines() # Atmosphere (A Priori) # We create a pressure grid using the `PFromZSimple` function to create a grid of approximate pressure levels # corresponding to altitudes in the range # z = 0.0, 2000.0, ..., 94000.0 z_toa = 95e3 z_surf = 1e3 z_grid = np.arange(z_surf - 1e3, z_toa, 2e3) ws.PFromZSimple(ws.p_grid, z_grid) ws.lat_grid = np.arange(-40.0, 1.0, 40.0) ws.lon_grid = np.arange(40.0, 61.0, 20.0) ws.z_surface = z_surf * np.ones( (np.asarray(ws.lat_grid).size, np.asarray(ws.lon_grid).size)) # For the a priori state we read data from the Fascod climatology that is part of the ARTS xml data. ws.AtmRawRead(basename="planets/Earth/Fascod/tropical/tropical") ws.AtmFieldsCalcExpand1D() # Adding Wind # Wind in ARTS is represented by the `wind_u_field` and `wind_v_field` WSVs, which hold the horizontal components # of the wind at each grid point of the atmosphere model. For this example, a constant wind is assumed. u_wind = 60.0 v_wind = -40.0 ws.wind_u_field = u_wind * np.ones( (ws.p_grid.value.size, ws.lat_grid.value.size, ws.lon_grid.value.size)) ws.wind_v_field = v_wind * np.ones( (ws.p_grid.value.size, ws.lat_grid.value.size, ws.lon_grid.value.size)) ws.wind_w_field = np.zeros((0, 0, 0)) # Frequency Grid and Sensor # The frequency grid for the simulation consists of 119 grid points between 110.516 and 111.156 GHz. # The frequencies are given by a degree-10 polynomial that has been obtained from a fit to the data from # the original `qpack` example. This is obscure but also kind of cool. coeffs = np.array([ 5.06312189e-08, -2.68851772e-05, 6.20655463e-03, -8.16344090e-01, 6.75337174e+01, -3.66786505e+03, 1.32578167e+05, -3.14514304e+06, 4.57491354e+07, 1.10516484e+11 ]) ws.f_grid = np.poly1d(coeffs)(np.arange(119)) # For the sensor we assume a channel width and channel spacing of 50 kHz. We also call AntennaOff to compute # only one pencilbeam along the line of sight of the sensor. df = 50e3 f_backend = np.arange(ws.f_grid.value.min() + 2.0 * df, ws.f_grid.value.max() - 2.0 * df, df) ws.backend_channel_responseGaussian(np.array([df]), np.array([2.0])) ws.AntennaOff() ws.sensor_norm = 1 ws.sensor_time = np.zeros(1) ws.sensor_responseInit() # Sensor Position and Viewing Geometry # 5 Measurements are performed, one straight up, and four with zenith angle 70∘70∘ in directions SW, NW, NE, SE. # In ARTS the measurement directions are given by a two-column matrix, where the first column contains the zenith # angle and the second column the azimuth angle. ws.sensor_los = np.array([[ 0.0, 0.0, ], [70.0, -135.0], [70.0, -45.0], [70.0, 45.0], [70.0, 135.0]]) ws.sensor_pos = np.array([[2000.0, -21.1, 55.6]] * 5) # Reference Measurement # Before we can calculate `y`, our setup needs to pass the following tests: ws.abs_f_interp_order = 3 ws.propmat_clearsky_agenda_checkedCalc() ws.sensor_checkedCalc() ws.atmgeom_checkedCalc() ws.atmfields_checkedCalc() ws.abs_xsec_agenda_checkedCalc() ws.jacobianOff() ws.cloudboxOff() ws.cloudbox_checkedCalc() ws.yCalc() y = np.copy(ws.y.value) # Setting up the Retrieval # In this example, we retrieve ozone and the horizontal and vertical components of the wind velocities. # The state space covariance matrix in ARTS is represented by the **covmat_sa** WSV. # It belongs to the CovarianceMatrix group, which is used to represent block diagonal matrices. # For each retrieval quantity that is added to the retrieval, a corresponding block must be added to **covmat_sa**. # This is usually done by the corresponding **retrievalAdd...** call, which looks for this block # in the **covmat_block** WSV. # In short the general workflow for adding a retrieval quantity is as follows: # - Create the covariance matrix for the retrieval quantity either calling one of the **covmat...** WSV or # by loading your own matrix # - Write the matrix block into **covmat_block** # - Call the **retrievalAdd...** method to add the retrieval quantity and the covariance matrix block # to **covmat_sa** lat_ret_grid = np.array([np.mean(ws.lat_grid)]) lon_ret_grid = np.array([np.mean(ws.lon_grid)]) n_p = ws.p_grid.value.size ws.retrievalDefInit() ws.covmat1D( ws.covmat_block, grid_1=z_grid, sigma_1=0.1 * np.ones(n_p), # Relative uncertainty cls_1=10e3 * np.ones(n_p), # 10km correlation length fname="lin") ws.retrievalAddAbsSpecies(species="O3", unit="rel", g1=ws.p_grid, g2=lat_ret_grid, g3=lon_ret_grid) # Wind u-component ws.covmat1D( ws.covmat_block, grid_1=z_grid[::2], sigma_1=100.0 * np.ones(n_p // 2), # Relative uncertainty cls_1=10e3 * np.ones(n_p // 2), # 10km correlation length fname="lin") ws.retrievalAddWind(g1=ws.p_grid.value[::2], g2=np.array([np.mean(ws.lat_grid)]), g3=np.array([np.mean(ws.lon_grid)]), component="u") # Wind v-component ws.covmat1D( ws.covmat_block, grid_1=z_grid[::2], sigma_1=100.0 * np.ones(n_p // 2), # Relative uncertainty cls_1=10e3 * np.ones(n_p // 2), # 10km correlation length fname="lin") ws.retrievalAddWind(g1=ws.p_grid.value[::2], g2=np.array([np.mean(ws.lat_grid)]), g3=np.array([np.mean(ws.lon_grid)]), component="v") ws.retrievalDefClose() ws.covmatDiagonal(ws.covmat_block, ws.covmat_inv_block, vars=0.0001 * np.ones(ws.y.value.shape)) ws.covmat_seSet(ws.covmat_block) @arts_agenda def inversion_iterate_agenda(ws): ws.x2artsStandard() ws.atmfields_checkedCalc() ws.atmgeom_checkedCalc() ws.yCalc() ws.Print(ws.y) ws.Print(ws.jacobian) ws.VectorAddVector(ws.yf, ws.y, ws.y_baseline) ws.IndexAdd(ws.inversion_iteration_counter, ws.inversion_iteration_counter, 1) ws.Copy(ws.inversion_iterate_agenda, inversion_iterate_agenda) # A Priori State # For the a priori state we assume zero wind in any direction. The a priori vector for the OEM is created by # the `xaStandard` WSM, which computes $x_a$ from the current atmospheric state. ws.wind_u_field.value[:] = 0.0 ws.wind_v_field.value[:] = 0.0 ws.xaStandard() # The OEM Calculation ws.x = np.zeros(0) ws.jacobian = np.zeros((0, 0)) ws.y.value[:] = y ws.OEM(method="lm", max_iter=20, display_progress=1, lm_ga_settings=np.array([100.0, 2.0, 2.0, 10.0, 1.0, 1.0])) ws.x2artsStandard() z = ws.z_field.value[:, 0, 0].ravel() wind_u = ws.wind_u_field.value[z > 40e3, 0, 0] wind_v = ws.wind_v_field.value[z > 40e3, 0, 0] assert np.allclose(wind_u, u_wind, atol=1) assert np.allclose(wind_v, v_wind, atol=1)