示例#1
0
                def _forward(dilated_ids, dilated_mask):

                    logits = self._bert_forward(
                        bert_config,
                        dilated_ids,
                        dilated_mask,
                        batch_size,
                        dilated_seq_length,
                        tilda_embeddings=tilda_embeddings)
                    output_ids = tf.argmax(logits, axis=-1)
                    output_ids = tf.cast(output_ids, dtype=tf.int32)

                    # special padding (using `spad` token)
                    equal_zero = tf.cast(tf.equal(output_ids, 0), tf.int32)
                    equal_zero = tf.reduce_sum(equal_zero, axis=-1)
                    right_pad = spad_id * tf.sequence_mask(
                        equal_zero, dilated_seq_length, dtype=tf.int32)
                    paded = tf.concat([output_ids, right_pad], axis=-1)

                    # extract ids of length `max_seq_length`
                    flattened_padded = tf.reshape(paded, [-1])
                    is_valid = tf.cast(tf.greater(flattened_padded, 0),
                                       dtype=tf.int32)
                    flattened_valid = tf.boolean_mask(flattened_padded,
                                                      is_valid)
                    valid = tf.reshape(flattened_valid,
                                       [batch_size, dilated_seq_length])
                    cutted_valid = valid[:, :max_seq_length]

                    # replace `spad` token with `pad`
                    non_spad_mask = tf.cast(tf.not_equal(
                        cutted_valid, spad_id),
                                            dtype=tf.int32)
                    output_ids = cutted_valid * non_spad_mask
                    output_length = tf.reduce_sum(non_spad_mask, axis=-1)

                    # dilate
                    reshaped_ids = tf.reshape(output_ids,
                                              [batch_size, max_seq_length, 1])
                    reshaped_mask = tf.reshape(
                        tf.sequence_mask(output_length,
                                         max_seq_length,
                                         dtype=tf.int32),
                        [batch_size, max_seq_length, 1])
                    concat_ids = tf.concat(
                        [reshaped_ids,
                         tf.zeros_like(reshaped_ids)], axis=-1)
                    concat_mask = tf.concat([
                        reshaped_mask,
                        tf.zeros_like(reshaped_mask, dtype=tf.int32)
                    ],
                                            axis=-1)
                    dilated_ids = tf.reshape(concat_ids,
                                             [batch_size, max_seq_length * 2])
                    dilated_mask = tf.reshape(concat_mask,
                                              [batch_size, max_seq_length * 2])

                    return dilated_ids, dilated_mask
示例#2
0
文件: crf.py 项目: zhongyunuestc/unif
def crf_binary_score(tag_indices, sequence_lengths, transition_params):
    ''' Computes the binary scores of tag sequences.

    Args:
      tag_indices: A [batch_size, max_seq_len] matrix of tag indices.
      sequence_lengths: A [batch_size] vector of true sequence lengths.
      transition_params: A [num_tags, num_tags] matrix of binary potentials.

    Returns:
      binary_scores: A [batch_size] vector of binary scores.
    '''
    # Get shape information.
    num_tags = transition_params.get_shape()[0]
    num_transitions = tf.shape(tag_indices)[1] - 1

    # Truncate by one on each side of the sequence to get the start and end
    # indices of each transition.
    start_tag_indices = tf.slice(tag_indices, [0, 0], [-1, num_transitions])
    end_tag_indices = tf.slice(tag_indices, [0, 1], [-1, num_transitions])

    # Encode the indices in a flattened representation.
    flattened_transition_indices = \
        start_tag_indices * num_tags + end_tag_indices
    flattened_transition_params = tf.reshape(transition_params, [-1])

    # Get the binary scores based on the flattened representation.
    binary_scores = tf.gather(flattened_transition_params,
                              flattened_transition_indices)

    masks = tf.sequence_mask(sequence_lengths,
                             maxlen=tf.shape(tag_indices)[1],
                             dtype=tf.float32)
    truncated_masks = tf.slice(masks, [0, 1], [-1, -1])
    binary_scores = tf.reduce_sum(binary_scores * truncated_masks, 1)
    return binary_scores
示例#3
0
文件: crf.py 项目: zhongyunuestc/unif
def crf_unary_score(tag_indices, sequence_lengths, inputs):
    ''' Computes the unary scores of tag sequences.

    Args:
      tag_indices: A [batch_size, max_seq_len] matrix of tag indices.
      sequence_lengths: A [batch_size] vector of true sequence lengths.
      inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials.

    Returns:
      unary_scores: A [batch_size] vector of unary scores.
    '''
    batch_size = tf.shape(inputs)[0]
    max_seq_len = tf.shape(inputs)[1]
    num_tags = tf.shape(inputs)[2]

    flattened_inputs = tf.reshape(inputs, [-1])

    offsets = tf.expand_dims(tf.range(batch_size) * max_seq_len * num_tags, 1)
    offsets += tf.expand_dims(tf.range(max_seq_len) * num_tags, 0)
    # Use int32 or int64 based on tag_indices' dtype.
    if tag_indices.dtype == tf.int64:
        offsets = tf.cast(offsets, tf.int64)
    flattened_tag_indices = tf.reshape(offsets + tag_indices, [-1])

    unary_scores = tf.reshape(
        tf.gather(flattened_inputs, flattened_tag_indices),
        [batch_size, max_seq_len])

    masks = tf.sequence_mask(sequence_lengths,
                             maxlen=tf.shape(tag_indices)[1],
                             dtype=tf.float32)

    unary_scores = tf.reduce_sum(unary_scores * masks, 1)
    return unary_scores
示例#4
0
                def _forward(dilated_ids, dilated_mask):

                    logits = self._bert_forward(
                        bert_config,
                        dilated_ids,
                        dilated_mask,
                        batch_size,
                        dilated_seq_length,
                        tilda_embeddings=tilda_embeddings)
                    output_ids = tf.argmax(logits, axis=-1)
                    output_ids = tf.cast(output_ids, dtype=tf.int32)

                    equal_zero = tf.cast(tf.equal(output_ids, 0), tf.int32)
                    equal_zero = tf.reduce_sum(equal_zero, axis=-1)
                    right_pad = spad_id * tf.sequence_mask(
                        equal_zero, dilated_seq_length, dtype=tf.int32)

                    paded = tf.concat([output_ids, right_pad], axis=-1)
                    flattened_padded = tf.reshape(paded, [-1])
                    is_valid = tf.cast(tf.greater(flattened_padded, 0),
                                       dtype=tf.int32)
                    flattened_valid = tf.boolean_mask(flattened_padded,
                                                      is_valid)
                    valid = tf.reshape(flattened_valid,
                                       [batch_size, dilated_seq_length])
                    cutted_valid = valid[:, :max_seq_length]

                    nonpad_mask = tf.cast(tf.not_equal(cutted_valid, spad_id),
                                          dtype=tf.int32)
                    output_ids = cutted_valid * nonpad_mask

                    reshaped = tf.reshape(output_ids,
                                          [batch_size, max_seq_length, 1])
                    concatenated = tf.concat(
                        [reshaped, tf.zeros_like(reshaped)], axis=-1)
                    dilated_ids = tf.reshape(concatenated,
                                             [batch_size, max_seq_length * 2])

                    input_mask = tf.reduce_sum(nonpad_mask, axis=-1)
                    dilated_mask = tf.sequence_mask(input_mask,
                                                    dilated_seq_length,
                                                    dtype=tf.int32)

                    return dilated_ids, dilated_mask
示例#5
0
    def create_attention_mask_from_input_mask(self,
                                              input_mask,
                                              batch_size,
                                              max_seq_length,
                                              dtype=tf.float32):
        if self._mode == 'bi':
            to_mask = tf.cast(tf.reshape(
                input_mask, [batch_size, 1, max_seq_length]), dtype=dtype)
            broadcast_ones = tf.ones(
                shape=[batch_size, max_seq_length, 1], dtype=dtype)
            mask = broadcast_ones * to_mask

        elif self._mode == 'l2r':
            arange = tf.range(max_seq_length) + 1
            to_mask = tf.cast(tf.sequence_mask(arange, max_seq_length), dtype)
            to_mask = tf.reshape(to_mask, [1, max_seq_length, max_seq_length])
            mask = tf.tile(to_mask, [batch_size, 1, 1])

        elif self._mode == 'r2l':
            to_mask = tf.cast(tf.reshape(
                input_mask, [batch_size, 1, max_seq_length]), dtype=dtype)
            broadcast_ones = tf.ones(
                shape=[batch_size, max_seq_length, 1], dtype=dtype)
            cover_mask = broadcast_ones * to_mask

            arange = tf.range(max_seq_length)
            reverse = tf.cast(tf.sequence_mask(arange, max_seq_length), dtype)
            reverse = tf.reshape(reverse, [1, max_seq_length, max_seq_length])
            reverse_mask = tf.tile(reverse, [batch_size, 1, 1])

            mask = (1 - reverse_mask) * cover_mask

        elif self._mode == 's2s':
            mask = tf.cast(
                tf.sequence_mask(input_mask, max_seq_length), dtype)

        return mask
示例#6
0
文件: vae.py 项目: zhongyunuestc/unif
    def __init__(self,
                 vocab_size,
                 is_training,
                 input_ids,
                 input_mask,
                 segment_ids,
                 sample_weight=None,
                 reduced_size=64,
                 topic_size=1024,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 bias=0,
                 scope='vae',
                 trainable=True,
                 **kwargs):
        super().__init__()

        # freeze parameters
        config = Config(vocab_size,
                        hidden_size=hidden_size,
                        num_hidden_layers=num_hidden_layers,
                        num_attention_heads=num_attention_heads)
        if not is_training:
            config.hidden_dropout_prob = 0.0
            config.attention_probs_dropout_prob = 0.0

        input_shape = util.get_shape_list(input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        # Tilda embeddings for SMART algorithm
        tilda_embeddings = None
        use_tilda_embedding = kwargs.get('use_tilda_embedding')
        if use_tilda_embedding:
            with tf.variable_scope('', reuse=True):
                tilda_embeddings = tf.get_variable('tilda_embeddings')

        with tf.variable_scope(scope):
            with tf.variable_scope('embeddings'):

                (self.embedding_output, self.embedding_table) = \
                    self.embedding_lookup(
                        input_ids=input_ids,
                        vocab_size=config.vocab_size,
                        batch_size=batch_size,
                        max_seq_length=seq_length,
                        embedding_size=config.hidden_size,
                        initializer_range=config.initializer_range,
                        word_embedding_name='word_embeddings',
                        tilda_embeddings=tilda_embeddings,
                        trainable=trainable)
                self.embedding_output = self.embedding_postprocessor(
                    input_tensor=self.embedding_output,
                    batch_size=batch_size,
                    max_seq_length=seq_length,
                    hidden_size=config.hidden_size,
                    use_token_type=True,
                    segment_ids=segment_ids,
                    token_type_vocab_size=config.type_vocab_size,
                    token_type_embedding_name='token_type_embeddings',
                    use_position_embeddings=True,
                    position_embedding_name='position_embeddings',
                    initializer_range=config.initializer_range,
                    max_position_embeddings=config.max_position_embeddings,
                    dropout_prob=config.hidden_dropout_prob,
                    trainable=trainable)

            with tf.variable_scope('encoder'):

                # stacked transformer
                attention_mask = self.create_attention_mask_from_input_mask(
                    input_mask, batch_size, seq_length)
                self.all_encoder_layers = self.transformer_model(
                    input_tensor=self.embedding_output,
                    batch_size=batch_size,
                    max_seq_length=seq_length,
                    attention_mask=attention_mask,
                    hidden_size=config.hidden_size,
                    num_hidden_layers=config.num_hidden_layers,
                    num_attention_heads=config.num_attention_heads,
                    intermediate_size=config.intermediate_size,
                    intermediate_act_fn=util.get_activation(config.hidden_act),
                    hidden_dropout_prob=config.hidden_dropout_prob,
                    attention_probs_dropout_prob=\
                        config.attention_probs_dropout_prob,
                    initializer_range=config.initializer_range,
                    trainable=trainable)

                # projection
                with tf.variable_scope('projection'):
                    transformer_output = tf.layers.dense(
                        self.all_encoder_layers[-1],
                        reduced_size,
                        activation=util.gelu,
                        kernel_initializer=tf.truncated_normal_initializer(
                            stddev=config.initializer_range),
                        trainable=trainable)
                    transformer_output = tf.reshape(transformer_output,
                                                    [batch_size, -1])
                    input_length = tf.reduce_sum(input_mask, axis=-1)
                    input_length = tf.cast(input_length, tf.float32)
                    input_length_1d = tf.reshape(input_length, [batch_size])
                    input_length_2d = tf.reshape(input_length, [batch_size, 1])

                    broadcast_mask = tf.sequence_mask(
                        tf.multiply(input_length_1d, reduced_size),
                        seq_length * reduced_size,
                        dtype=tf.float32)
                    broadcast_mask = tf.multiply(broadcast_mask,
                                                 seq_length / input_length_2d)
                    transformer_output *= broadcast_mask

                    # latent space
                    miu = tf.layers.dense(
                        transformer_output,
                        topic_size,
                        activation='tanh',
                        kernel_initializer=tf.truncated_normal_initializer(
                            stddev=config.initializer_range),
                        name='miu',
                        trainable=trainable)
                    sigma = tf.layers.dense(
                        transformer_output,
                        topic_size,
                        kernel_initializer=tf.truncated_normal_initializer(
                            stddev=config.initializer_range),
                        name='sigma',
                        trainable=trainable)
                    self.probs['miu'] = miu
                    self.probs['sigma'] = sigma

            with tf.variable_scope('decoder'):
                with tf.variable_scope('projection'):

                    # reparametarization
                    if is_training:
                        noise = tf.random_normal([batch_size, topic_size])
                    else:
                        noise = tf.random_uniform([batch_size, topic_size],
                                                  minval=-bias,
                                                  maxval=bias)
                    decoder_input = miu + tf.exp(sigma) * noise

                    # projection
                    decoder_input = tf.layers.dense(
                        decoder_input,
                        seq_length * reduced_size,
                        activation=util.gelu,
                        kernel_initializer=tf.truncated_normal_initializer(
                            stddev=config.initializer_range),
                        trainable=trainable)
                    intermediate_input = tf.reshape(
                        decoder_input, [-1, seq_length, reduced_size])
                    intermediate_input = util.layer_norm(intermediate_input,
                                                         trainable=trainable)
                    intermediate_input = util.dropout(
                        intermediate_input, config.hidden_dropout_prob)

                # MLP
                with tf.variable_scope('intermediate'):
                    intermediate_output = tf.layers.dense(
                        intermediate_input,
                        4 * reduced_size,
                        activation=util.gelu,
                        kernel_initializer=util.create_initializer(
                            config.initializer_range),
                        trainable=trainable)
                with tf.variable_scope('output'):
                    decoder_output = tf.layers.dense(
                        intermediate_output,
                        config.hidden_size,
                        kernel_initializer=util.create_initializer(
                            config.initializer_range),
                        trainable=trainable)
                    decoder_output = util.layer_norm(decoder_output,
                                                     trainable=trainable)
                    decoder_output = util.dropout(decoder_output,
                                                  config.hidden_dropout_prob)
                self.all_decoder_layers = [intermediate_output, decoder_output]
                self.all_decoder_layers = [decoder_output]

        # reconstruction
        with tf.variable_scope('cls/predictions'):
            with tf.variable_scope('transform'):
                input_tensor = tf.layers.dense(
                    decoder_output,
                    units=config.hidden_size,
                    activation=util.get_activation(config.hidden_act),
                    kernel_initializer=util.create_initializer(
                        config.initializer_range),
                    trainable=trainable)
                input_tensor = util.layer_norm(input_tensor,
                                               trainable=trainable)
            output_weights = self.embedding_table
            output_bias = tf.get_variable('output_bias',
                                          shape=[config.vocab_size],
                                          initializer=tf.zeros_initializer(),
                                          trainable=trainable)
            flatten_input_tensor = tf.reshape(input_tensor,
                                              [-1, config.hidden_size])

            logits = tf.matmul(flatten_input_tensor,
                               output_weights,
                               transpose_b=True)
            logits = tf.nn.bias_add(logits, output_bias)

            logits = tf.reshape(logits,
                                [batch_size, seq_length, config.vocab_size])
            probs = tf.nn.softmax(logits, axis=-1, name='probs')
            lm_log_probs = tf.nn.log_softmax(logits, axis=-1)

            self.preds['preds'] = tf.argmax(probs, axis=-1)
            one_hot_labels = tf.one_hot(input_ids,
                                        depth=config.vocab_size,
                                        dtype=tf.float32)
            per_example_loss = -tf.reduce_sum(lm_log_probs * one_hot_labels,
                                              axis=[-1])
            if sample_weight is not None:
                per_example_loss *= tf.expand_dims(sample_weight, axis=-1)

            self.total_loss = (tf.reduce_mean(per_example_loss) +
                               tf.reduce_mean(tf.square(miu)) +
                               tf.reduce_mean(tf.exp(sigma) - sigma - 1))
            self.losses['losses'] = per_example_loss
示例#7
0
    def __init__(self,
                 is_training,
                 input_tensor,
                 n_wide_features,
                 wide_features,
                 label_ids,
                 label_size=2,
                 sample_weight=None,
                 scope='cls/seq_relationship',
                 hidden_dropout_prob=0.1,
                 initializer_range=0.02,
                 trainable=True,
                 **kwargs):
        super().__init__(**kwargs)

        hidden_size = input_tensor.shape.as_list()[-1]
        feature_size = wide_features.shape.as_list()[-1]
        with tf.variable_scope('wide'):
            feature_embeddings = tf.get_variable(
                name='feature_embeddings',
                shape=[feature_size + 1, hidden_size],
                initializer=util.create_initializer(initializer_range),
                trainable=trainable)
            wide_output = tf.gather(feature_embeddings,
                                    wide_features)  # [B, N, H]

        with tf.variable_scope('wide_and_deep'):
            deep_output = tf.expand_dims(input_tensor, -1)  # [B, H, 1]
            attention_scores = tf.matmul(wide_output, deep_output)  # [B, N, 1]
            attention_scores = tf.transpose(attention_scores,
                                            [0, 2, 1])  # [B, 1, N]
            attention_scores = tf.multiply(attention_scores,
                                           1.0 / math.sqrt(hidden_size))
            feature_mask = tf.cast(
                tf.sequence_mask(n_wide_features, feature_size),
                tf.float32)  # [B, N]
            feature_mask = tf.expand_dims(feature_mask, 1)  # [B, 1, N]
            attention_scores += (1.0 - feature_mask) * -10000.0
            attention_matrix = tf.nn.softmax(attention_scores, axis=-1)
            attention_output = tf.matmul(attention_matrix,
                                         wide_output)  # [B, 1, H]
            attention_output = attention_output[:, 0, :]  # [B, H]
            # attention_output = util.dropout(
            #     attention_output, hidden_dropout_prob)
            input_tensor = util.layer_norm(attention_output + input_tensor,
                                           trainable=trainable)

        with tf.variable_scope(scope):
            output_weights = tf.get_variable(
                'output_weights',
                shape=[label_size, hidden_size],
                initializer=util.create_initializer(initializer_range),
                trainable=trainable)
            output_bias = tf.get_variable('output_bias',
                                          shape=[label_size],
                                          initializer=tf.zeros_initializer(),
                                          trainable=trainable)

            output_layer = util.dropout(
                input_tensor, hidden_dropout_prob if is_training else 0.0)
            logits = tf.matmul(output_layer, output_weights, transpose_b=True)
            logits = tf.nn.bias_add(logits, output_bias)

            self.preds['preds'] = tf.argmax(logits, axis=-1)
            self.probs['probs'] = tf.nn.softmax(logits, axis=-1, name='probs')

            log_probs = tf.nn.log_softmax(logits, axis=-1)
            one_hot_labels = tf.one_hot(label_ids,
                                        depth=label_size,
                                        dtype=tf.float32)
            per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs,
                                              axis=-1)
            if sample_weight is not None:
                per_example_loss = tf.cast(sample_weight,
                                           dtype=tf.float32) * per_example_loss
            thresh = kwargs.get('tsa_thresh')
            if thresh is not None:
                assert isinstance(
                    thresh,
                    float), ('`tsa_thresh` must be a float between 0 and 1.')
                uncertainty = tf.reduce_sum(self.probs['probs'] *
                                            tf.log(self.probs['probs']),
                                            axis=-1)
                uncertainty /= tf.log(1 / label_size)
                per_example_loss = tf.cast(
                    tf.greater(uncertainty, thresh), dtype=tf.float32) * \
                    per_example_loss

            self.losses['losses'] = per_example_loss
            self.total_loss = tf.reduce_mean(per_example_loss)
示例#8
0
    def __init__(self,
                 bert_config,
                 is_training,
                 dilated_ids,
                 label_ids,
                 max_seq_length,
                 spad_id=1,
                 loop=3,
                 sample_weight=None,
                 scope='dilated',
                 use_tilda_embedding=False,
                 **kwargs):
        super().__init__()

        dilated_mask = tf.cast(tf.not_equal(dilated_ids, 0), tf.float32)

        shape = util.get_shape_list(dilated_ids, expected_rank=2)
        batch_size = shape[0]
        dilated_seq_length = shape[1]

        # Tilda embeddings for SMART algorithm
        tilda_embeddings = None
        if use_tilda_embedding:
            with tf.variable_scope('', reuse=True):
                tilda_embeddings = tf.get_variable('tilda_embeddings')

        with tf.variable_scope(scope):

            # forward once
            if is_training:
                logits = self._bert_forward(bert_config,
                                            dilated_ids,
                                            dilated_mask,
                                            batch_size,
                                            dilated_seq_length,
                                            tilda_embeddings=tilda_embeddings)

                self.preds['LM'] = tf.argmax(logits, axis=-1)

                # LM loss
                log_probs = tf.nn.log_softmax(logits, axis=-1)
                one_hot_labels = tf.one_hot(label_ids,
                                            depth=bert_config.vocab_size)
                per_token_loss = -tf.reduce_sum(one_hot_labels * log_probs,
                                                axis=-1)

                input_length = tf.reduce_sum(dilated_mask, axis=-1) * 2
                label_mask = tf.sequence_mask(input_length,
                                              max_seq_length * 2,
                                              dtype=tf.float32)
                per_example_loss = \
                    tf.reduce_sum(per_token_loss * label_mask, axis=-1) / \
                    tf.reduce_sum(label_mask, axis=-1)
                if sample_weight is not None:
                    per_example_loss *= tf.expand_dims(sample_weight, axis=-1)

                self.total_loss = tf.reduce_mean(per_example_loss)
                self.losses['LM'] = per_example_loss

            # forward loop
            else:

                def _forward(dilated_ids, dilated_mask):

                    logits = self._bert_forward(
                        bert_config,
                        dilated_ids,
                        dilated_mask,
                        batch_size,
                        dilated_seq_length,
                        tilda_embeddings=tilda_embeddings)
                    output_ids = tf.argmax(logits, axis=-1)
                    output_ids = tf.cast(output_ids, dtype=tf.int32)

                    # special padding (using `spad` token)
                    equal_zero = tf.cast(tf.equal(output_ids, 0), tf.int32)
                    equal_zero = tf.reduce_sum(equal_zero, axis=-1)
                    right_pad = spad_id * tf.sequence_mask(
                        equal_zero, dilated_seq_length, dtype=tf.int32)
                    paded = tf.concat([output_ids, right_pad], axis=-1)

                    # extract ids of length `max_seq_length`
                    flattened_padded = tf.reshape(paded, [-1])
                    is_valid = tf.cast(tf.greater(flattened_padded, 0),
                                       dtype=tf.int32)
                    flattened_valid = tf.boolean_mask(flattened_padded,
                                                      is_valid)
                    valid = tf.reshape(flattened_valid,
                                       [batch_size, dilated_seq_length])
                    cutted_valid = valid[:, :max_seq_length]

                    # replace `spad` token with `pad`
                    non_spad_mask = tf.cast(tf.not_equal(
                        cutted_valid, spad_id),
                                            dtype=tf.int32)
                    output_ids = cutted_valid * non_spad_mask
                    output_length = tf.reduce_sum(non_spad_mask, axis=-1)

                    # dilate
                    reshaped_ids = tf.reshape(output_ids,
                                              [batch_size, max_seq_length, 1])
                    reshaped_mask = tf.reshape(
                        tf.sequence_mask(output_length,
                                         max_seq_length,
                                         dtype=tf.int32),
                        [batch_size, max_seq_length, 1])
                    concat_ids = tf.concat(
                        [reshaped_ids,
                         tf.zeros_like(reshaped_ids)], axis=-1)
                    concat_mask = tf.concat([
                        reshaped_mask,
                        tf.zeros_like(reshaped_mask, dtype=tf.int32)
                    ],
                                            axis=-1)
                    dilated_ids = tf.reshape(concat_ids,
                                             [batch_size, max_seq_length * 2])
                    dilated_mask = tf.reshape(concat_mask,
                                              [batch_size, max_seq_length * 2])

                    return dilated_ids, dilated_mask

                for _ in range(loop):
                    dilated_ids, dilated_mask = _forward(
                        dilated_ids, dilated_mask)

                self.preds['LM'] = dilated_ids