def load_injections(config=None, logger=None): """ """ if config is None: config = get_config() if logger is None: logger = get_logger() path = os.path.join(config['directories']['data'], 'input', 'injections') filename = os.path.join(path, config['injections']['catalogue_filename']) df = pd.read_csv(filename) logger.debug(f"Loaded {df.shape[0]} injections from file.") return df
def load_gama_specobj(config=None, logger=None): """ """ if config is None: config = get_config() if logger is None: logger = get_logger() filename = os.path.join(config['directories']['data'], 'input', 'gama_specobj.csv') df = pd.read_csv(filename) df["ra"] = df["RA"] df["dec"] = df["DEC"] logger.debug(f"Loaded {df.shape[0]} GAMA objects.") return df
def __init__(self, config=None, logger=None, zmin=0.0001, zmax=2, z_samples=500): """ """ self.logger = get_logger() if logger is None else logger self.config = get_config() if config is None else config self._cosmo = self.config["cosmology"] self._zmin = zmin self._zmax = zmax zz = np.linspace(self._zmin, self._zmax, z_samples) self._cosmo_interps = self._make_cosmo_interps(zz)
def load_recovery_efficiency(config=None, logger=None): """ """ if config is None: config = get_config() if logger is None: logger = get_logger() dirname = os.path.join(config["directories"]["data"], "input", "injections") filename = config["injections"]["receff_filename"] logger.debug(f"Loading interpolated recover efficiency: {filename}.") with open(os.path.join(dirname, filename), "rb") as f: interp = pickle.load(f) fn = partial(recovery_efficiency, interp=interp) return fn
def load_sample(config=None, logger=None, select=True): """ """ if config is None: config = get_config() if logger is None: logger = get_logger() filename = os.path.join(config['directories']['data'], 'input', 'lsbgs_public.csv') df = pd.read_csv(filename) if select: cond = select_samples(uae=df['mueff_av'].values, rec=df['rec_arcsec'].values) cond &= df["g_r"] < GR_MAX # cond &= df["is_red"].values == 0 df = df[cond].reset_index(drop=True) logger.debug(f"Loaded {df.shape[0]} LSBGs from file.") return df
import os from udgsizes.core import get_config, get_logger from udgsizes.obs.sample import load_sample, load_gama_specobj from udgsizes.utils import xmatch if __name__ == "__main__": logger = get_logger() radius = 3. / 3600 df = load_sample(select=False) dfg = load_gama_specobj() dfm = xmatch.match_dataframe(df, dfg, radius=radius) logger.info(f"Matched {dfm.shape[0]} sources.") datadir = get_config()["directories"]["data"] dfm.to_csv(os.path.join(datadir, "input", "lsbgs_gama_xmatch.csv"))