def indexed(self, o, Ap, ii): # TODO: (Partially) duplicated in generic rules # Reuse if untouched if Ap is o.ufl_operands[0]: return o # Untangle as_tensor(C[kk], jj)[ii] -> C[ll] to simplify # resulting expression if isinstance(Ap, ComponentTensor): B, jj = Ap.ufl_operands if isinstance(B, Indexed): C, kk = B.ufl_operands kk = list(kk) if all(j in kk for j in jj): Cind = list(kk) for i, j in zip(ii, jj): Cind[kk.index(j)] = i return Indexed(C, MultiIndex(tuple(Cind))) # Otherwise a more generic approach r = len(Ap.ufl_shape) - len(ii) if r: kk = indices(r) op = Indexed(Ap, MultiIndex(ii.indices() + kk)) op = as_tensor(op, kk) else: op = Indexed(Ap, ii) return op
def indexed(self, o, Ap, ii): # TODO: (Partially) duplicated in nesting rules # Propagate zeros if isinstance(Ap, Zero): return self.independent_operator(o) # Untangle as_tensor(C[kk], jj)[ii] -> C[ll] to simplify # resulting expression if isinstance(Ap, ComponentTensor): B, jj = Ap.ufl_operands if isinstance(B, Indexed): C, kk = B.ufl_operands kk = list(kk) if all(j in kk for j in jj): rep = dict(zip(jj, ii)) Cind = [rep.get(k, k) for k in kk] expr = Indexed(C, MultiIndex(tuple(Cind))) assert expr.ufl_free_indices == o.ufl_free_indices assert expr.ufl_shape == o.ufl_shape return expr # Otherwise a more generic approach r = len(Ap.ufl_shape) - len(ii) if r: kk = indices(r) op = Indexed(Ap, MultiIndex(ii.indices() + kk)) op = as_tensor(op, kk) else: op = Indexed(Ap, ii) return op
def test_index_simplification_reference_grad(self): mesh = Mesh(VectorElement("P", quadrilateral, 1)) i, = indices(1) A = as_tensor(Indexed(Jacobian(mesh), MultiIndex((i, i))), (i,)) expr = apply_derivatives(apply_geometry_lowering( apply_algebra_lowering(A[0]))) assert expr == ReferenceGrad(SpatialCoordinate(mesh))[0, 0] assert expr.ufl_free_indices == () assert expr.ufl_shape == ()
def indexed(self, o, expr, multiindex): indices = list(multiindex) while indices and isinstance(expr, ListTensor) and isinstance(indices[0], FixedIndex): index = indices.pop(0) expr = expr.ufl_operands[int(index)] if indices: return Indexed(expr, MultiIndex(tuple(indices))) else: return expr
def test_index_simplification_handles_repeated_indices(self): mesh = Mesh(VectorElement("P", quadrilateral, 1)) V = FunctionSpace(mesh, TensorElement("DQ", quadrilateral, 0)) K = JacobianInverse(mesh) G = outer(Identity(2), Identity(2)) i, j, k, l, m, n = indices(6) A = as_tensor(K[m, i] * K[n, j] * G[i, j, k, l], (m, n, k, l)) i, j = indices(2) # Can't use A[i, i, j, j] because UFL automagically index-sums # repeated indices in the __getitem__ call. Adiag = Indexed(A, MultiIndex((i, i, j, j))) A = as_tensor(Adiag, (i, j)) v = TestFunction(V) f = inner(A, v)*dx fd = compute_form_data(f, do_apply_geometry_lowering=True) integral, = fd.preprocessed_form.integrals() assert integral.integrand().ufl_free_indices == ()
def apply_mapping(expression, mapping, domain): """ This applies the appropriate transformation to the given expression for interpolation to a specific element, according to the manner in which it maps from the reference cell. The following is borrowed from the UFC documentation: Let g be a field defined on a physical domain T with physical coordinates x. Let T_0 be a reference domain with coordinates X. Assume that F: T_0 -> T such that x = F(X) Let J be the Jacobian of F, i.e J = dx/dX and let K denote the inverse of the Jacobian K = J^{-1}. Then we (currently) have the following four types of mappings: 'affine' mapping for g: G(X) = g(x) For vector fields g: 'contravariant piola' mapping for g: G(X) = det(J) K g(x) i.e G_i(X) = det(J) K_ij g_j(x) 'covariant piola' mapping for g: G(X) = J^T g(x) i.e G_i(X) = J^T_ij g(x) = J_ji g_j(x) 'double covariant piola' mapping for g: G(X) = J^T g(x) J i.e. G_il(X) = J_ji g_jk(x) J_kl 'double contravariant piola' mapping for g: G(X) = det(J)^2 K g(x) K^T i.e. G_il(X)=(detJ)^2 K_ij g_jk K_lk If 'contravariant piola' or 'covariant piola' are applied to a matrix-valued function, the appropriate mappings are applied row-by-row. :arg expression: UFL expression :arg mapping: a string indicating the mapping to apply """ mesh = expression.ufl_domain() if mesh is None: mesh = domain if domain is not None and mesh != domain: raise NotImplementedError("Multiple domains not supported") rank = len(expression.ufl_shape) if mapping == "affine": return expression elif mapping == "covariant piola": J = Jacobian(mesh) *i, j, k = indices(len(expression.ufl_shape) + 1) expression = Indexed(expression, MultiIndex((*i, k))) return as_tensor(J.T[j, k] * expression, (*i, j)) elif mapping == "contravariant piola": K = JacobianInverse(mesh) detJ = JacobianDeterminant(mesh) *i, j, k = indices(len(expression.ufl_shape) + 1) expression = Indexed(expression, MultiIndex((*i, k))) return as_tensor(detJ * K[j, k] * expression, (*i, j)) elif mapping == "double covariant piola" and rank == 2: J = Jacobian(mesh) return J.T * expression * J elif mapping == "double contravariant piola" and rank == 2: K = JacobianInverse(mesh) detJ = JacobianDeterminant(mesh) return (detJ)**2 * K * expression * K.T else: raise NotImplementedError("Don't know how to handle mapping type %s for expression of rank %d" % (mapping, rank))
def compileUFL(form, patch, *args, **kwargs): if isinstance(form, Equation): form = form.lhs - form.rhs if not isinstance(form, Form): raise Exception("ufl.Form expected.") if len(form.arguments()) < 2: raise Exception("ConservationLaw model requires form with at least two arguments.") phi_, u_ = form.arguments() if phi_.ufl_function_space().scalar: phi = TestFunction(phi_.ufl_function_space().toVectorSpace()) form = replace(form,{phi_:phi[0]}) else: phi = phi_ if u_.ufl_function_space().scalar: u = TrialFunction(u_.ufl_function_space().toVectorSpace()) form = replace(form,{u_:u[0]}) else: u = u_ _, coeff_ = extract_arguments_and_coefficients(form) coeff_ = set(coeff_) # added for dirichlet treatment same as conservationlaw model dirichletBCs = [arg for arg in args if isinstance(arg, DirichletBC)] # remove the dirichletBCs arg = [arg for arg in args if not isinstance(arg, DirichletBC)] for dBC in dirichletBCs: _, coeff__ = extract_arguments_and_coefficients(dBC.ufl_value) coeff_ |= set(coeff__) if patch is not None: for a in patch: try: _, coeff__ = extract_arguments_and_coefficients(a) coeff_ |= set(coeff__) except: pass # a might be a float/int and not a ufl expression coeff = {c : c.toVectorCoefficient()[0] for c in coeff_ if len(c.ufl_shape) == 0 and not c.is_cellwise_constant()} form = replace(form,coeff) for bc in dirichletBCs: bc.ufl_value = replace(bc.ufl_value, coeff) if patch is not None: patch = [a if not isinstance(a, Expr) else replace(a,coeff) for a in patch] phi = form.arguments()[0] dimRange = phi.ufl_shape[0] u = form.arguments()[1] du = Grad(u) d2u = Grad(du) ubar = Coefficient(u.ufl_function_space()) dubar = Grad(ubar) d2ubar = Grad(dubar) dimDomain = u.ufl_shape[0] x = SpatialCoordinate(form.ufl_cell()) try: field = u.ufl_function_space().field except AttributeError: field = "double" # if exact solution is passed in subtract a(u,.) from the form if "exact" in kwargs: b = replace(form, {u: as_vector(kwargs["exact"])} ) form = form - b dform = apply_derivatives(derivative(action(form, ubar), ubar, u)) source, flux, boundarySource = splitUFLForm(form) linSource, linFlux, linBoundarySource = splitUFLForm(dform) fluxDivergence, _, _ = splitUFLForm(inner(source.as_ufl() - div(flux.as_ufl()), phi) * dx(0)) # split linNVSource off linSource # linSources = splitUFL2(u, du, d2u, linSource) # linNVSource = linSources[2] # linSource = linSources[0] + linSources[1] if patch is not None: model = ConservationLawModel(dimDomain, dimRange, u, modelSignature(form,*patch,*args)) else: model = ConservationLawModel(dimDomain, dimRange, u, modelSignature(form,None,*args)) model._replaceCoeff = coeff model.hasNeumanBoundary = not boundarySource.is_zero() #expandform = expand_indices(expand_derivatives(expand_compounds(equation.lhs))) #if expandform == adjoint(expandform): # model.symmetric = 'true' model.field = field dirichletBCs = [arg for arg in args if isinstance(arg, DirichletBC)] # deprecated # if "dirichlet" in kwargs: # dirichletBCs += [DirichletBC(u.ufl_function_space(), as_vector(value), bndId) for bndId, value in kwargs["dirichlet"].items()] uflCoefficients = set(form.coefficients()) for bc in dirichletBCs: _, c = extract_arguments_and_coefficients(bc.ufl_value) uflCoefficients |= set(c) if patch is not None: for a in patch: if isinstance(a, Expr): _, c = extract_arguments_and_coefficients(a) uflCoefficients |= set(c) constants = dict() coefficients = dict() for coefficient in uflCoefficients: try: name = getattr(coefficient, "name") except AttributeError: name = str(coefficient) if coefficient.is_cellwise_constant(): try: parameter = getattr(coefficient, "parameter") except AttributeError: parameter = None if len(coefficient.ufl_shape) == 0: constants[coefficient] = model.addConstant('double', name=name, parameter=parameter) elif len(coefficient.ufl_shape) == 1: constants[coefficient] = model.addConstant('Dune::FieldVector< double, ' + str(coefficient.ufl_shape[0]) + ' >', name=name, parameter=parameter) else: Exception('Currently, only scalars and vectors are supported as constants') else: shape = coefficient.ufl_shape[0] try: coefficients[coefficient] = model.addCoefficient( shape, coefficient.cppTypeName, name=name, field=coefficient.ufl_function_space().field) except AttributeError: coefficients[coefficient] = model.addCoefficient( shape, coefficient.cppTypeName, name=name) model.coefficients = coefficients model.constants = constants tempVars = kwargs.get("tempVars", True) predefined = {u: model.arg_u, du: model.arg_du, d2u: model.arg_d2u} predefined[x] = UnformattedExpression('auto', 'entity().geometry().global( Dune::Fem::coordinate( ' + model.arg_x.name + ' ) )') model.predefineCoefficients(predefined,'x') model.source = generateCode(predefined, source, tempVars=tempVars) model.flux = generateCode(predefined, flux, tempVars=tempVars) predefined.update({ubar: model.arg_ubar, dubar: model.arg_dubar, d2ubar: model.arg_d2ubar}) model.linSource = generateCode(predefined, linSource, tempVars=tempVars) model.linFlux = generateCode(predefined, linFlux, tempVars=tempVars) # model.linNVSource = generateCode({u: arg, du: darg, d2u: d2arg, ubar: argbar, dubar: dargbar, d2ubar: d2argbar}, linNVSource, model.coefficients, tempVars) predefined = {u: model.arg_u} predefined[x] = UnformattedExpression('auto', 'entity().geometry().global( Dune::Fem::coordinate( ' + model.arg_x.name + ' ) )') model.predefineCoefficients(predefined,'x') model.alpha = generateCode(predefined, boundarySource, tempVars=tempVars) predefined.update({ubar: model.arg_ubar}) model.linAlpha = generateCode(predefined, linBoundarySource, tempVars=tempVars) predefined = {u: model.arg_u, du: model.arg_du, d2u: model.arg_d2u} predefined[x] = UnformattedExpression('auto', 'entity().geometry().global( Dune::Fem::coordinate( ' + model.arg_x.name + ' ) )') model.predefineCoefficients(predefined,'x') model.fluxDivergence = generateCode(predefined, fluxDivergence, tempVars=tempVars) if dirichletBCs: model.hasDirichletBoundary = True predefined = {} predefined[x] = UnformattedExpression('auto', 'entity().geometry().global( Dune::Fem::coordinate( ' + model.arg_x.name + ' ) )') model.predefineCoefficients(predefined,'x') maxId = 0 codeDomains = [] bySubDomain = dict() neuman = [] for bc in dirichletBCs: if bc.subDomain in bySubDomain: raise Exception('Multiply defined Dirichlet boundary for subdomain ' + str(bc.subDomain)) if not isinstance(bc.functionSpace, (FunctionSpace, FiniteElementBase)): raise Exception('Function space must either be a ufl.FunctionSpace or a ufl.FiniteElement') if isinstance(bc.functionSpace, FunctionSpace) and (bc.functionSpace != u.ufl_function_space()): raise Exception('Space of trial function and dirichlet boundary function must be the same - note that boundary conditions on subspaces are not available, yet') if isinstance(bc.functionSpace, FiniteElementBase) and (bc.functionSpace != u.ufl_element()): raise Exception('Cannot handle boundary conditions on subspaces, yet') if isinstance(bc.value, list): neuman = [i for i, x in enumerate(bc.value) if x == None] else: neuman = [] value = ExprTensor(u.ufl_shape) for key in value.keys(): value[key] = Indexed(bc.ufl_value, MultiIndex(tuple(FixedIndex(k) for k in key))) if isinstance(bc.subDomain,int): bySubDomain[bc.subDomain] = value,neuman maxId = max(maxId, bc.subDomain) else: domain = ExprTensor(()) for key in domain.keys(): domain[key] = Indexed(bc.subDomain, MultiIndex(tuple(FixedIndex(k) for k in key))) codeDomains.append( (value,neuman,domain) ) defaultCode = [] defaultCode.append(Declaration(Variable('int', 'domainId'))) defaultCode.append(Declaration(Variable('auto', 'tmp0'), initializer=UnformattedExpression('auto','intersection.geometry().center()'))) for i,v in enumerate(codeDomains): block = Block() defaultCode.append( generateDirichletDomainCode(predefined, v[2], tempVars=tempVars)) defaultCode.append('if (domainId)') block = UnformattedBlock() block.append('std::fill( dirichletComponent.begin(), dirichletComponent.end(), ' + str(maxId+i+1) + ' );') if len(v[1])>0: [block.append('dirichletComponent[' + str(c) + '] = 0;') for c in v[1]] block.append('return true;') defaultCode.append(block) defaultCode.append(return_(False)) bndId = Variable('const int', 'bndId') getBndId = UnformattedExpression('int', 'BoundaryIdProviderType::boundaryId( ' + model.arg_i.name + ' )') switch = SwitchStatement(bndId, default=defaultCode) for i,v in bySubDomain.items(): code = [] if len(v[1])>0: [code.append('dirichletComponent[' + str(c) + '] = 0;') for c in v[1]] code.append(return_(True)) switch.append(i, code) model.isDirichletIntersection = [Declaration(bndId, initializer=getBndId), UnformattedBlock('std::fill( dirichletComponent.begin(), dirichletComponent.end(), ' + bndId.name + ' );'), switch ] switch = SwitchStatement(model.arg_bndId, default=assign(model.arg_r, construct("RRangeType", 0))) for i, v in bySubDomain.items(): switch.append(i, generateDirichletCode(predefined, v[0], tempVars=tempVars)) for i,v in enumerate(codeDomains): switch.append(i+maxId+1, generateDirichletCode(predefined, v[0], tempVars=tempVars)) model.dirichlet = [switch] return model
def _compileUFL(integrands, form, *args, tempVars=True): if isinstance(form, Equation): form = form.lhs - form.rhs if not isinstance(form, Form): raise ValueError("ufl.Form or ufl.Equation expected.") # added for dirichlet treatment same as conservationlaw model dirichletBCs = [arg for arg in args if isinstance(arg, DirichletBC)] uflExpr = [form] + [bc.ufl_value for bc in dirichletBCs] if len(form.arguments()) < 2: raise ValueError( "Integrands model requires form with at least two arguments.") x = SpatialCoordinate(form.ufl_cell()) n = FacetNormal(form.ufl_cell()) cellVolume = CellVolume(form.ufl_cell()) maxCellEdgeLength = MaxCellEdgeLength(form.ufl_cell()) minCellEdgeLength = MinCellEdgeLength(form.ufl_cell()) facetArea = FacetArea(form.ufl_cell()) maxFacetEdgeLength = MaxFacetEdgeLength(form.ufl_cell()) minFacetEdgeLength = MinFacetEdgeLength(form.ufl_cell()) phi, u = form.arguments() ubar = Coefficient(u.ufl_function_space()) derivatives = gatherDerivatives(form, [phi, u]) derivatives_phi = derivatives[0] derivatives_u = derivatives[1] derivatives_ubar = map_expr_dags(Replacer({u: ubar}), derivatives_u) try: integrands.field = u.ufl_function_space().field except AttributeError: pass integrals = splitForm(form, [phi]) dform = apply_derivatives(derivative(action(form, ubar), ubar, u)) linearizedIntegrals = splitForm(dform, [phi, u]) if not set( integrals.keys()) <= {'cell', 'exterior_facet', 'interior_facet'}: raise Exception('unknown integral encountered in ' + str(set(integrals.keys())) + '.') if 'cell' in integrals.keys(): arg = Variable(integrands.domainValueTuple, 'u') predefined = { derivatives_u[i]: arg[i] for i in range(len(derivatives_u)) } predefined[x] = integrands.spatialCoordinate('x') predefined[cellVolume] = integrands.cellVolume() predefined[maxCellEdgeLength] = maxEdgeLength( integrands.cellGeometry()) predefined[minCellEdgeLength] = minEdgeLength( integrands.cellGeometry()) integrands.predefineCoefficients(predefined, False) integrands.interior = generateUnaryCode(predefined, derivatives_phi, integrals['cell'], tempVars=tempVars) predefined = { derivatives_ubar[i]: arg[i] for i in range(len(derivatives_u)) } predefined[x] = integrands.spatialCoordinate('x') predefined[cellVolume] = integrands.cellVolume() predefined[maxCellEdgeLength] = maxEdgeLength( integrands.cellGeometry()) predefined[minCellEdgeLength] = minEdgeLength( integrands.cellGeometry()) integrands.predefineCoefficients(predefined, False) integrands.linearizedInterior = generateUnaryLinearizedCode( predefined, derivatives_phi, derivatives_u, linearizedIntegrals.get('cell'), tempVars=tempVars) if 'exterior_facet' in integrals.keys(): arg = Variable(integrands.domainValueTuple, 'u') predefined = { derivatives_u[i]: arg[i] for i in range(len(derivatives_u)) } predefined[x] = integrands.spatialCoordinate('x') predefined[n] = integrands.facetNormal('x') predefined[cellVolume] = integrands.cellVolume() predefined[maxCellEdgeLength] = maxEdgeLength( integrands.cellGeometry()) predefined[minCellEdgeLength] = minEdgeLength( integrands.cellGeometry()) predefined[facetArea] = integrands.facetArea() predefined[maxFacetEdgeLength] = maxEdgeLength( integrands.facetGeometry()) predefined[minFacetEdgeLength] = minEdgeLength( integrands.facetGeometry()) integrands.predefineCoefficients(predefined, False) integrands.boundary = generateUnaryCode(predefined, derivatives_phi, integrals['exterior_facet'], tempVars=tempVars) predefined = { derivatives_ubar[i]: arg[i] for i in range(len(derivatives_u)) } predefined[x] = integrands.spatialCoordinate('x') predefined[n] = integrands.facetNormal('x') predefined[cellVolume] = integrands.cellVolume() predefined[maxCellEdgeLength] = maxEdgeLength( integrands.cellGeometry()) predefined[minCellEdgeLength] = minEdgeLength( integrands.cellGeometry()) predefined[facetArea] = integrands.facetArea() predefined[maxFacetEdgeLength] = maxEdgeLength( integrands.facetGeometry()) predefined[minFacetEdgeLength] = minEdgeLength( integrands.facetGeometry()) integrands.predefineCoefficients(predefined, False) integrands.linearizedBoundary = generateUnaryLinearizedCode( predefined, derivatives_phi, derivatives_u, linearizedIntegrals.get('exterior_facet'), tempVars=tempVars) if 'interior_facet' in integrals.keys(): argIn = Variable(integrands.domainValueTuple, 'uIn') argOut = Variable(integrands.domainValueTuple, 'uOut') predefined = { derivatives_u[i](s): arg[i] for i in range(len(derivatives_u)) for s, arg in (('+', argIn), ('-', argOut)) } predefined[x] = integrands.spatialCoordinate('xIn') predefined[n('+')] = integrands.facetNormal('xIn') predefined[cellVolume('+')] = integrands.cellVolume('Side::in') predefined[cellVolume('-')] = integrands.cellVolume('Side::out') predefined[maxCellEdgeLength('+')] = maxEdgeLength( integrands.cellGeometry('Side::in')) predefined[maxCellEdgeLength('-')] = maxEdgeLength( integrands.cellGeometry('Side::out')) predefined[minCellEdgeLength('+')] = minEdgeLength( integrands.cellGeometry('Side::in')) predefined[minCellEdgeLength('-')] = minEdgeLength( integrands.cellGeometry('Side::out')) predefined[facetArea] = integrands.facetArea() predefined[maxFacetEdgeLength] = maxEdgeLength( integrands.facetGeometry()) predefined[minFacetEdgeLength] = minEdgeLength( integrands.facetGeometry()) integrands.predefineCoefficients(predefined, True) integrands.skeleton = generateBinaryCode(predefined, derivatives_phi, integrals['interior_facet'], tempVars=tempVars) predefined = { derivatives_ubar[i](s): arg[i] for i in range(len(derivatives_u)) for s, arg in (('+', argIn), ('-', argOut)) } predefined[x] = integrands.spatialCoordinate('xIn') predefined[n('+')] = integrands.facetNormal('xIn') predefined[cellVolume('+')] = integrands.cellVolume('Side::in') predefined[cellVolume('-')] = integrands.cellVolume('Side::out') predefined[maxCellEdgeLength('+')] = maxEdgeLength( integrands.cellGeometry('Side::in')) predefined[maxCellEdgeLength('-')] = maxEdgeLength( integrands.cellGeometry('Side::out')) predefined[minCellEdgeLength('+')] = minEdgeLength( integrands.cellGeometry('Side::in')) predefined[minCellEdgeLength('-')] = minEdgeLength( integrands.cellGeometry('Side::out')) predefined[facetArea] = integrands.facetArea() predefined[maxFacetEdgeLength] = maxEdgeLength( integrands.facetGeometry()) predefined[minFacetEdgeLength] = minEdgeLength( integrands.facetGeometry()) integrands.predefineCoefficients(predefined, True) integrands.linearizedSkeleton = generateBinaryLinearizedCode( predefined, derivatives_phi, derivatives_u, linearizedIntegrals.get('interior_facet'), tempVars=tempVars) if dirichletBCs: integrands.hasDirichletBoundary = True predefined = {} # predefined[x] = UnformattedExpression('auto', 'entity().geometry().global( Dune::Fem::coordinate( ' + integrands.arg_x.name + ' ) )') predefined[x] = UnformattedExpression( 'auto', 'intersection.geometry().center( )') integrands.predefineCoefficients(predefined, False) maxId = 0 codeDomains = [] bySubDomain = dict() neuman = [] wholeDomain = None for bc in dirichletBCs: if bc.subDomain in bySubDomain: raise Exception( 'Multiply defined Dirichlet boundary for subdomain ' + str(bc.subDomain)) if not isinstance(bc.functionSpace, (FunctionSpace, FiniteElementBase)): raise Exception( 'Function space must either be a ufl.FunctionSpace or a ufl.FiniteElement' ) if isinstance(bc.functionSpace, FunctionSpace) and ( bc.functionSpace != u.ufl_function_space()): raise Exception( 'Space of trial function and dirichlet boundary function must be the same - note that boundary conditions on subspaces are not available, yet' ) if isinstance(bc.functionSpace, FiniteElementBase) and ( bc.functionSpace != u.ufl_element()): raise Exception( 'Cannot handle boundary conditions on subspaces, yet') if isinstance(bc.value, list): neuman = [i for i, x in enumerate(bc.value) if x == None] else: neuman = [] value = ExprTensor(u.ufl_shape) for key in value.keys(): value[key] = Indexed( bc.ufl_value, MultiIndex(tuple(FixedIndex(k) for k in key))) if bc.subDomain is None: wholeDomain = value, neuman elif isinstance(bc.subDomain, int): bySubDomain[bc.subDomain] = value, neuman maxId = max(maxId, bc.subDomain) else: domain = ExprTensor(()) for key in domain.keys(): domain[key] = Indexed( bc.subDomain, MultiIndex(tuple(FixedIndex(k) for k in key))) codeDomains.append((value, neuman, domain)) defaultCode = [] if len(codeDomains) > 0: defaultCode.append(Declaration(Variable('int', 'domainId'))) # defaultCode.append(Declaration(Variable('auto', 'x'), # initializer=UnformattedExpression('auto','intersection.geometry().center()'))) for i, v in enumerate(codeDomains): block = Block() block.append( generateDirichletDomainCode(predefined, v[2], tempVars=tempVars)) block.append('if (domainId)') ifBlock = UnformattedBlock() ifBlock.append( 'std::fill( dirichletComponent.begin(), dirichletComponent.end(), ' + str(maxId + i + 2) + ' );') if len(v[1]) > 0: [ ifBlock.append('dirichletComponent[' + str(c) + '] = 0;') for c in v[1] ] ifBlock.append('return true;') block.append(ifBlock) defaultCode.append(block) if wholeDomain is not None: block = UnformattedBlock() block.append( 'std::fill( dirichletComponent.begin(), dirichletComponent.end(), ' + str(maxId + 1) + ' );') if len(wholeDomain[1]) > 0: [ block.append('dirichletComponent[' + str(c) + '] = 0;') for c in wholeDomain[1] ] block.append('return true;') defaultCode.append(block) defaultCode.append(return_(False)) bndId = Variable('const int', 'bndId') getBndId = UnformattedExpression( 'int', 'BoundaryIdProviderType::boundaryId( ' + integrands.arg_i.name + ' )') # getBndId = UnformattedExpression('int', 'boundaryIdGetter_.boundaryId( ' + integrands.arg_i.name + ' )') switch = SwitchStatement(bndId, default=defaultCode) for i, v in bySubDomain.items(): code = [] if len(v[1]) > 0: [ code.append('dirichletComponent[' + str(c) + '] = 0;') for c in v[1] ] code.append(return_(True)) switch.append(i, code) integrands.isDirichletIntersection = [ Declaration(bndId, initializer=getBndId), UnformattedBlock( 'std::fill( dirichletComponent.begin(), dirichletComponent.end(), ' + bndId.name + ' );'), switch ] predefined[x] = UnformattedExpression( 'auto', 'entity().geometry().global( Dune::Fem::coordinate( ' + integrands.arg_x.name + ' ) )') if wholeDomain is None: defaultCode = assign(integrands.arg_r, construct("RRangeType", 0)) else: defaultCode = generateDirichletCode(predefined, wholeDomain[0], tempVars=tempVars) switch = SwitchStatement(integrands.arg_bndId, default=defaultCode) for i, v in bySubDomain.items(): switch.append( i, generateDirichletCode(predefined, v[0], tempVars=tempVars)) for i, v in enumerate(codeDomains): switch.append( i + maxId + 2, generateDirichletCode(predefined, v[0], tempVars=tempVars)) integrands.dirichlet = [switch] return integrands
def _mapped(self, t): # Check that we have a valid input object if not isinstance(t, Terminal): error("Expecting a Terminal.") # Get modifiers accumulated by previous handler calls ngrads = self._ngrads restricted = self._restricted avg = self._avg if avg != "": error("Averaging not implemented.") # FIXME # These are the global (g) and reference (r) values if isinstance(t, FormArgument): g = t r = ReferenceValue(g) elif isinstance(t, GeometricQuantity): g = t r = g else: error("Unexpected type {0}.".format(type(t).__name__)) # Some geometry mapping objects we may need multiple times below domain = t.ufl_domain() J = Jacobian(domain) detJ = JacobianDeterminant(domain) K = JacobianInverse(domain) # Restrict geometry objects if applicable if restricted: J = J(restricted) detJ = detJ(restricted) K = K(restricted) # Create Hdiv mapping from possibly restricted geometry objects Mdiv = (1.0 / detJ) * J # Get component indices of global and reference terminal objects gtsh = g.ufl_shape # rtsh = r.ufl_shape gtcomponents = compute_indices(gtsh) # rtcomponents = compute_indices(rtsh) # Create core modified terminal, with eventual # layers of grad applied directly to the terminal, # then eventual restriction applied last for i in range(ngrads): g = Grad(g) r = ReferenceGrad(r) if restricted: g = g(restricted) r = r(restricted) # Get component indices of global and reference objects with # grads applied gsh = g.ufl_shape # rsh = r.ufl_shape # gcomponents = compute_indices(gsh) # rcomponents = compute_indices(rsh) # Get derivative component indices dsh = gsh[len(gtsh):] dcomponents = compute_indices(dsh) # Create nested array to hold expressions for global # components mapped from reference values def ndarray(shape): if len(shape) == 0: return [None] elif len(shape) == 1: return [None] * shape[-1] else: return [ndarray(shape[1:]) for i in range(shape[0])] global_components = ndarray(gsh) # Compute mapping from reference values for each global component for gtc in gtcomponents: if isinstance(t, FormArgument): # Find basic subelement and element-local component # ec, element, eoffset = t.ufl_element().extract_component2(gtc) # FIXME: Translate this correctly eoffset = 0 ec, element = t.ufl_element().extract_reference_component(gtc) # Select mapping M from element, pick row emapping = # M[ec,:], or emapping = [] if no mapping if isinstance(element, MixedElement): error("Expecting a basic element here.") mapping = element.mapping() if mapping == "contravariant Piola": # S == HDiv: # Handle HDiv elements with contravariant piola # mapping contravariant_hdiv_mapping = (1/det J) * # J * PullbackOf(o) ec, = ec emapping = Mdiv[ec, :] elif mapping == "covariant Piola": # S == HCurl: # Handle HCurl elements with covariant piola mapping # covariant_hcurl_mapping = JinvT * PullbackOf(o) ec, = ec emapping = K[:, ec] # Column of K is row of K.T elif mapping == "identity": emapping = None else: error("Unknown mapping {0}".format(mapping)) elif isinstance(t, GeometricQuantity): eoffset = 0 emapping = None else: error("Unexpected type {0}.".format(type(t).__name__)) # Create indices # if rtsh: # i = Index() if len(dsh) != ngrads: error("Mismatch between derivative shape and ngrads.") if ngrads: ii = indices(ngrads) else: ii = () # Apply mapping row to reference object if emapping: # Mapped, always nonscalar terminal Not # using IndexSum for the mapping row dot product to # keep it simple, because we don't have a slice type emapped_ops = [emapping[s] * Indexed(r, MultiIndex((FixedIndex(eoffset + s),) + ii)) for s in range(len(emapping))] emapped = sum(emapped_ops[1:], emapped_ops[0]) elif gtc: # Nonscalar terminal, unmapped emapped = Indexed(r, MultiIndex((FixedIndex(eoffset),) + ii)) elif ngrads: # Scalar terminal, unmapped, with derivatives emapped = Indexed(r, MultiIndex(ii)) else: # Scalar terminal, unmapped, no derivatives emapped = r for di in dcomponents: # Multiply derivative mapping rows, parameterized by # free column indices dmapping = as_ufl(1) for j in range(ngrads): dmapping *= K[ii[j], di[j]] # Row of K is column of JinvT # Compute mapping from reference values for this # particular global component global_value = dmapping * emapped # Apply index sums # if rtsh: # global_value = IndexSum(global_value, MultiIndex((i,))) # for j in range(ngrads): # Applied implicitly in the dmapping * emapped above # global_value = IndexSum(global_value, MultiIndex((ii[j],))) # This is the component index into the full object # with grads applied gc = gtc + di # Insert in nested list comp = global_components for i in gc[:-1]: comp = comp[i] comp[0 if gc == () else gc[-1]] = global_value # Wrap nested list in as_tensor unless we have a scalar # expression if gsh: tensor = as_tensor(global_components) else: tensor, = global_components return tensor