示例#1
0
def project(v, V, dx_, bcs=[], nm=None):

    w = TestFunction(V)
    Pv = TrialFunction(V)

    a, L = as_ufl(0), as_ufl(0)
    zerofnc = Function(V)

    for n in range(len(dx_)):

        # check if we have passed in a list of functions or a function
        if isinstance(v, list):
            fnc = v[n]
        else:
            fnc = v

        if not isinstance(fnc, constantvalue.Zero):
            a += inner(w, Pv) * dx_[n]
            L += inner(w, fnc) * dx_[n]
        else:
            a += inner(w, Pv) * dx_[n]
            L += inner(w, zerofnc) * dx_[n]

    # solve linear system for projection
    function = Function(V, name=nm)

    lp = LinearProblem(a, L, bcs=bcs, u=function)
    lp.solve()

    return function
示例#2
0
 def function_arg(self, g):
     '''Set the value of this boundary condition.'''
     if isinstance(g, function.Function) and g.function_space() != self._function_space:
         raise RuntimeError("%r is defined on incompatible FunctionSpace!" % g)
     if not isinstance(g, expression.Expression):
         try:
             # Bare constant?
             as_ufl(g)
         except UFLException:
             try:
                 # List of bare constants? Convert to UFL expression
                 g = as_ufl(as_tensor(g))
                 if g.ufl_shape != self._function_space.shape:
                     raise ValueError("%r doesn't match the shape of the function space." % (g,))
             except UFLException:
                 raise ValueError("%r is not a valid DirichletBC expression" % (g,))
     if isinstance(g, expression.Expression) or has_type(as_ufl(g), SpatialCoordinate):
         if isinstance(g, expression.Expression):
             self._expression_state = g._state
         try:
             g = function.Function(self._function_space).interpolate(g)
         # Not a point evaluation space, need to project onto V
         except NotImplementedError:
             g = projection.project(g, self._function_space)
     self._function_arg = g
     self._currently_zeroed = False
示例#3
0
 def function_arg(self, g):
     '''Set the value of this boundary condition.'''
     if isinstance(g, function.Function) and g.function_space() != self._function_space:
         raise RuntimeError("%r is defined on incompatible FunctionSpace!" % g)
     if not isinstance(g, expression.Expression):
         try:
             # Bare constant?
             as_ufl(g)
         except UFLException:
             try:
                 # List of bare constants? Convert to UFL expression
                 g = as_ufl(as_tensor(g))
                 if g.ufl_shape != self._function_space.shape:
                     raise ValueError("%r doesn't match the shape of the function space." % (g,))
             except UFLException:
                 raise ValueError("%r is not a valid DirichletBC expression" % (g,))
     if isinstance(g, expression.Expression) or has_type(as_ufl(g), SpatialCoordinate):
         if isinstance(g, expression.Expression):
             self._expression_state = g._state
         try:
             g = function.Function(self._function_space).interpolate(g)
         # Not a point evaluation space, need to project onto V
         except NotImplementedError:
             g = projection.project(g, self._function_space)
     self._function_arg = g
     self._currently_zeroed = False
示例#4
0
    def get_transition_bounds(self):
        '''Returns dictionary of `(lower, upper)` bounds for energy
transitions. See :py:meth:`get_transition_lower_bounds` for more.
'''
        lowers = self.get_transition_lower_bounds()
        upper_bound = ufl.as_ufl(self.inf_upper_bound.m_as(self.energy_unit))

        r = {}
        for k, lower in lowers.items():
            lst = []
            for k2, lower2 in lowers.items():
                if k == k2: continue

                # FIXME: this is WRONG if lower is exactly equal to lower2
                lst.append(
                    dolfin.conditional(
                        ufl.as_ufl(lower2.m) < lower.m, upper_bound, lower2.m))

            if not lst:
                lst.append(upper_bound)

            upper = self._ufl_minimum(lst)
            r[k] = (lower, upper * lower.units)

        return r
示例#5
0
 def function_arg(self, g):
     '''Set the value of this boundary condition.'''
     if isinstance(g, firedrake.Function):
         if g.function_space() != self.function_space():
             raise RuntimeError("%r is defined on incompatible FunctionSpace!" % g)
         self._function_arg = g
     elif isinstance(g, ufl.classes.Zero):
         if g.ufl_shape and g.ufl_shape != self.function_space().ufl_element().value_shape():
             raise ValueError(f"Provided boundary value {g} does not match shape of space")
         # Special case. Scalar zero for direct Function.assign.
         self._function_arg = ufl.zero()
     elif isinstance(g, ufl.classes.Expr):
         if g.ufl_shape != self.function_space().ufl_element().value_shape():
             raise RuntimeError(f"Provided boundary value {g} does not match shape of space")
         try:
             self._function_arg = firedrake.Function(self.function_space())
             self._function_arg_update = firedrake.Interpolator(g, self._function_arg).interpolate
         except (NotImplementedError, AttributeError):
             # Element doesn't implement interpolation
             self._function_arg = firedrake.Function(self.function_space()).project(g)
             self._function_arg_update = firedrake.Projector(g, self._function_arg).project
     else:
         try:
             g = as_ufl(g)
             self._function_arg = g
         except UFLException:
             try:
                 # Recurse to handle this through interpolation.
                 self.function_arg = as_ufl(as_tensor(g))
             except UFLException:
                 raise ValueError(f"{g} is not a valid DirichletBC expression")
示例#6
0
def test_imag(self):
    z0 = Zero()
    z1 = as_ufl(1.0)
    z2 = as_ufl(1j)
    z3 = ComplexValue(1+1j)

    assert Imag(z2) == z1
    assert Imag(z3) == z1
    assert Imag(z1) == z0
示例#7
0
def test_latex_formatting_of_literals():
    # Test literals
    assert expr2latex(ufl.as_ufl(2)) == "2"
    assert expr2latex(ufl.as_ufl(3.14)) == '3.14'
    assert expr2latex(ufl.as_ufl(0)) == "0"
    # These are actually converted to int before formatting:
    assert expr2latex(ufl.Identity(2)[0, 0]) == "1"
    assert expr2latex(ufl.Identity(2)[0, 1]) == "0"
    assert expr2latex(ufl.Identity(2)[1, 0]) == "0"
    assert expr2latex(ufl.Identity(2)[1, 1]) == "1"
    assert expr2latex(ufl.PermutationSymbol(3)[1, 2, 3]) == "1"
    assert expr2latex(ufl.PermutationSymbol(3)[2, 1, 3]) == "-1"
    assert expr2latex(ufl.PermutationSymbol(3)[1, 1, 3]) == "0"
示例#8
0
    def evaluate_active_stress_ode(self, t):
    
        # take care of Frank-Starling law (fiber stretch-dependent contractility)
        if self.have_frank_starling:
            
            amp_old_, na = [], 0
            for n in range(self.num_domains):

                if self.mat_active_stress[n] and self.actstress[na].frankstarling:

                    # old fiber stretch (needed for Frank-Starling law)
                    if self.mat_growth[n]: lam_fib_old = self.ma[n].fibstretch_e(self.ki.C(self.u_old), self.theta_old, self.fib_func[0])
                    else:                  lam_fib_old = self.ki.fibstretch(self.u_old, self.fib_func[0])
                    
                    amp_old_.append(self.actstress[na].amp(t-self.dt, lam_fib_old, self.amp_old))

                else:
                    
                    amp_old_.append(as_ufl(0))

            amp_old_proj = project(amp_old_, self.Vd_scalar, self.dx_)
            self.amp_old.vector.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
            self.amp_old.interpolate(amp_old_proj)
        
        tau_a_, na = [], 0
        for n in range(self.num_domains):

            if self.mat_active_stress[n]:

                # fiber stretch (needed for Frank-Starling law)
                if self.actstress[na].frankstarling:
                    if self.mat_growth[n]: lam_fib = self.ma[n].fibstretch_e(self.ki.C(self.u), self.theta, self.fib_func[0])
                    else:                  lam_fib = self.ki.fibstretch(self.u, self.fib_func[0])
                else:
                    lam_fib = as_ufl(1)
                
                tau_a_.append(self.actstress[na].tau_act(self.tau_a_old, t, self.dt, lam_fib, self.amp_old))
                
                na+=1
                
            else:
                
                tau_a_.append(as_ufl(0))
                
        # project and interpolate to quadrature function space
        tau_a_proj = project(tau_a_, self.Vd_scalar, self.dx_)
        self.tau_a.vector.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
        self.tau_a.interpolate(tau_a_proj)
示例#9
0
    def assign(self, expr, subset=None):
        r"""Set the :class:`Function` value to the pointwise value of
        expr. expr may only contain :class:`Function`\s on the same
        :class:`.FunctionSpace` as the :class:`Function` being assigned to.

        Similar functionality is available for the augmented assignment
        operators `+=`, `-=`, `*=` and `/=`. For example, if `f` and `g` are
        both Functions on the same :class:`.FunctionSpace` then::

          f += 2 * g

        will add twice `g` to `f`.

        If present, subset must be an :class:`pyop2.Subset` of this
        :class:`Function`'s ``node_set``.  The expression will then
        only be assigned to the nodes on that subset.
        """
        expr = ufl.as_ufl(expr)
        if isinstance(expr, ufl.classes.Zero):
            self.dat.zero(subset=subset)
            return self
        elif (isinstance(expr, Function)
              and expr.function_space() == self.function_space()):
            expr.dat.copy(self.dat, subset=subset)
            return self

        from firedrake import assemble_expressions
        assemble_expressions.evaluate_expression(
            assemble_expressions.Assign(self, expr), subset)
        return self
示例#10
0
    def g(self, lam):

        amp_min = self.params['amp_min']
        amp_max = self.params['amp_max']

        lam_threslo = self.params['lam_threslo']
        lam_maxlo = self.params['lam_maxlo']

        lam_threshi = self.params['lam_threshi']
        lam_maxhi = self.params['lam_maxhi']

        # Diss Hirschvogel eq. 2.107
        # TeX: g(\lambda_{\mathrm{myo}}) = \begin{cases} a_{\mathrm{min}}, & \lambda_{\mathrm{myo}} \leq \hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,lo}}, \\ a_{\mathrm{min}}+\frac{1}{2}\left(a_{\mathrm{max}}-a_{\mathrm{min}}\right)\left(1-\cos \frac{\pi(\lambda_{\mathrm{myo}}-\hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,lo}})}{\hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,lo}}-\hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,lo}}}\right), &  \hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,lo}} \leq \lambda_{\mathrm{myo}}  \leq \hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,lo}}, \\ a_{\mathrm{max}}, &  \hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,lo}} \leq \lambda_{\mathrm{myo}} \leq \hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,hi}}, \\ a_{\mathrm{min}}+\frac{1}{2}\left(a_{\mathrm{max}}-a_{\mathrm{min}}\right)\left(1-\cos \frac{\pi(\lambda_{\mathrm{myo}}-\hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,hi}})}{\hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,hi}}-\hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,hi}}}\right), & \hat{\lambda}_{\mathrm{myo}}^{\mathrm{thres,hi}} \leq \lambda_{\mathrm{myo}} \leq \hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,hi}}, \\ a_{\mathrm{min}}, & \lambda_{\mathrm{myo}} \geq \hat{\lambda}_{\mathrm{myo}}^{\mathrm{max,hi}} \end{cases}

        return conditional(
            le(lam, lam_threslo), amp_min,
            conditional(
                And(ge(lam, lam_threslo), le(lam, lam_maxlo)), amp_min + 0.5 *
                (amp_max - amp_min) * (1. - cos(pi * (lam - lam_threslo) /
                                                (lam_maxlo - lam_threslo))),
                conditional(
                    And(ge(lam, lam_maxlo), le(lam, lam_threshi)), amp_max,
                    conditional(
                        And(ge(lam, lam_threshi), le(lam, lam_maxhi)),
                        amp_min + 0.5 * (amp_max - amp_min) *
                        (1. - cos(pi * (lam - lam_maxhi) /
                                  (lam_maxhi - lam_threshi))),
                        conditional(ge(lam, lam_maxhi), amp_min, as_ufl(0))))))
示例#11
0
def handle_conditional(v, si, deps, SV_factors, FV, sv2fv, e2fi):
    fac0 = SV_factors[deps[0]]
    fac1 = SV_factors[deps[1]]
    fac2 = SV_factors[deps[2]]
    assert not fac0, "Cannot have argument in condition."

    if not (fac1 or fac2):  # non-arg ? non-arg : non-arg
        # Record non-argument subexpression
        sv2fv[si] = add_to_fv(v, FV, e2fi)
        factors = noargs
    else:
        f0 = FV[sv2fv[deps[0]]]
        f1 = FV[sv2fv[deps[1]]]
        f2 = FV[sv2fv[deps[2]]]

        # Term conditional(c, argument, non-argument) is not legal unless non-argument is 0.0
        assert fac1 or isinstance(f1, Zero)
        assert fac2 or isinstance(f2, Zero)
        assert () not in fac1
        assert () not in fac2

        z = as_ufl(0.0)

        # In general, can decompose like this:
        #    conditional(c, sum_i fi*ui, sum_j fj*uj) -> sum_i conditional(c, fi, 0)*ui + sum_j conditional(c, 0, fj)*uj
        mas = sorted(set(fac1.keys()) | set(fac2.keys()))
        factors = {}
        for k in mas:
            fi1 = fac1.get(k)
            fi2 = fac2.get(k)
            f1 = z if fi1 is None else FV[fi1]
            f2 = z if fi2 is None else FV[fi2]
            factors[k] = add_to_fv(conditional(f0, f1, f2), FV, e2fi)

    return factors
示例#12
0
def handle_conditional(v, fac, sf, F):
    fac0 = fac[0]
    fac1 = fac[1]
    fac2 = fac[2]
    assert not fac0, "Cannot have argument in condition."

    if not (fac1 or fac2):  # non-arg ? non-arg : non-arg
        raise RuntimeError("No arguments")
    else:
        f0 = sf[0]
        f1 = sf[1]
        f2 = sf[2]

        # Term conditional(c, argument, non-argument) is not legal unless non-argument is 0.0
        assert fac1 or isinstance(f1, Zero)
        assert fac2 or isinstance(f2, Zero)
        assert () not in fac1
        assert () not in fac2

        z = as_ufl(0.0)

        # In general, can decompose like this:
        #    conditional(c, sum_i fi*ui, sum_j fj*uj) -> sum_i conditional(c, fi, 0)*ui + sum_j conditional(c, 0, fj)*uj
        mas = sorted(set(fac1.keys()) | set(fac2.keys()))
        factors = {}
        for k in mas:
            fi1 = fac1.get(k)
            fi2 = fac2.get(k)
            f1 = z if fi1 is None else F.nodes[fi1]['expression']
            f2 = z if fi2 is None else F.nodes[fi2]['expression']
            factors[k] = graph_insert(F, conditional(f0, f1, f2))

    return factors
示例#13
0
def test_real(self):
    z0 = Zero()
    z1 = as_ufl(1.0)
    z2 = ComplexValue(1j)
    z3 = ComplexValue(1+1j)
    assert Real(z1) == z1
    assert Real(z3) == z1
    assert Real(z2) == z0
示例#14
0
def xtest_cpp2_compile_scalar_literals():
    M = as_ufl(0) * dx
    code = compile_form(M, 'unittest')
    print('\n', code)
    expected = 'TODO'
    assert code == expected

    M = as_ufl(3) * dx
    code = compile_form(M, 'unittest')
    print('\n', code)
    expected = 'TODO'
    assert code == expected

    M = as_ufl(1.03) * dx
    code = compile_form(M, 'unittest')
    print('\n', code)
    expected = 'TODO'
    assert code == expected
示例#15
0
    def robin_bcs(self, v, v_old):

        w, w_old = as_ufl(0), as_ufl(0)

        for r in self.bc_dict['robin']:

            if r['type'] == 'dashpot':

                if r['dir'] == 'xyz':

                    for i in range(len(r['id'])):

                        ds_ = ds(
                            subdomain_data=self.io.mt_b1,
                            subdomain_id=r['id'][i],
                            metadata={'quadrature_degree': self.quad_degree})

                        w += self.vf.deltaP_ext_robin_dashpot(
                            v, r['visc'], ds_)
                        w_old += self.vf.deltaP_ext_robin_dashpot(
                            v_old, r['visc'], ds_)

                elif r['dir'] == 'normal':  # reference normal

                    for i in range(len(r['id'])):

                        ds_ = ds(
                            subdomain_data=self.io.mt_b1,
                            subdomain_id=r['id'][i],
                            metadata={'quadrature_degree': self.quad_degree})

                        w += self.vf.deltaP_ext_robin_dashpot_normal(
                            v, r['visc'], ds_)
                        w_old += self.vf.deltaP_ext_robin_dashpot_normal(
                            v_old, r['visc'], ds_)

                else:
                    raise NameError("Unknown dir option for Robin BC!")

            else:
                raise NameError("Unknown type option for Robin BC!")

        return w, w_old
示例#16
0
def test_conditional(mode, compile_args):
    cell = ufl.triangle
    element = ufl.FiniteElement("Lagrange", cell, 1)
    u, v = ufl.TrialFunction(element), ufl.TestFunction(element)
    x = ufl.SpatialCoordinate(cell)
    condition = ufl.Or(ufl.ge(ufl.real(x[0] + x[1]), 0.1),
                       ufl.ge(ufl.real(x[1] + x[1]**2), 0.1))
    c1 = ufl.conditional(condition, 2.0, 1.0)
    a = c1 * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx

    x1x2 = ufl.real(x[0] + ufl.as_ufl(2) * x[1])
    c2 = ufl.conditional(ufl.ge(x1x2, 0), 6.0, 0.0)
    b = c2 * ufl.conj(v) * ufl.dx

    forms = [a, b]

    compiled_forms, module = ffcx.codegeneration.jit.compile_forms(
        forms,
        parameters={'scalar_type': mode},
        cffi_extra_compile_args=compile_args)

    form0 = compiled_forms[0][0].create_cell_integral(-1)
    form1 = compiled_forms[1][0].create_cell_integral(-1)

    ffi = cffi.FFI()
    c_type, np_type = float_to_type(mode)

    A1 = np.zeros((3, 3), dtype=np_type)
    w1 = np.array([1.0, 1.0, 1.0], dtype=np_type)
    c = np.array([], dtype=np.float64)

    coords = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 1.0], dtype=np.float64)

    form0.tabulate_tensor(
        ffi.cast('{type} *'.format(type=c_type), A1.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), w1.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), c.ctypes.data),
        ffi.cast('double *', coords.ctypes.data), ffi.NULL, ffi.NULL, 0)

    expected_result = np.array([[2, -1, -1], [-1, 1, 0], [-1, 0, 1]],
                               dtype=np_type)
    assert np.allclose(A1, expected_result)

    A2 = np.zeros(3, dtype=np_type)
    w2 = np.array([1.0, 1.0, 1.0], dtype=np_type)
    coords = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 1.0], dtype=np.float64)

    form1.tabulate_tensor(
        ffi.cast('{type} *'.format(type=c_type), A2.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), w2.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), c.ctypes.data),
        ffi.cast('double *', coords.ctypes.data), ffi.NULL, ffi.NULL, 0)

    expected_result = np.ones(3, dtype=np_type)
    assert np.allclose(A2, expected_result)
示例#17
0
def xtest_literal_zero_compilation():

    uexpr = as_ufl(0)

    lines, finals = compile_expression_lines(uexpr)

    expected_lines = []
    expected_finals = ['0']

    assert lines == expected_lines
    assert finals == expected_finals
示例#18
0
def xtest_literal_float_compilation():

    uexpr = as_ufl(2.56)

    lines, finals = compile_expression_lines(uexpr)

    expected_lines = []
    expected_finals = ['2.56']

    assert lines == expected_lines
    assert finals == expected_finals
示例#19
0
def test_complex_algebra(self):
    z1 = ComplexValue(1j)
    z2 = ComplexValue(1+1j)

    # Remember that ufl.algebra functions return ComplexValues, but ufl.mathfunctions return complex Python scalar
    # Any operations with a ComplexValue and a complex Python scalar promote to ComplexValue
    assert z1*z2 == ComplexValue(-1+1j)
    assert z2/z1 == ComplexValue(1-1j)
    assert pow(z2, z1) == ComplexValue((1+1j)**1j)
    assert sqrt(z2) * as_ufl(1) == ComplexValue(cmath.sqrt(1+1j))
    assert ((sin(z2) + cosh(z2) - atan(z2)) * z1) == ComplexValue((cmath.sin(1+1j) + cmath.cosh(1+1j) - cmath.atan(1+1j))*1j)
    assert (abs(z2) - ln(z2))/exp(z1) == ComplexValue((abs(1+1j) - cmath.log(1+1j))/cmath.exp(1j))
示例#20
0
 def __init__(self, lvalue, rvalue):
     """
     :arg lvalue: The coefficient to assign into.
     :arg rvalue: The pointwise expression.
     """
     if not isinstance(lvalue, ufl.Coefficient):
         raise ValueError("lvalue for pointwise assignment must be a coefficient")
     self.lvalue = lvalue
     self.rvalue = ufl.as_ufl(rvalue)
     n = len(self.lvalue.function_space())
     if n > 1:
         self.splitter = MemoizerArg(_split)
         self.splitter.n = n
    def compute_volume_large(self):

        J_all = as_ufl(0)
        for n in range(self.pb.pblarge.num_domains):

            J_all += self.pb.pblarge.ki.J(
                self.pb.pblarge.u) * self.pb.pblarge.dx_[n]

        vol = assemble_scalar(J_all)
        vol = self.pb.comm.allgather(vol)
        volume_large = sum(vol)

        if self.pb.comm.rank == 0:
            print('Volume of myocardium: %.4e' % (volume_large))
            sys.stdout.flush()

        return volume_large
示例#22
0
    def set_homeostatic_threshold(self, t):

        # time is absolute time (should only be set in first cycle)
        eps = 1.0e-14
        if t >= self.pb.t_gandr_setpoint - eps and t < self.pb.t_gandr_setpoint + self.pb.pbs.dt - eps:

            if self.pb.comm.rank == 0:
                print('Set homeostatic growth thresholds...')
                sys.stdout.flush()
            time.sleep(1)

            growth_thresolds = []
            for n in range(self.pb.pbs.num_domains):

                if self.pb.pbs.mat_growth[n]:

                    growth_settrig = self.pb.pbs.constitutive_models[
                        'MAT' + str(n + 1) + '']['growth']['growth_settrig']

                    if growth_settrig == 'fibstretch':
                        growth_thresolds.append(self.pb.pbs.ma[n].fibstretch_e(
                            self.pb.pbs.ki.C(self.pb.pbs.u), self.pb.pbs.theta,
                            self.pb.pbs.fib_func[0]))
                    elif growth_settrig == 'volstress':
                        growth_thresolds.append(
                            tr(self.pb.pbs.ma[n].M_e(
                                self.pb.pbs.u,
                                self.pb.pbs.p,
                                self.pb.pbs.ki.C(self.pb.pbs.u),
                                ivar=self.pb.pbs.internalvars)))
                    else:
                        raise NameError(
                            "Unknown growth trigger to be set as homeostatic threshold!"
                        )

                else:

                    growth_thresolds.append(as_ufl(0))

            growth_thres_proj = project(growth_thresolds,
                                        self.pb.pbs.Vd_scalar, self.pb.pbs.dx_)
            self.pb.pbs.growth_thres.vector.ghostUpdate(
                addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
            self.pb.pbs.growth_thres.interpolate(growth_thres_proj)
示例#23
0
    def dtheta_dp(self, u_, p_, ivar, theta_old_, thres, dt):
        
        theta_ = ivar["theta"]
        
        dFg_dtheta = self.F_g(theta_,tang=True)
        
        ktheta = self.res_dtheta_growth(u_, p_, ivar, theta_old_, thres, dt, 'ktheta')
        K_growth = self.res_dtheta_growth(u_, p_, ivar, theta_old_, thres, dt, 'tang')
        
        if self.growth_trig == 'volstress':
            
            tangdp = (ktheta*dt/K_growth) * ( diff(tr(self.M_e(u_,p_,self.kin.C(u_),ivar)),p_) )
            
        elif self.growth_trig == 'fibstretch':
            
            tangdp = as_ufl(0)

        else:
            raise NameError("Unkown growth_trig!")
        
        return tangdp
示例#24
0
    def compute_solid_growth_rate(self, N, t):
        
        dtheta_all = as_ufl(0)
        for n in range(self.num_domains):
            
            dtheta_all += (self.theta - self.theta_old) / (self.dt) * self.dx_[n]

        gr = assemble_scalar(dtheta_all)
        gr = self.comm.allgather(gr)
        self.growth_rate = sum(gr)

        if self.comm.rank == 0:
            print('Solid growth rate: %.4e' % (self.growth_rate))
            sys.stdout.flush()
            
            if self.io.write_results_every > 0 and N % self.io.write_results_every == 0:
                if np.isclose(t,self.dt): mode='wt'
                else: mode='a'
                fl = self.io.output_path+'/results_'+self.simname+'_growthrate.txt'
                f = open(fl, mode)
                f.write('%.16E %.16E\n' % (t,self.growth_rate))
                f.close()
示例#25
0
def test_comparison_checker(self):
    cell = triangle
    element = FiniteElement("Lagrange", cell, 1)

    u = TrialFunction(element)
    v = TestFunction(element)

    a = conditional(ge(abs(u), imag(v)), u, v)
    b = conditional(le(sqrt(abs(u)), imag(v)), as_ufl(1), as_ufl(1j))
    c = conditional(gt(abs(u), pow(imag(v), 0.5)), sin(u), cos(v))
    d = conditional(lt(as_ufl(-1), as_ufl(1)), u, v)
    e = max_value(as_ufl(0), real(u))
    f = min_value(sin(u), cos(v))
    g = min_value(sin(pow(u, 3)), cos(abs(v)))

    assert do_comparison_check(a) == conditional(ge(real(abs(u)), real(imag(v))), u, v)
    with pytest.raises(ComplexComparisonError):
        b = do_comparison_check(b)
    with pytest.raises(ComplexComparisonError):
        c = do_comparison_check(c)
    assert do_comparison_check(d) == conditional(lt(real(as_ufl(-1)), real(as_ufl(1))), u, v)
    assert do_comparison_check(e) == max_value(real(as_ufl(0)), real(real(u)))
    assert do_comparison_check(f) == min_value(real(sin(u)), real(cos(v)))
    assert do_comparison_check(g) == min_value(real(sin(pow(u, 3))), real(cos(abs(v))))
    def set_variational_forms_and_jacobians(self):

        # add constant Neumann terms for large scale problem (trigger pressures)
        self.neumann_funcs = []
        w_neumann = as_ufl(0)
        for n in range(len(self.pbsmall.surface_p_ids)):

            self.neumann_funcs.append(Function(self.pblarge.Vd_scalar))

            for i in range(len(self.pbsmall.surface_p_ids[n])):

                ds_ = ds(
                    subdomain_data=self.pblarge.io.mt_b1,
                    subdomain_id=self.pbsmall.surface_p_ids[n][i],
                    metadata={'quadrature_degree': self.pblarge.quad_degree})

                # we apply the pressure onto a fixed configuration of the G&R trigger point, determined by the displacement field u_set
                # in the last G&R cycle, we assure that growth falls below a tolerance and hence the current and the set configuration coincide
                w_neumann += self.pblarge.vf.deltaW_ext_neumann_true(
                    self.pblarge.ki.J(self.pblarge.u_set),
                    self.pblarge.ki.F(self.pblarge.u_set),
                    self.neumann_funcs[-1], ds_)

        self.pblarge.weakform_u -= w_neumann
示例#27
0
def _simplify_abs_(o, self, in_abs):
    if not in_abs:
        return o
    # Inline abs(constant)
    return ufl.as_ufl(abs(o._value))
示例#28
0
    def set_variational_forms_and_jacobians(self):

        self.cq, self.cq_old, self.dcq, self.dforce = [], [], [], []
        self.coupfuncs, self.coupfuncs_old = [], []

        # Lagrange multiplier stiffness matrix (most likely to be zero!)
        self.K_lm = PETSc.Mat().createAIJ(size=(self.num_coupling_surf,
                                                self.num_coupling_surf),
                                          bsize=None,
                                          nnz=None,
                                          csr=None,
                                          comm=self.comm)
        self.K_lm.setUp()

        # Lagrange multipliers
        self.lm, self.lm_old = self.K_lm.createVecLeft(
        ), self.K_lm.createVecLeft()

        # 3D constraint variable (volume or flux)
        self.constr, self.constr_old = [], []

        self.work_coupling, self.work_coupling_old, self.work_coupling_prestr = as_ufl(
            0), as_ufl(0), as_ufl(0)

        # coupling variational forms and Jacobian contributions
        for n in range(self.num_coupling_surf):

            self.pr0D = expression.template()

            self.coupfuncs.append(Function(
                self.pbs.Vd_scalar)), self.coupfuncs_old.append(
                    Function(self.pbs.Vd_scalar))
            self.coupfuncs[-1].interpolate(
                self.pr0D.evaluate), self.coupfuncs_old[-1].interpolate(
                    self.pr0D.evaluate)

            cq_, cq_old_ = as_ufl(0), as_ufl(0)
            for i in range(len(self.surface_c_ids[n])):

                ds_vq = ds(
                    subdomain_data=self.pbs.io.mt_b1,
                    subdomain_id=self.surface_c_ids[n][i],
                    metadata={'quadrature_degree': self.pbs.quad_degree})

                # currently, only volume or flux constraints are supported
                if self.coupling_params['constraint_quantity'] == 'volume':
                    cq_ += self.pbs.vf.volume(self.pbs.u,
                                              self.pbs.ki.J(self.pbs.u),
                                              self.pbs.ki.F(self.pbs.u), ds_vq)
                    cq_old_ += self.pbs.vf.volume(
                        self.pbs.u_old, self.pbs.ki.J(self.pbs.u_old),
                        self.pbs.ki.F(self.pbs.u_old), ds_vq)
                elif self.coupling_params['constraint_quantity'] == 'flux':
                    cq_ += self.pbs.vf.flux(self.pbs.vel,
                                            self.pbs.ki.J(self.pbs.u),
                                            self.pbs.ki.F(self.pbs.u), ds_vq)
                    cq_old_ += self.pbs.vf.flux(self.pbs.v_old,
                                                self.pbs.ki.J(self.pbs.u_old),
                                                self.pbs.ki.F(self.pbs.u_old),
                                                ds_vq)
                else:
                    raise NameError(
                        "Unknown constraint quantity! Choose either volume or flux!"
                    )

            self.cq.append(cq_), self.cq_old.append(cq_old_)
            self.dcq.append(derivative(self.cq[-1], self.pbs.u, self.pbs.du))

            df_ = as_ufl(0)
            for i in range(len(self.surface_p_ids[n])):

                ds_p = ds(subdomain_data=self.pbs.io.mt_b1,
                          subdomain_id=self.surface_p_ids[n][i],
                          metadata={'quadrature_degree': self.pbs.quad_degree})
                df_ += self.pbs.timefac * self.pbs.vf.surface(
                    self.pbs.ki.J(self.pbs.u), self.pbs.ki.F(self.pbs.u), ds_p)

                # add to solid rhs contributions
                self.work_coupling += self.pbs.vf.deltaW_ext_neumann_true(
                    self.pbs.ki.J(self.pbs.u), self.pbs.ki.F(self.pbs.u),
                    self.coupfuncs[-1], ds_p)
                self.work_coupling_old += self.pbs.vf.deltaW_ext_neumann_true(
                    self.pbs.ki.J(self.pbs.u_old),
                    self.pbs.ki.F(self.pbs.u_old), self.coupfuncs_old[-1],
                    ds_p)

                # for prestressing, true loads should act on the reference, not the current configuration
                if self.pbs.prestress_initial:
                    self.work_coupling_prestr += self.pbs.vf.deltaW_ext_neumann_refnormal(
                        self.coupfuncs_old[-1], ds_p)

            self.dforce.append(df_)

        # minus sign, since contribution to external work!
        self.pbs.weakform_u += -self.pbs.timefac * self.work_coupling - (
            1. - self.pbs.timefac) * self.work_coupling_old

        # add to solid Jacobian
        self.pbs.jac_uu += -self.pbs.timefac * derivative(
            self.work_coupling, self.pbs.u, self.pbs.du)
示例#29
0
def _simplify_abs_(o, self, in_abs):
    if not in_abs:
        return o
    # Inline abs(constant)
    return ufl.as_ufl(abs(o._value))
示例#30
0
def compute_argument_factorization(S, rank):
    """Factorizes a scalar expression graph w.r.t. scalar Argument components.

    The result is a triplet (AV, FV, IM):

      - The scalar argument component subgraph:

          AV[ai] = v

        with the property

          SV[arg_indices] == AV[:]

      - An expression graph vertex list with all non-argument factors:

          FV[fi] = f

        with the property that none of the expressions depend on Arguments.

      - A dict representation of the final integrand of rank r:

          IM = { (ai1_1, ..., ai1_r): fi1, (ai2_1, ..., ai2_r): fi2, }

        This mapping represents the factorization of SV[-1] w.r.t. Arguments s.t.:

          SV[-1] := sum(FV[fik] * product(AV[ai] for ai in aik) for aik, fik in IM.items())

        where := means equivalence in the mathematical sense,
        of course in a different technical representation.

    """
    # Extract argument component subgraph
    arg_indices = build_argument_indices(S)
    AV = [S.nodes[i]['expression'] for i in arg_indices]

    # Data structure for building non-argument factors
    F = ExpressionGraph()
    # Attach a quick lookup dict for expression to index
    F.e2i = {}

    # Insert arguments as first entries in factorisation graph
    # They will not be connected to other nodes, but will be available
    # and referred to by the factorisation indices of the 'target' nodes.
    for v in AV:
        graph_insert(F, v)

    # Adding 1.0 as an expression allows avoiding special representation
    # of arguments when first visited by representing "v" as "1*v"
    one_index = graph_insert(F, as_ufl(1.0))

    # Intermediate factorization for each vertex in SV on the format
    # SV_factors[si] = None # if SV[si] does not depend on arguments
    # SV_factors[si] = { argkey: fi } # if SV[si] does depend on arguments, where:
    #   FV[fi] is the expression SV[si] with arguments factored out
    #   argkey is a tuple with indices into SV for each of the argument components SV[si] depends on
    # SV_factors[si] = { argkey1: fi1, argkey2: fi2, ... } # if SV[si]
    # is a linear combination of multiple argkey configurations

    # Factorize each subexpression in order:
    for si, attr in S.nodes.items():
        deps = S.out_edges[si]
        v = attr['expression']

        if si in arg_indices:
            assert len(deps) == 0
            # v is a modified Argument
            factors = {(si, ): one_index}
        else:
            fac = [S.nodes[d]['factors'] for d in deps]
            if not any(fac):
                # Entirely scalar (i.e. no arg factors)
                # Just add unchanged to F
                graph_insert(F, v)
                factors = noargs
            else:
                # Get scalar factors for dependencies
                # which do not have arg factors
                sf = []
                for i, d in enumerate(deps):
                    if fac[i]:
                        sf.append(None)
                    else:
                        sf.append(S.nodes[d]['expression'])
                # Use appropriate handler to deal with Sum, Product, etc.
                factors = handler(v, fac, sf, F)

        attr['factors'] = factors

    assert len(F.nodes) == len(F.e2i)

    # Find the (only) node in S that is marked as 'target'
    # Should always be the last one.
    S_targets = [i for i, v in S.nodes.items() if v.get('target', False)]
    assert len(S_targets) == 1
    S_target = S_targets[0]

    # Get the factorizations of the target values
    if S.nodes[S_target]['factors'] == {}:
        if rank == 0:
            # Functionals and expressions: store as no args * factor
            factors = {(): F.e2i[S.nodes[S_target]['expression']]}
        else:
            # Zero form of arity 1 or higher: make factors empty
            factors = {}
    else:
        # Forms of arity 1 or higher:
        # Map argkeys from indices into SV to indices into AV,
        # and resort keys for canonical representation
        factors = {
            tuple(sorted(arg_indices.index(si) for si in argkey)): fi
            for argkey, fi in S.nodes[S_target]['factors'].items()
        }
    # Expecting all term keys to have length == rank
    # (this assumption will eventually have to change if we
    # implement joint bilinear+linear form factorization here)
    assert all(len(k) == rank for k in factors)

    # Indices into F that are needed for final result
    for i in factors.values():
        F.nodes[i]['target'] = []
    for k in factors:
        i = factors[k]
        F.nodes[i]['target'] += [k]

    # Compute dependencies in FV
    for i, v in F.nodes.items():
        expr = v['expression']
        if not expr._ufl_is_terminal_ and not expr._ufl_is_terminal_modifier_:
            for o in expr.ufl_operands:
                F.add_edge(i, F.e2i[o])

    return F
示例#31
0
    def neumann_bcs(self, V, V_real):

        w, w_old = as_ufl(0), as_ufl(0)

        for n in self.bc_dict['neumann']:

            if n['dir'] == 'xyz':

                func, func_old = Function(V), Function(V)

                if 'curve' in n.keys():
                    load = expression.template_vector()
                    load.val_x, load.val_y, load.val_z = self.ti.timecurves(
                        n['curve'][0])(self.ti.t_init), self.ti.timecurves(
                            n['curve'][1])(self.ti.t_init), self.ti.timecurves(
                                n['curve'][2])(self.ti.t_init)
                    func.interpolate(load.evaluate), func_old.interpolate(
                        load.evaluate)
                    self.ti.funcs_to_update_vec.append({
                        func: [
                            self.ti.timecurves(n['curve'][0]),
                            self.ti.timecurves(n['curve'][1]),
                            self.ti.timecurves(n['curve'][2])
                        ]
                    })
                    self.ti.funcs_to_update_vec_old.append({
                        func_old: [
                            self.ti.timecurves(n['curve'][0]),
                            self.ti.timecurves(n['curve'][1]),
                            self.ti.timecurves(n['curve'][2])
                        ]
                    })
                else:
                    func.vector.set(
                        n['val']
                    )  # currently only one value for all directions - use constant load function otherwise!

                for i in range(len(n['id'])):

                    ds_ = ds(subdomain_data=self.io.mt_b1,
                             subdomain_id=n['id'][i],
                             metadata={'quadrature_degree': self.quad_degree})

                    w += self.vf.deltaP_ext_neumann(func, ds_)
                    w_old += self.vf.deltaP_ext_neumann(func_old, ds_)

            elif n['dir'] == 'normal':  # reference normal

                func, func_old = Function(V_real), Function(V_real)

                if 'curve' in n.keys():
                    load = expression.template()
                    load.val = self.ti.timecurves(n['curve'])(self.ti.t_init)
                    func.interpolate(load.evaluate), func_old.interpolate(
                        load.evaluate)
                    self.ti.funcs_to_update.append(
                        {func: self.ti.timecurves(n['curve'])})
                    self.ti.funcs_to_update_old.append(
                        {func_old: self.ti.timecurves(n['curve'])})
                else:
                    func.vector.set(n['val'])

                for i in range(len(n['id'])):

                    ds_ = ds(subdomain_data=self.io.mt_b1,
                             subdomain_id=n['id'][i],
                             metadata={'quadrature_degree': self.quad_degree})

                    w += self.vf.deltaP_ext_neumann_normal(func, ds_)
                    w_old += self.vf.deltaP_ext_neumann_normal(func_old, ds_)

            else:
                raise NameError("Unknown dir option for Neumann BC!")

        return w, w_old
示例#32
0
    def set_variational_forms_and_jacobians(self):

        # set form for acceleration
        self.acc = self.ti.set_acc(self.v, self.v_old, self.a_old)

        # kinetic, internal, and pressure virtual power
        self.deltaP_kin, self.deltaP_kin_old = as_ufl(0), as_ufl(0)
        self.deltaP_int, self.deltaP_int_old = as_ufl(0), as_ufl(0)
        self.deltaP_p, self.deltaP_p_old = as_ufl(0), as_ufl(0)

        for n in range(self.num_domains):

            if self.timint != 'static':
                # kinetic virtual power
                self.deltaP_kin += self.vf.deltaP_kin(self.acc, self.v,
                                                      self.rho[n], self.dx_[n])
                self.deltaP_kin_old += self.vf.deltaP_kin(
                    self.a_old, self.v_old, self.rho[n], self.dx_[n])

            # internal virtual power
            self.deltaP_int += self.vf.deltaP_int(
                self.ma[n].sigma(self.v, self.p), self.dx_[n])
            self.deltaP_int_old += self.vf.deltaP_int(
                self.ma[n].sigma(self.v_old, self.p_old), self.dx_[n])

            # pressure virtual power
            self.deltaP_p += self.vf.deltaP_int_pres(self.v, self.dx_[n])
            self.deltaP_p_old += self.vf.deltaP_int_pres(
                self.v_old, self.dx_[n])

        # external virtual power (from Neumann or Robin boundary conditions, body forces, ...)
        w_neumann, w_neumann_old, w_robin, w_robin_old = as_ufl(0), as_ufl(
            0), as_ufl(0), as_ufl(0)
        if 'neumann' in self.bc_dict.keys():
            w_neumann, w_neumann_old = self.bc.neumann_bcs(
                self.V_v, self.Vd_scalar)
        if 'robin' in self.bc_dict.keys():
            w_robin, w_robin_old = self.bc.robin_bcs(self.v, self.v_old)

        # TODO: Body forces!
        self.deltaP_ext = w_neumann + w_robin
        self.deltaP_ext_old = w_neumann_old + w_robin_old

        self.timefac_m, self.timefac = self.ti.timefactors()

        ### full weakforms

        # kinetic plus internal minus external virtual power
        self.weakform_u = self.timefac_m * self.deltaP_kin + (1.-self.timefac_m) * self.deltaP_kin_old + \
                          self.timefac   * self.deltaP_int + (1.-self.timefac)   * self.deltaP_int_old - \
                          self.timefac   * self.deltaP_ext - (1.-self.timefac)   * self.deltaP_ext_old

        self.weakform_p = self.timefac * self.deltaP_p + (
            1. - self.timefac) * self.deltaP_p_old

        # Reynolds number: ratio of inertial to viscous forces
        #self.Re = sqrt(dot(self.vf.f_inert(self.acc,self.v,self.rho), self.vf.f_inert(self.acc,self.v,self.rho))) / sqrt(dot(self.vf.f_viscous(self.ma[0].sigma(self.v, self.p)), self.vf.f_viscous(self.ma[0].sigma(self.v, self.p))))

        if self.order_vel == self.order_pres:

            raise ValueError(
                "Equal order velocity and pressure interpolation requires stabilization! Not yet implemented! Use order_vel > order_pres."
            )

            #dx1_stab = dx(subdomain_data=self.io.mt_d, subdomain_id=1, metadata={'quadrature_degree': 2*3})

            ## stabilization stuff - TODO: FIXME and finish!!!
            #res_v_strong = self.vf.residual_v_strong(self.acc, self.v, self.rho, self.ma[0].sigma(self.v, self.p))
            #res_v_strong_old = self.vf.residual_v_strong(self.a_old, self.v_old, self.rho, self.ma[0].sigma(self.v_old, self.p_old))

            #res_p_strong = self.vf.residual_p_strong(self.v)
            #res_p_strong_old = self.vf.residual_p_strong(self.v_old)

            #vnorm, vnorm_old = sqrt(dot(self.v, self.v)), sqrt(dot(self.v_old, self.v_old))

            #nu = 0.004/self.rho
            #Cinv = 16.*self.Re
            #tau_SUPG = Min(self.io.h0**2./(Cinv*nu), self.io.h0/(2.*vnorm))

            ##tau = ( (2.*self.dt)**2. + (2.0*vnorm_/self.io.h0)**2 + (4.0*nu/self.io.h0**2.)**2. )**(-0.5)

            ##delta = conditional(ge(vnorm,1.0e-8), self.io.h0/(2.*vnorm), 0.)
            ##delta_old = conditional(ge(vnorm_old,1.0e-8), self.io.h0/(2.*vnorm_old), 0.)

            #stab_v     = tau_SUPG * dot(dot(self.v, grad(self.var_v)),res_v_strong)*dx1_stab

            ##stab_p     = tau_PSPG * dot(dot(self.v, grad(self.var_v)),res_p_strong)*dx1_stab

            #self.weakform_u += self.timefac * stab_v #+ (1.-self.timefac) * stab_old

            ##self.weakform_p += tau_SUPG*inner(grad(self.var_p), res_strong)*self.dx1

        ### Jacobians

        self.jac_uu = derivative(self.weakform_u, self.v, self.dv)
        self.jac_up = derivative(self.weakform_u, self.p, self.dp)
        self.jac_pu = derivative(self.weakform_p, self.v, self.dv)

        # for saddle-point block-diagonal preconditioner - TODO: Doesn't work very well...
        self.a_p11 = as_ufl(0)

        for n in range(self.num_domains):
            self.a_p11 += inner(self.dp, self.var_p) * self.dx_[n]
示例#33
0
    def __init__(self,
                 io_params,
                 time_params,
                 fem_params,
                 constitutive_models,
                 bc_dict,
                 time_curves,
                 io,
                 comm=None):
        problem_base.__init__(self, io_params, time_params, comm)

        self.problem_physics = 'fluid'

        self.simname = io_params['simname']

        self.io = io

        # number of distinct domains (each one has to be assigned a own material model)
        self.num_domains = len(constitutive_models)

        self.order_vel = fem_params['order_vel']
        self.order_pres = fem_params['order_pres']
        self.quad_degree = fem_params['quad_degree']

        # collect domain data
        self.dx_, self.rho = [], []
        for n in range(self.num_domains):
            # integration domains
            self.dx_.append(
                dx(subdomain_data=self.io.mt_d,
                   subdomain_id=n + 1,
                   metadata={'quadrature_degree': self.quad_degree}))
            # data for inertial forces: density
            self.rho.append(constitutive_models['MAT' + str(n + 1) +
                                                '']['inertia']['rho'])

        self.incompressible_2field = True  # always true!
        self.localsolve = False  # no idea what might have to be solved locally...
        self.prestress_initial = False  # guess prestressing in fluid is somehow senseless...
        self.p11 = as_ufl(
            0
        )  # can't think of a fluid case with non-zero 11-block in system matrix...

        # type of discontinuous function spaces
        if str(self.io.mesh.ufl_cell()) == 'tetrahedron' or str(
                self.io.mesh.ufl_cell()) == 'triangle3D':
            dg_type = "DG"
            if (self.order_vel > 1
                    or self.order_pres > 1) and self.quad_degree < 3:
                raise ValueError(
                    "Use at least a quadrature degree of 3 or more for higher-order meshes!"
                )
        elif str(self.io.mesh.ufl_cell()) == 'hexahedron' or str(
                self.io.mesh.ufl_cell()) == 'quadrilateral3D':
            dg_type = "DQ"
            if (self.order_vel > 1
                    or self.order_pres > 1) and self.quad_degree < 5:
                raise ValueError(
                    "Use at least a quadrature degree of 5 or more for higher-order meshes!"
                )
        else:
            raise NameError("Unknown cell/element type!")

        # create finite element objects for v and p
        self.P_v = VectorElement("CG", self.io.mesh.ufl_cell(), self.order_vel)
        self.P_p = FiniteElement("CG", self.io.mesh.ufl_cell(),
                                 self.order_pres)
        # function spaces for v and p
        self.V_v = FunctionSpace(self.io.mesh, self.P_v)
        self.V_p = FunctionSpace(self.io.mesh, self.P_p)

        # a discontinuous tensor, vector, and scalar function space
        self.Vd_tensor = TensorFunctionSpace(self.io.mesh,
                                             (dg_type, self.order_vel - 1))
        self.Vd_vector = VectorFunctionSpace(self.io.mesh,
                                             (dg_type, self.order_vel - 1))
        self.Vd_scalar = FunctionSpace(self.io.mesh,
                                       (dg_type, self.order_vel - 1))

        # functions
        self.dv = TrialFunction(self.V_v)  # Incremental velocity
        self.var_v = TestFunction(self.V_v)  # Test function
        self.dp = TrialFunction(self.V_p)  # Incremental pressure
        self.var_p = TestFunction(self.V_p)  # Test function
        self.v = Function(self.V_v, name="Velocity")
        self.p = Function(self.V_p, name="Pressure")
        # values of previous time step
        self.v_old = Function(self.V_v)
        self.a_old = Function(self.V_v)
        self.p_old = Function(self.V_p)

        self.ndof = self.v.vector.getSize() + self.p.vector.getSize()

        # initialize fluid time-integration class
        self.ti = timeintegration.timeintegration_fluid(
            time_params, fem_params, time_curves, self.t_init, self.comm)

        # initialize kinematics_constitutive class
        self.ki = fluid_kinematics_constitutive.kinematics()

        # initialize material/constitutive class
        self.ma = []
        for n in range(self.num_domains):
            self.ma.append(
                fluid_kinematics_constitutive.constitutive(
                    self.ki, constitutive_models['MAT' + str(n + 1) + '']))

        # initialize fluid variational form class
        self.vf = fluid_variationalform.variationalform(
            self.var_v, self.dv, self.var_p, self.dp, self.io.n0)

        # initialize boundary condition class
        self.bc = boundaryconditions.boundary_cond_fluid(
            bc_dict, fem_params, self.io, self.ki, self.vf, self.ti)

        self.bc_dict = bc_dict

        # Dirichlet boundary conditions
        if 'dirichlet' in self.bc_dict.keys():
            self.bc.dirichlet_bcs(self.V_v)

        self.set_variational_forms_and_jacobians()
示例#34
0
def build_uflacs_ir(cell, integral_type, entitytype,
                    integrands, tensor_shape,
                    coefficient_numbering,
                    quadrature_rules, parameters):
    # The intermediate representation dict we're building and returning here
    ir = {}

    # Extract uflacs specific optimization and code generation parameters
    p = parse_uflacs_optimization_parameters(parameters, integral_type)

    # Pass on parameters for consumption in code generation
    ir["params"] = p

    # { ufl coefficient: count }
    ir["coefficient_numbering"] = coefficient_numbering

    # Shared unique tables for all quadrature loops
    ir["unique_tables"] = {}
    ir["unique_table_types"] = {}

    # Shared piecewise expr_ir for all quadrature loops
    ir["piecewise_ir"] = empty_expr_ir()

    # { num_points: expr_ir for one integrand }
    ir["varying_irs"] = {}

    # Temporary data structures to build shared piecewise data
    pe2i = {}
    piecewise_modified_argument_indices = {}

    # Whether we expect the quadrature weight to be applied or not
    # (in some cases it's just set to 1 in ufl integral scaling)
    tdim = cell.topological_dimension()
    expect_weight = (
        integral_type not in ("expression",) + point_integral_types
        and (entitytype == "cell"
            or (entitytype == "facet" and tdim > 1)
            or (integral_type in custom_integral_types)
            )
        )

    if integral_type == "expression":
        # TODO: Figure out how to get non-integrand expressions in here, this is just a draft:
        # Analyse all expressions in one list
        assert isinstance(integrands, (tuple, list))
        all_num_points = [None]
        cases = [(None, integrands)]
    else:
        # Analyse each num_points/integrand separately
        assert isinstance(integrands, dict)
        all_num_points = sorted(integrands.keys())
        cases = [(num_points, [integrands[num_points]])
                 for num_points in all_num_points]
    ir["all_num_points"] = all_num_points

    for num_points, expressions in cases:
        # Rebalance order of nested terminal modifiers
        expressions = [balance_modifiers(expr) for expr in expressions]

        # Build initial scalar list-based graph representation
        V, V_deps, V_targets = build_scalar_graph(expressions)

        # Build terminal_data from V here before factorization.
        # Then we can use it to derive table properties for all modified terminals,
        # and then use that to rebuild the scalar graph more efficiently before
        # argument factorization. We can build terminal_data again after factorization
        # if that's necessary.
        initial_terminal_indices = [i for i, v in enumerate(V)
                                    if is_modified_terminal(v)]
        initial_terminal_data = [analyse_modified_terminal(V[i])
                                 for i in initial_terminal_indices]
        unique_tables, unique_table_types, unique_table_num_dofs, mt_unique_table_reference = \
            build_optimized_tables(num_points, quadrature_rules,
                cell, integral_type, entitytype, initial_terminal_data,
                ir["unique_tables"], p["enable_table_zero_compression"],
                rtol=p["table_rtol"], atol=p["table_atol"])

        # Replace some scalar modified terminals before reconstructing expressions
        # (could possibly use replace() on target expressions instead)
        z = as_ufl(0.0)
        one = as_ufl(1.0)
        for i, mt in zip(initial_terminal_indices, initial_terminal_data):
            if isinstance(mt.terminal, QuadratureWeight):
                # Replace quadrature weight with 1.0, will be added back later
                V[i] = one
            else:
                # Set modified terminals with zero tables to zero
                tr = mt_unique_table_reference.get(mt)
                if tr is not None and tr.ttype == "zeros":
                    V[i] = z

        # Propagate expression changes using dependency list
        for i in range(len(V)):
            deps = [V[j] for j in V_deps[i]]
            if deps:
                V[i] = V[i]._ufl_expr_reconstruct_(*deps)

        # Rebuild scalar target expressions and graph
        # (this may be overkill and possible to optimize
        # away if it turns out to be costly)
        expressions = [V[i] for i in V_targets]

        # Rebuild scalar list-based graph representation
        SV, SV_deps, SV_targets = build_scalar_graph(expressions)
        assert all(i < len(SV) for i in SV_targets)

        # Compute factorization of arguments
        (argument_factorizations, modified_arguments,
             FV, FV_deps, FV_targets) = \
            compute_argument_factorization(SV, SV_deps, SV_targets, len(tensor_shape))
        assert len(SV_targets) == len(argument_factorizations)       

        # TODO: Still expecting one target variable in code generation
        assert len(argument_factorizations) == 1
        argument_factorization, = argument_factorizations

        # Store modified arguments in analysed form
        for i in range(len(modified_arguments)):
            modified_arguments[i] = analyse_modified_terminal(modified_arguments[i])

        # Build set of modified_terminal indices into factorized_vertices
        modified_terminal_indices = [i for i, v in enumerate(FV)
                                     if is_modified_terminal(v)]

        # Build set of modified terminal ufl expressions
        modified_terminals = [analyse_modified_terminal(FV[i])
                              for i in modified_terminal_indices]

        # Make it easy to get mt object from FV index
        FV_mts = [None]*len(FV)
        for i, mt in zip(modified_terminal_indices, modified_terminals):
            FV_mts[i] = mt

        # Mark active modified arguments
        #active_modified_arguments = numpy.zeros(len(modified_arguments), dtype=int)
        #for ma_indices in argument_factorization:
        #    for j in ma_indices:
        #        active_modified_arguments[j] = 1

        # Dependency analysis
        inv_FV_deps, FV_active, FV_piecewise, FV_varying = \
            analyse_dependencies(FV, FV_deps, FV_targets,
                                 modified_terminal_indices,
                                 modified_terminals,
                                 mt_unique_table_reference)

        # Extend piecewise V with unique new FV_piecewise vertices
        pir = ir["piecewise_ir"]
        for i, v in enumerate(FV):
            if FV_piecewise[i]:
                j = pe2i.get(v)
                if j is None:
                    j = len(pe2i)
                    pe2i[v] = j
                    pir["V"].append(v)
                    pir["V_active"].append(1)
                    mt = FV_mts[i]
                    if mt is not None:
                        pir["mt_tabledata"][mt] = mt_unique_table_reference.get(mt)
                    pir["V_mts"].append(mt)

        # Extend piecewise modified_arguments list with unique new items
        for mt in modified_arguments:
            ma = piecewise_modified_argument_indices.get(mt)
            if ma is None:
                ma = len(pir["modified_arguments"])
                pir["modified_arguments"].append(mt)
                piecewise_modified_argument_indices[mt] = ma

        # Loop over factorization terms
        block_contributions = defaultdict(list)
        for ma_indices, fi in sorted(argument_factorization.items()):
            # Get a bunch of information about this term
            rank = len(ma_indices)
            trs = tuple(mt_unique_table_reference[modified_arguments[ai]] for ai in ma_indices)

            unames = tuple(tr.name for tr in trs)
            ttypes = tuple(tr.ttype for tr in trs)
            assert not any(tt == "zeros" for tt in ttypes)

            blockmap = tuple(tr.dofmap for tr in trs)

            block_is_uniform = all(tr.is_uniform for tr in trs)

            # Collect relevant restrictions to identify blocks
            # correctly in interior facet integrals
            block_restrictions = []
            for i, ma in enumerate(ma_indices):
                if trs[i].is_uniform:
                    r = None
                else:
                    r = modified_arguments[ma].restriction
                block_restrictions.append(r)
            block_restrictions = tuple(block_restrictions)

            # Store piecewise status for fi and translate
            # index to piecewise scope if relevant
            factor_is_piecewise = FV_piecewise[fi]
            if factor_is_piecewise:
                factor_index = pe2i[FV[fi]]
            else:
                factor_index = fi

            # TODO: Add separate block modes for quadrature
            # Both arguments in quadrature elements
            """
            for iq
                fw = f*w
                #for i
                #    for j
                #        B[i,j] = fw*U[i]*V[j] = 0 if i != iq or j != iq
                BQ[iq] = B[iq,iq] = fw
            for (iq) 
                A[iq+offset0, iq+offset1] = BQ[iq]
            """
            # One argument in quadrature element
            """
            for iq
                fw[iq] = f*w
                #for i
                #    for j
                #        B[i,j] = fw*UQ[i]*V[j] = 0 if i != iq
                for j
                    BQ[iq,j] = fw[iq]*V[iq,j]
            for (iq) for (j)
                A[iq+offset, j+offset] = BQ[iq,j]
            """

            # Decide how to handle code generation for this block
            if p["enable_preintegration"] and (factor_is_piecewise
                    and rank > 0 and "quadrature" not in ttypes):
                # - Piecewise factor is an absolute prerequisite
                # - Could work for rank 0 as well but currently doesn't
                # - Haven't considered how quadrature elements work out
                block_mode = "preintegrated"
            elif p["enable_premultiplication"] and (rank > 0
                    and all(tt in piecewise_ttypes for tt in ttypes)):
                # Integrate functional in quadloop, scale block after quadloop
                block_mode = "premultiplied"
            elif p["enable_sum_factorization"]:
                if (rank == 2 and any(tt in piecewise_ttypes for tt in ttypes)):
                    # Partial computation in quadloop of f*u[i],
                    # compute (f*u[i])*v[i] outside quadloop,
                    # (or with u,v swapped)
                    block_mode = "partial"
                else:
                    # Full runtime integration of f*u[i]*v[j],
                    # can still do partial computation in quadloop of f*u[i]
                    # but must compute (f*u[i])*v[i] as well inside quadloop.
                    # (or with u,v swapped)
                    block_mode = "full"
            else:
                # Use full runtime integration with nothing fancy going on
                block_mode = "safe"

            # Carry out decision
            if block_mode == "preintegrated":
                # Add to contributions:
                # P = sum_q weight*u*v;      preintegrated here
                # B[...] = f * P[...];       generated after quadloop
                # A[blockmap] += B[...];     generated after quadloop

                cache = ir["piecewise_ir"]["preintegrated_blocks"]

                block_is_transposed = False
                pname = cache.get(unames)

                # Reuse transpose to save memory
                if p["enable_block_transpose_reuse"] and pname is None and len(unames) == 2:
                    pname = cache.get((unames[1], unames[0]))
                    if pname is not None:
                        # Cache hit on transpose
                        block_is_transposed = True

                if pname is None:
                    # Cache miss, precompute block
                    weights = quadrature_rules[num_points][1]
                    if integral_type == "interior_facet":
                        ptable = integrate_block_interior_facets(weights, unames, ttypes,
                            unique_tables, unique_table_num_dofs)
                    else:
                        ptable = integrate_block(weights, unames, ttypes,
                            unique_tables, unique_table_num_dofs)
                    ptable = clamp_table_small_numbers(ptable, rtol=p["table_rtol"], atol=p["table_atol"])

                    pname = "PI%d" % (len(cache,))
                    cache[unames] = pname
                    unique_tables[pname] = ptable
                    unique_table_types[pname] = "preintegrated"

                assert factor_is_piecewise
                block_unames = (pname,)
                blockdata = preintegrated_block_data_t(block_mode, ttypes,
                                                       factor_index, factor_is_piecewise,
                                                       block_unames, block_restrictions,
                                                       block_is_transposed, block_is_uniform,
                                                       pname)
                block_is_piecewise = True

            elif block_mode == "premultiplied":
                # Add to contributions:
                # P = u*v;                        computed here
                # FI = sum_q weight * f;          generated inside quadloop
                # B[...] = FI * P[...];           generated after quadloop
                # A[blockmap] += B[...];          generated after quadloop

                cache = ir["piecewise_ir"]["premultiplied_blocks"]

                block_is_transposed = False
                pname = cache.get(unames)

                # Reuse transpose to save memory
                if p["enable_block_transpose_reuse"] and pname is None and len(unames) == 2:
                    pname = cache.get((unames[1], unames[0]))
                    if pname is not None:
                        # Cache hit on transpose
                        block_is_transposed = True

                if pname is None:
                    # Cache miss, precompute block
                    if integral_type == "interior_facet":
                        ptable = multiply_block_interior_facets(0, unames, ttypes, unique_tables, unique_table_num_dofs)
                    else:
                        ptable = multiply_block(0, unames, ttypes, unique_tables, unique_table_num_dofs)
                    pname = "PM%d" % (len(cache,))
                    cache[unames] = pname
                    unique_tables[pname] = ptable
                    unique_table_types[pname] = "premultiplied"

                block_unames = (pname,)
                blockdata = premultiplied_block_data_t(block_mode, ttypes,
                                                       factor_index, factor_is_piecewise,
                                                       block_unames, block_restrictions,
                                                       block_is_transposed, block_is_uniform,
                                                       pname)
                block_is_piecewise = False

            elif block_mode == "scaled":  # TODO: Add mode, block is piecewise but choose not to be premultiplied
                # Add to contributions:
                # FI = sum_q weight * f;          generated inside quadloop
                # B[...] = FI * u * v;            generated after quadloop
                # A[blockmap] += B[...];          generated after quadloop
                raise NotImplementedError("scaled block mode not implemented.")
                # (probably need mostly the same data as premultiplied, except no P table name or values)
                block_is_piecewise = False

            elif block_mode in ("partial", "full", "safe"):
                # Translate indices to piecewise context if necessary
                block_is_piecewise = factor_is_piecewise and not expect_weight
                ma_data = []
                for i, ma in enumerate(ma_indices):
                    if trs[i].is_piecewise:
                        ma_index = piecewise_modified_argument_indices[modified_arguments[ma]]
                    else:
                        block_is_piecewise = False
                        ma_index = ma
                    ma_data.append(ma_data_t(ma_index, trs[i]))

                block_is_transposed = False  # FIXME: Handle transposes for these block types

                if block_mode == "partial":
                    # Add to contributions:
                    # P[i] = sum_q weight * f * u[i];  generated inside quadloop
                    # B[i,j] = P[i] * v[j];            generated after quadloop (where v is the piecewise ma)
                    # A[blockmap] += B[...];           generated after quadloop

                    # Find first piecewise index TODO: Is last better? just reverse range here
                    for i in range(rank):
                        if trs[i].is_piecewise:
                            piecewise_ma_index = i
                            break
                    assert rank == 2
                    not_piecewise_ma_index = 1 - piecewise_ma_index
                    block_unames = (unames[not_piecewise_ma_index],)
                    blockdata = partial_block_data_t(block_mode,  ttypes,
                                                     factor_index, factor_is_piecewise,
                                                     block_unames, block_restrictions,
                                                     block_is_transposed,
                                                     tuple(ma_data), piecewise_ma_index)
                elif block_mode in ("full", "safe"):
                    # Add to contributions:
                    # B[i] = sum_q weight * f * u[i] * v[j];  generated inside quadloop
                    # A[blockmap] += B[i];                    generated after quadloop

                    block_unames = unames
                    blockdata = full_block_data_t(block_mode, ttypes,
                                                  factor_index, factor_is_piecewise,
                                                  block_unames, block_restrictions,
                                                  block_is_transposed,
                                                  tuple(ma_data))
            else:
                error("Invalid block_mode %s" % (block_mode,))

            if block_is_piecewise:
                # Insert in piecewise expr_ir
                ir["piecewise_ir"]["block_contributions"][blockmap].append(blockdata)
            else:
                # Insert in varying expr_ir for this quadrature loop
                block_contributions[blockmap].append(blockdata)

        # Figure out which table names are referenced in unstructured partition
        active_table_names = set()
        for i, mt in zip(modified_terminal_indices, modified_terminals):
            tr = mt_unique_table_reference.get(mt)
            if tr is not None and FV_active[i]:
                active_table_names.add(tr.name)

        # Figure out which table names are referenced in blocks
        for blockmap, contributions in chain(block_contributions.items(),
                                             ir["piecewise_ir"]["block_contributions"].items()):
            for blockdata in contributions:
                if blockdata.block_mode in ("preintegrated", "premultiplied"):
                    active_table_names.add(blockdata.name)
                elif blockdata.block_mode in ("partial", "full", "safe"):
                    for mad in blockdata.ma_data:
                        active_table_names.add(mad.tabledata.name)

        # Record all table types before dropping tables
        ir["unique_table_types"].update(unique_table_types)

        # Drop tables not referenced from modified terminals
        # and tables of zeros and ones
        unused_ttypes = ("zeros", "ones", "quadrature")
        keep_table_names = set()
        for name in active_table_names:
            ttype = ir["unique_table_types"][name]
            if ttype not in unused_ttypes:
                if name in unique_tables:
                    keep_table_names.add(name)
        unique_tables = { name: unique_tables[name]
                          for name in keep_table_names }

        # Add to global set of all tables
        for name, table in unique_tables.items():
            tbl = ir["unique_tables"].get(name)
            if tbl is not None and not numpy.allclose(tbl, table, rtol=p["table_rtol"], atol=p["table_atol"]):
                error("Table values mismatch with same name.")
        ir["unique_tables"].update(unique_tables)

        # Analyse active terminals to check what we'll need to generate code for
        active_mts = []
        for i, mt in zip(modified_terminal_indices, modified_terminals):
            if FV_active[i]:
                active_mts.append(mt)

        # Figure out if we need to access CellCoordinate to
        # avoid generating quadrature point table otherwise
        if integral_type == "cell":
            need_points = any(isinstance(mt.terminal, CellCoordinate)
                              for mt in active_mts)
        elif integral_type in facet_integral_types:
            need_points = any(isinstance(mt.terminal, FacetCoordinate)
                              for mt in active_mts)
        elif integral_type in custom_integral_types:
            need_points = True  # TODO: Always?
        else:
            need_points = False

        # Figure out if we need to access QuadratureWeight to
        # avoid generating quadrature point table otherwise
        #need_weights = any(isinstance(mt.terminal, QuadratureWeight)
        #                   for mt in active_mts)

        # Count blocks of each mode
        block_modes = defaultdict(int)
        for blockmap, contributions in block_contributions.items():
            for blockdata in contributions:
                block_modes[blockdata.block_mode] += 1
        # Debug output
        summary = "\n".join("  %d\t%s" % (count, mode)
                            for mode, count in sorted(block_modes.items()))
        debug("Blocks of each mode: \n" + summary)

        # If there are any blocks other than preintegrated we need weights
        if expect_weight and any(mode != "preintegrated" for mode in block_modes):
            need_weights = True
        elif integral_type in custom_integral_types:
            need_weights = True  # TODO: Always?
        else:
            need_weights = False

        # Build IR dict for the given expressions
        expr_ir = {}

        # (array) FV-index -> UFL subexpression
        expr_ir["V"] = FV

        # (array) V indices for each input expression component in flattened order
        expr_ir["V_targets"] = FV_targets

        ### Result of factorization:
        # (array) MA-index -> UFL expression of modified arguments
        expr_ir["modified_arguments"] = modified_arguments

        # (dict) tuple(MA-indices) -> FV-index of monomial factor
        #expr_ir["argument_factorization"] = argument_factorization

        expr_ir["block_contributions"] = block_contributions

        ### Modified terminals
        # (array) list of FV-indices to modified terminals
        #expr_ir["modified_terminal_indices"] = modified_terminal_indices

        # Dependency structure of graph:
        # (CRSArray) FV-index -> direct dependency FV-index list
        #expr_ir["dependencies"] = FV_deps

        # (CRSArray) FV-index -> direct dependee FV-index list
        #expr_ir["inverse_dependencies"] = inv_FV_deps

        # Metadata about each vertex
        #expr_ir["active"] = FV_active        # (array) FV-index -> bool
        #expr_ir["V_piecewise"] = FV_piecewise  # (array) FV-index -> bool
        expr_ir["V_varying"] = FV_varying      # (array) FV-index -> bool
        expr_ir["V_mts"] = FV_mts

        # Store mapping from modified terminal object to
        # table data, this is used in integralgenerator
        expr_ir["mt_tabledata"] = mt_unique_table_reference

        # To emit quadrature rules only if needed
        expr_ir["need_points"] = need_points
        expr_ir["need_weights"] = need_weights

        # Store final ir for this num_points
        ir["varying_irs"][num_points] = expr_ir

    return ir
示例#35
0
文件: conftest.py 项目: FEniCS/ufl
 def assertEqualValues(self, A, B):
     B = as_ufl(B)
     self.assertEqual(A.ufl_shape, B.ufl_shape)
     self.assertEqual(inner(A-B, A-B)(None), 0)
示例#36
0
    def write_output(self, pb, writemesh=False, N=1, t=0):
        
        if writemesh:
            
            if self.write_results_every > 0:
            
                self.resultsfiles = {}
                for res in self.results_to_write:
                    outfile = XDMFFile(self.comm, self.output_path+'/results_'+pb.simname+'_'+res+'.xdmf', 'w')
                    outfile.write_mesh(self.mesh)
                    self.resultsfiles[res] = outfile
                
            return
        
        
        else:

            # write results every write_results_every steps
            if self.write_results_every > 0 and N % self.write_results_every == 0:
                
                # save solution to XDMF format
                for res in self.results_to_write:
                    
                    if res=='displacement':
                        self.resultsfiles[res].write_function(pb.u, t)
                    elif res=='velocity': # passed in v is not a function but form, so we have to project
                        v_proj = project(pb.vel, pb.V_u, pb.dx_, nm="Velocity")
                        self.resultsfiles[res].write_function(v_proj, t)
                    elif res=='acceleration': # passed in a is not a function but form, so we have to project
                        a_proj = project(pb.acc, pb.V_u, pb.dx_, nm="Acceleration")
                        self.resultsfiles[res].write_function(a_proj, t)
                    elif res=='pressure':
                        self.resultsfiles[res].write_function(pb.p, t)
                    elif res=='cauchystress':
                        stressfuncs=[]
                        for n in range(pb.num_domains):
                            stressfuncs.append(pb.ma[n].sigma(pb.u,pb.p,ivar=pb.internalvars))
                        cauchystress = project(stressfuncs, pb.Vd_tensor, pb.dx_, nm="CauchyStress")
                        self.resultsfiles[res].write_function(cauchystress, t)
                    elif res=='trmandelstress':
                        stressfuncs=[]
                        for n in range(pb.num_domains):
                            stressfuncs.append(tr(pb.ma[n].M(pb.u,pb.p,ivar=pb.internalvars)))
                        trmandelstress = project(stressfuncs, pb.Vd_scalar, pb.dx_, nm="trMandelStress")
                        self.resultsfiles[res].write_function(trmandelstress, t)
                    elif res=='trmandelstress_e':
                        stressfuncs=[]
                        for n in range(pb.num_domains):
                            if pb.mat_growth[n]: stressfuncs.append(tr(pb.ma[n].M_e(pb.u,pb.p,pb.ki.C(pb.u),ivar=pb.internalvars)))
                            else: stressfuncs.append(as_ufl(0))
                        trmandelstress_e = project(stressfuncs, pb.Vd_scalar, pb.dx_, nm="trMandelStress_e")
                        self.resultsfiles[res].write_function(trmandelstress_e, t)
                    elif res=='vonmises_cauchystress':
                        stressfuncs=[]
                        for n in range(pb.num_domains):
                            stressfuncs.append(pb.ma[n].sigma_vonmises(pb.u,pb.p,ivar=pb.internalvars))
                        vonmises_cauchystress = project(stressfuncs, pb.Vd_scalar, pb.dx_, nm="vonMises_CauchyStress")
                        self.resultsfiles[res].write_function(vonmises_cauchystress, t)
                    elif res=='pk1stress':
                        stressfuncs=[]
                        for n in range(pb.num_domains):
                            stressfuncs.append(pb.ma[n].P(pb.u,pb.p,ivar=pb.internalvars))
                        pk1stress = project(stressfuncs, pb.Vd_tensor, pb.dx_, nm="PK1Stress")
                        self.resultsfiles[res].write_function(pk1stress, t)
                    elif res=='pk2stress':
                        stressfuncs=[]
                        for n in range(pb.num_domains):
                            stressfuncs.append(pb.ma[n].S(pb.u,pb.p,ivar=pb.internalvars))
                        pk2stress = project(stressfuncs, pb.Vd_tensor, pb.dx_, nm="PK2Stress")
                        self.resultsfiles[res].write_function(pk2stress, t)
                    elif res=='jacobian':
                        jacobian = project(pb.ki.J(pb.u), pb.Vd_scalar, pb.dx_, nm="Jacobian")
                        self.resultsfiles[res].write_function(jacobian, t)
                    elif res=='glstrain':
                        glstrain = project(pb.ki.E(pb.u), pb.Vd_tensor, pb.dx_, nm="GreenLagrangeStrain")
                        self.resultsfiles[res].write_function(glstrain, t)
                    elif res=='eastrain':
                        eastrain = project(pb.ki.e(pb.u), pb.Vd_tensor, pb.dx_, nm="EulerAlmansiStrain")
                        self.resultsfiles[res].write_function(eastrain, t)
                    elif res=='fiberstretch':
                        fiberstretch = project(pb.ki.fibstretch(pb.u,pb.fib_func[0]), pb.Vd_scalar, pb.dx_, nm="FiberStretch")
                        self.resultsfiles[res].write_function(fiberstretch, t)
                    elif res=='fiberstretch_e':
                        stretchfuncs=[]
                        for n in range(pb.num_domains):
                            if pb.mat_growth[n]: stretchfuncs.append(pb.ma[n].fibstretch_e(pb.ki.C(pb.u),pb.theta,pb.fib_func[0]))
                            else: stretchfuncs.append(as_ufl(0))
                        fiberstretch_e = project(stretchfuncs, pb.Vd_scalar, pb.dx_, nm="FiberStretch_e")
                        self.resultsfiles[res].write_function(fiberstretch_e, t)
                    elif res=='theta':
                        self.resultsfiles[res].write_function(pb.theta, t)
                    elif res=='phi_remod':
                        phifuncs=[]
                        for n in range(pb.num_domains):
                            if pb.mat_remodel[n]: phifuncs.append(pb.ma[n].phi_remod(pb.theta))
                            else: phifuncs.append(as_ufl(0))
                        phiremod = project(phifuncs, pb.Vd_scalar, pb.dx_, nm="phiRemodel")
                        self.resultsfiles[res].write_function(phiremod, t)
                    elif res=='tau_a':
                        self.resultsfiles[res].write_function(pb.tau_a, t)
                    elif res=='fiber1':
                        fiber1 = project(pb.fib_func[0], pb.Vd_vector, pb.dx_, nm="Fiber1")
                        self.resultsfiles[res].write_function(fiber1, t)
                    elif res=='fiber2':
                        fiber2 = project(pb.fib_func[1], pb.Vd_vector, pb.dx_, nm="Fiber2")
                        self.resultsfiles[res].write_function(fiber2, t)
                    else:
                        raise NameError("Unknown output to write for solid mechanics!")


            if self.write_restart_every > 0 and N % self.write_restart_every == 0:

                self.writecheckpoint(pb, N)
示例#37
0
    def __init__(self, io_params, time_params, fem_params, constitutive_models, bc_dict, time_curves, io, comm=None):
        problem_base.__init__(self, io_params, time_params, comm)

        self.problem_physics = 'solid'

        self.simname = io_params['simname']

        self.io = io
        
        # number of distinct domains (each one has to be assigned a own material model)
        self.num_domains = len(constitutive_models)

        self.order_disp = fem_params['order_disp']
        try: self.order_pres = fem_params['order_pres']
        except: self.order_pres = 1
        self.quad_degree = fem_params['quad_degree']
        self.incompressible_2field = fem_params['incompressible_2field']
        
        self.fem_params = fem_params
        self.constitutive_models = constitutive_models

        # collect domain data
        self.dx_, self.rho0, self.rayleigh, self.eta_m, self.eta_k = [], [], [False]*self.num_domains, [], []
        for n in range(self.num_domains):
            # integration domains
            self.dx_.append(dx(subdomain_data=self.io.mt_d, subdomain_id=n+1, metadata={'quadrature_degree': self.quad_degree}))
            # data for inertial and viscous forces: density and damping
            if self.timint != 'static':
                self.rho0.append(constitutive_models['MAT'+str(n+1)+'']['inertia']['rho0'])
                if 'rayleigh_damping' in constitutive_models['MAT'+str(n+1)+''].keys():
                    self.rayleigh[n] = True
                    self.eta_m.append(constitutive_models['MAT'+str(n+1)+'']['rayleigh_damping']['eta_m'])
                    self.eta_k.append(constitutive_models['MAT'+str(n+1)+'']['rayleigh_damping']['eta_k'])

        try: self.prestress_initial = fem_params['prestress_initial']
        except: self.prestress_initial = False

        # type of discontinuous function spaces
        if str(self.io.mesh.ufl_cell()) == 'tetrahedron' or str(self.io.mesh.ufl_cell()) == 'triangle3D':
            dg_type = "DG"
            if (self.order_disp > 1 or self.order_pres > 1) and self.quad_degree < 3:
                raise ValueError("Use at least a quadrature degree of 3 or more for higher-order meshes!")
        elif str(self.io.mesh.ufl_cell()) == 'hexahedron' or str(self.io.mesh.ufl_cell()) == 'quadrilateral3D':
            dg_type = "DQ"
            if (self.order_disp > 1 or self.order_pres > 1) and self.quad_degree < 5:
                raise ValueError("Use at least a quadrature degree of 5 or more for higher-order meshes!")
        else:
            raise NameError("Unknown cell/element type!")
        
        # create finite element objects for u and p
        P_u = VectorElement("CG", self.io.mesh.ufl_cell(), self.order_disp)
        P_p = FiniteElement("CG", self.io.mesh.ufl_cell(), self.order_pres)
        # function spaces for u and p
        self.V_u = FunctionSpace(self.io.mesh, P_u)
        self.V_p = FunctionSpace(self.io.mesh, P_p)

        # Quadrature tensor, vector, and scalar elements
        Q_tensor = TensorElement("Quadrature", self.io.mesh.ufl_cell(), degree=1, quad_scheme="default")
        Q_vector = VectorElement("Quadrature", self.io.mesh.ufl_cell(), degree=1, quad_scheme="default")
        Q_scalar = FiniteElement("Quadrature", self.io.mesh.ufl_cell(), degree=1, quad_scheme="default")

        # not yet working - we cannot interpolate into Quadrature elements with the current dolfinx version currently!
        #self.Vd_tensor = FunctionSpace(self.io.mesh, Q_tensor)
        #self.Vd_vector = FunctionSpace(self.io.mesh, Q_vector)
        #self.Vd_scalar = FunctionSpace(self.io.mesh, Q_scalar)

        # Quadrature function spaces (currently not properly functioning for higher-order meshes!!!)
        self.Vd_tensor = TensorFunctionSpace(self.io.mesh, (dg_type, self.order_disp-1))
        self.Vd_vector = VectorFunctionSpace(self.io.mesh, (dg_type, self.order_disp-1))
        self.Vd_scalar = FunctionSpace(self.io.mesh, (dg_type, self.order_disp-1))

        # functions
        self.du    = TrialFunction(self.V_u)            # Incremental displacement
        self.var_u = TestFunction(self.V_u)             # Test function
        self.dp    = TrialFunction(self.V_p)            # Incremental pressure
        self.var_p = TestFunction(self.V_p)             # Test function
        self.u     = Function(self.V_u, name="Displacement")
        self.p     = Function(self.V_p, name="Pressure")
        # values of previous time step
        self.u_old = Function(self.V_u)
        self.v_old = Function(self.V_u)
        self.a_old = Function(self.V_u)
        self.p_old = Function(self.V_p)
        # a setpoint displacement for multiscale analysis
        self.u_set = Function(self.V_u)
        self.p_set = Function(self.V_p)
        self.tau_a_set = Function(self.Vd_scalar)
        # initial (zero) functions for initial stiffness evaluation (e.g. for Rayleigh damping)
        self.u_ini, self.p_ini, self.theta_ini, self.tau_a_ini = Function(self.V_u), Function(self.V_p), Function(self.Vd_scalar), Function(self.Vd_scalar)
        self.theta_ini.vector.set(1.0)
        self.theta_ini.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        # growth stretch
        self.theta = Function(self.Vd_scalar, name="theta")
        self.theta_old = Function(self.Vd_scalar)
        self.growth_thres = Function(self.Vd_scalar)
        # initialize to one (theta = 1 means no growth)
        self.theta.vector.set(1.0), self.theta_old.vector.set(1.0)
        self.theta.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD), self.theta_old.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        # active stress
        self.tau_a = Function(self.Vd_scalar, name="tau_a")
        self.tau_a_old = Function(self.Vd_scalar)
        self.amp_old, self.amp_old_set = Function(self.Vd_scalar), Function(self.Vd_scalar)
        self.amp_old.vector.set(1.0), self.amp_old_set.vector.set(1.0)
        self.amp_old.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD), self.amp_old_set.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        # prestressing history defgrad and spring prestress
        if self.prestress_initial:
            self.F_hist = Function(self.Vd_tensor, name="Defgrad_hist")
            self.u_pre = Function(self.V_u)
        else:
            self.F_hist = None
            self.u_pre = None
        
        self.internalvars     = {"theta" : self.theta, "tau_a" : self.tau_a}
        self.internalvars_old = {"theta" : self.theta_old, "tau_a" : self.tau_a_old}
        
        
        # reference coordinates
        self.x_ref = Function(self.V_u)
        self.x_ref.interpolate(self.x_ref_expr)
        
        if self.incompressible_2field:
            self.ndof = self.u.vector.getSize() + self.p.vector.getSize()
        else:
            self.ndof = self.u.vector.getSize()

        # initialize solid time-integration class
        self.ti = timeintegration.timeintegration_solid(time_params, fem_params, time_curves, self.t_init, self.comm)

        # check for materials that need extra treatment (anisotropic, active stress, growth, ...)
        have_fiber1, have_fiber2 = False, False
        self.have_active_stress, self.active_stress_trig, self.have_frank_starling, self.have_growth = False, 'ode', False, False
        self.mat_active_stress, self.mat_growth, self.mat_remodel, self.mat_growth_dir, self.mat_growth_trig, self.mat_growth_thres = [False]*self.num_domains, [False]*self.num_domains, [False]*self.num_domains, [None]*self.num_domains, [None]*self.num_domains, []*self.num_domains

        self.localsolve, growth_dir = False, None
        self.actstress = []
        for n in range(self.num_domains):
            
            if 'holzapfelogden_dev' in self.constitutive_models['MAT'+str(n+1)+''].keys() or 'guccione_dev' in self.constitutive_models['MAT'+str(n+1)+''].keys():
                have_fiber1, have_fiber2 = True, True
            
            if 'active_fiber' in self.constitutive_models['MAT'+str(n+1)+''].keys():
                have_fiber1 = True
                self.mat_active_stress[n], self.have_active_stress = True, True
                # if one mat has a prescribed active stress, all have to be!
                if 'prescribed_curve' in self.constitutive_models['MAT'+str(n+1)+'']['active_fiber']:
                    self.active_stress_trig = 'prescribed'
                if 'prescribed_multiscale' in self.constitutive_models['MAT'+str(n+1)+'']['active_fiber']:
                    self.active_stress_trig = 'prescribed_multiscale'
                if self.active_stress_trig == 'ode':
                    act_curve = self.ti.timecurves(self.constitutive_models['MAT'+str(n+1)+'']['active_fiber']['activation_curve'])
                    self.actstress.append(activestress_activation(self.constitutive_models['MAT'+str(n+1)+'']['active_fiber'], act_curve))
                    if self.actstress[-1].frankstarling: self.have_frank_starling = True
                if self.active_stress_trig == 'prescribed':
                    self.ti.funcs_to_update.append({self.tau_a : self.ti.timecurves(self.constitutive_models['MAT'+str(n+1)+'']['active_fiber']['prescribed_curve'])})

            if 'active_iso' in self.constitutive_models['MAT'+str(n+1)+''].keys():
                self.mat_active_stress[n], self.have_active_stress = True, True
                # if one mat has a prescribed active stress, all have to be!
                if 'prescribed_curve' in self.constitutive_models['MAT'+str(n+1)+'']['active_iso']:
                    self.active_stress_trig = 'prescribed'
                if 'prescribed_multiscale' in self.constitutive_models['MAT'+str(n+1)+'']['active_iso']:
                    self.active_stress_trig = 'prescribed_multiscale'
                if self.active_stress_trig == 'ode':
                    act_curve = self.ti.timecurves(self.constitutive_models['MAT'+str(n+1)+'']['active_iso']['activation_curve'])
                    self.actstress.append(activestress_activation(self.constitutive_models['MAT'+str(n+1)+'']['active_iso'], act_curve))
                if self.active_stress_trig == 'prescribed':
                    self.ti.funcs_to_update.append({self.tau_a : self.ti.timecurves(self.constitutive_models['MAT'+str(n+1)+'']['active_iso']['prescribed_curve'])})

            if 'growth' in self.constitutive_models['MAT'+str(n+1)+''].keys():
                self.mat_growth[n], self.have_growth = True, True
                self.mat_growth_dir[n] = self.constitutive_models['MAT'+str(n+1)+'']['growth']['growth_dir']
                self.mat_growth_trig[n] = self.constitutive_models['MAT'+str(n+1)+'']['growth']['growth_trig']
                # need to have fiber fields for the following growth options
                if self.mat_growth_dir[n] == 'fiber' or self.mat_growth_trig[n] == 'fibstretch':
                    have_fiber1 = True
                if self.mat_growth_dir[n] == 'radial':
                    have_fiber1, have_fiber2 = True, True
                # in this case, we have a theta that is (nonlinearly) dependent on the deformation, theta = theta(C(u)),
                # therefore we need a local Newton iteration to solve for equilibrium theta (return mapping) prior to entering
                # the global Newton scheme - so flag localsolve to true
                if self.mat_growth_trig[n] != 'prescribed' and self.mat_growth_trig[n] != 'prescribed_multiscale':
                    self.localsolve = True
                    self.mat_growth_thres.append(self.constitutive_models['MAT'+str(n+1)+'']['growth']['growth_thres'])
                else:
                    self.mat_growth_thres.append(as_ufl(0))
                # for the case that we have a prescribed growth stretch over time, append curve to functions that need time updates
                # if one mat has a prescribed growth model, all have to be!
                if self.mat_growth_trig[n] == 'prescribed':
                    self.ti.funcs_to_update.append({self.theta : self.ti.timecurves(self.constitutive_models['MAT'+str(n+1)+'']['growth']['prescribed_curve'])})
                if 'remodeling_mat' in self.constitutive_models['MAT'+str(n+1)+'']['growth'].keys():
                    self.mat_remodel[n] = True
            else:
                self.mat_growth_thres.append(as_ufl(0))
                
        # full linearization of our remodeling law can lead to excessive compiler times for ffcx... :-/
        # let's try if we might can go without one of the critial terms (derivative of remodeling fraction w.r.t. C)
        try: self.lin_remod_full = fem_params['lin_remodeling_full']
        except: self.lin_remod_full = True

        # growth threshold (as function, since in multiscale approach, it can vary element-wise)
        if self.have_growth and self.localsolve:
            growth_thres_proj = project(self.mat_growth_thres, self.Vd_scalar, self.dx_)
            self.growth_thres.vector.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
            self.growth_thres.interpolate(growth_thres_proj)
        
        # read in fiber data
        if have_fiber1:

            fibarray = ['fiber']
            if have_fiber2: fibarray.append('sheet')

            # fiber function space - vector defined on quadrature points
            V_fib = self.Vd_vector
            self.fib_func = self.io.readin_fibers(fibarray, V_fib, self.dx_)

        else:
            self.fib_func = None

        
        # for multiscale G&R analysis
        self.tol_stop_large = 0

        # initialize kinematics class
        self.ki = solid_kinematics_constitutive.kinematics(fib_funcs=self.fib_func, F_hist=self.F_hist)

        # initialize material/constitutive class
        self.ma = []
        for n in range(self.num_domains):
            self.ma.append(solid_kinematics_constitutive.constitutive(self.ki, self.constitutive_models['MAT'+str(n+1)+''], self.incompressible_2field, mat_growth=self.mat_growth[n], mat_remodel=self.mat_remodel[n]))

        # initialize solid variational form class
        self.vf = solid_variationalform.variationalform(self.var_u, self.du, self.var_p, self.dp, self.io.n0, self.x_ref)
        
        # initialize boundary condition class
        self.bc = boundaryconditions.boundary_cond_solid(bc_dict, self.fem_params, self.io, self.ki, self.vf, self.ti)

        if self.prestress_initial:
            # initialize prestressing history deformation gradient
            Id_proj = project(Identity(len(self.u)), self.Vd_tensor, self.dx_)
            self.F_hist.interpolate(Id_proj)
  
        self.bc_dict = bc_dict
        
        # Dirichlet boundary conditions
        if 'dirichlet' in self.bc_dict.keys():
            self.bc.dirichlet_bcs(self.V_u)

        self.set_variational_forms_and_jacobians()
示例#38
0
    def set_variational_forms_and_jacobians(self):

        # set forms for acceleration and velocity
        self.acc, self.vel = self.ti.set_acc_vel(self.u, self.u_old, self.v_old, self.a_old)

        # kinetic, internal, and pressure virtual work
        self.deltaW_kin,  self.deltaW_kin_old  = as_ufl(0), as_ufl(0)
        self.deltaW_int,  self.deltaW_int_old  = as_ufl(0), as_ufl(0)
        self.deltaW_damp, self.deltaW_damp_old = as_ufl(0), as_ufl(0)
        self.deltaW_p,    self.deltaW_p_old    = as_ufl(0), as_ufl(0)
        
        for n in range(self.num_domains):

            if self.timint != 'static':
                # kinetic virtual work
                self.deltaW_kin     += self.vf.deltaW_kin(self.acc, self.rho0[n], self.dx_[n])
                self.deltaW_kin_old += self.vf.deltaW_kin(self.a_old, self.rho0[n], self.dx_[n])

                # Rayleigh damping virtual work
                if self.rayleigh[n]:
                    self.deltaW_damp     += self.vf.deltaW_damp(self.eta_m[n], self.eta_k[n], self.rho0[n], self.ma[n].S(self.u_ini, self.p_ini, ivar={"theta" : self.theta_ini, "tau_a" : self.tau_a_ini}, tang=True), self.vel, self.dx_[n])
                    self.deltaW_damp_old += self.vf.deltaW_damp(self.eta_m[n], self.eta_k[n], self.rho0[n], self.ma[n].S(self.u_ini, self.p_ini, ivar={"theta" : self.theta_ini, "tau_a" : self.tau_a_ini}, tang=True), self.v_old, self.dx_[n])

            # internal virtual work
            self.deltaW_int     += self.vf.deltaW_int(self.ma[n].S(self.u, self.p, ivar=self.internalvars), self.ki.F(self.u), self.dx_[n])
            self.deltaW_int_old += self.vf.deltaW_int(self.ma[n].S(self.u_old, self.p_old, ivar=self.internalvars_old), self.ki.F(self.u_old), self.dx_[n])
        
            # pressure virtual work (for incompressible formulation)
            # this has to be treated like the evaluation of a volumetric material, hence with the elastic part of J
            if self.mat_growth[n]: J, J_old = self.ma[n].J_e(self.u, self.theta), self.ma[n].J_e(self.u_old, self.theta_old)
            else:                  J, J_old = self.ki.J(self.u), self.ki.J(self.u_old)
            self.deltaW_p       += self.vf.deltaW_int_pres(J, self.dx_[n])
            self.deltaW_p_old   += self.vf.deltaW_int_pres(J_old, self.dx_[n])
        
        
        # external virtual work (from Neumann or Robin boundary conditions, body forces, ...)
        w_neumann, w_neumann_old, w_robin, w_robin_old = as_ufl(0), as_ufl(0), as_ufl(0), as_ufl(0)
        if 'neumann' in self.bc_dict.keys():
            w_neumann, w_neumann_old = self.bc.neumann_bcs(self.V_u, self.Vd_scalar, self.u, self.u_old)
        if 'robin' in self.bc_dict.keys():
            w_robin, w_robin_old = self.bc.robin_bcs(self.u, self.vel, self.u_old, self.v_old, self.u_pre)

        # for (quasi-static) prestressing, we need to eliminate dashpots and replace true with reference Neumann loads in our external virtual work
        w_neumann_prestr, w_robin_prestr = as_ufl(0), as_ufl(0)
        if self.prestress_initial:
            bc_dict_prestr = copy.deepcopy(self.bc_dict)
            # get rid of dashpots
            if 'robin' in bc_dict_prestr.keys():
                for r in bc_dict_prestr['robin']:
                    if r['type'] == 'dashpot': r['visc'] = 0.
            # replace true Neumann loads by reference ones
            if 'neumann' in bc_dict_prestr.keys():
                for n in bc_dict_prestr['neumann']:
                    if n['type'] == 'true': n['type'] = 'pk1'
            bc_prestr = boundaryconditions.boundary_cond_solid(bc_dict_prestr, self.fem_params, self.io, self.ki, self.vf, self.ti)
            if 'neumann' in bc_dict_prestr.keys():
                w_neumann_prestr, _ = bc_prestr.neumann_bcs(self.V_u, self.Vd_scalar, self.u, self.u_old)
            if 'robin' in bc_dict_prestr.keys():
                w_robin_prestr, _ = bc_prestr.robin_bcs(self.u, self.vel, self.u_old, self.v_old, self.u_pre)
            self.deltaW_prestr_ext = w_neumann_prestr + w_robin_prestr

        # TODO: Body forces!
        self.deltaW_ext     = w_neumann + w_robin
        self.deltaW_ext_old = w_neumann_old + w_robin_old

        self.timefac_m, self.timefac = self.ti.timefactors()


        ### full weakforms 

        # quasi-static weak form: internal minus external virtual work
        if self.timint == 'static':
            
            self.weakform_u = self.deltaW_int - self.deltaW_ext
            
            if self.incompressible_2field:
                self.weakform_p = self.deltaW_p

        # full dynamic weak form: kinetic plus internal (plus damping) minus external virtual work
        else:
            
            self.weakform_u = self.timefac_m * self.deltaW_kin  + (1.-self.timefac_m) * self.deltaW_kin_old + \
                              self.timefac   * self.deltaW_damp + (1.-self.timefac)   * self.deltaW_damp_old + \
                              self.timefac   * self.deltaW_int  + (1.-self.timefac)   * self.deltaW_int_old - \
                              self.timefac   * self.deltaW_ext  - (1.-self.timefac)   * self.deltaW_ext_old
            
            if self.incompressible_2field:
                self.weakform_p = self.timefac * self.deltaW_p + (1.-self.timefac) * self.deltaW_p_old 


        ### local weak forms at Gauss points for inelastic materials
        self.r_growth, self.del_theta = [], []
        for n in range(self.num_domains):
            
            if self.mat_growth[n] and self.mat_growth_trig[n] != 'prescribed' and self.mat_growth_trig[n] != 'prescribed_multiscale':
                # growth residual and increment
                a, b = self.ma[n].res_dtheta_growth(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt, 'res_del')
                self.r_growth.append(a), self.del_theta.append(b)
            else:
                self.r_growth.append(as_ufl(0)), self.del_theta.append(as_ufl(0))


        ### Jacobians
        
        # kinetic virtual work linearization (deltaW_kin already has contributions from all domains)
        self.jac_uu = self.timefac_m * derivative(self.deltaW_kin, self.u, self.du)
        
        # internal virtual work linearization treated differently: since we want to be able to account for nonlinear materials at Gauss
        # point level with deformation-dependent internal variables (i.e. growth or plasticity), we make use of a more explicit formulation
        # of the linearization which involves the fourth-order material tangent operator Ctang ("derivative" cannot take care of the
        # dependence of the internal variables on the deformation if this dependence is nonlinear and cannot be expressed analytically)
        for n in range(self.num_domains):
            
            # material tangent operator
            Cmat = self.ma[n].S(self.u, self.p, ivar=self.internalvars, tang=True)

            if self.mat_growth[n] and self.mat_growth_trig[n] != 'prescribed' and self.mat_growth_trig[n] != 'prescribed_multiscale':
                # growth tangent operator
                Cgrowth = self.ma[n].Cgrowth(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt)
                if self.mat_remodel[n] and self.lin_remod_full:
                    # remodeling tangent operator
                    Cremod = self.ma[n].Cremod(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt)
                    Ctang = Cmat + Cgrowth + Cremod
                else:
                    Ctang = Cmat + Cgrowth
            else:
                Ctang = Cmat
            
            self.jac_uu += self.timefac * self.vf.Lin_deltaW_int_du(self.ma[n].S(self.u, self.p, ivar=self.internalvars), self.ki.F(self.u), self.u, Ctang, self.dx_[n])
        
        # Rayleigh damping virtual work contribution to stiffness
        self.jac_uu += self.timefac * derivative(self.deltaW_damp, self.u, self.du)
        
        # external virtual work contribution to stiffness (from nonlinear follower loads or Robin boundary tractions)
        self.jac_uu += -self.timefac * derivative(self.deltaW_ext, self.u, self.du)

        # pressure contributions
        if self.incompressible_2field:
            
            self.jac_up, self.jac_pu, self.a_p11, self.p11 = as_ufl(0), as_ufl(0), as_ufl(0), as_ufl(0)
            
            for n in range(self.num_domains):
                # this has to be treated like the evaluation of a volumetric material, hence with the elastic part of J
                if self.mat_growth[n]:
                    J    = self.ma[n].J_e(self.u, self.theta)
                    Jmat = self.ma[n].dJedC(self.u, self.theta)
                else:
                    J    = self.ki.J(self.u)
                    Jmat = self.ki.dJdC(self.u)
                
                Cmat_p = diff(self.ma[n].S(self.u, self.p, ivar=self.internalvars), self.p)
                
                if self.mat_growth[n] and self.mat_growth_trig[n] != 'prescribed' and self.mat_growth_trig[n] != 'prescribed_multiscale':
                    Cmat = self.ma[n].S(self.u, self.p, ivar=self.internalvars, tang=True)
                    # growth tangent operators - keep in mind that we have theta = theta(C(u),p) in general!
                    # for stress-mediated growth, we get a contribution to the pressure material tangent operator
                    Cgrowth_p = self.ma[n].Cgrowth_p(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt)
                    if self.mat_remodel[n] and self.lin_remod_full:
                        # remodeling tangent operator
                        Cremod_p = self.ma[n].Cremod_p(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt)
                        Ctang_p = Cmat_p + Cgrowth_p + Cremod_p
                    else:
                        Ctang_p = Cmat_p + Cgrowth_p
                    # for all types of deformation-dependent growth, we need to add the growth contributions to the Jacobian tangent operator
                    Jgrowth = diff(J,self.theta) * self.ma[n].dtheta_dC(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt)
                    Jtang = Jmat + Jgrowth
                    # ok... for stress-mediated growth, we actually get a non-zero right-bottom (11) block in our saddle-point system matrix,
                    # since Je = Je(C,theta(C,p)) ---> dJe/dp = dJe/dtheta * dtheta/dp
                    # TeX: D_{\Delta p}\!\int\limits_{\Omega_0} (J^{\mathrm{e}}-1)\delta p\,\mathrm{d}V = \int\limits_{\Omega_0} \frac{\partial J^{\mathrm{e}}}{\partial p}\Delta p \,\delta p\,\mathrm{d}V,
                    # with \frac{\partial J^{\mathrm{e}}}{\partial p} = \frac{\partial J^{\mathrm{e}}}{\partial \vartheta}\frac{\partial \vartheta}{\partial p}
                    dthetadp = self.ma[n].dtheta_dp(self.u, self.p, self.internalvars, self.theta_old, self.growth_thres, self.dt)
                    if not isinstance(dthetadp, constantvalue.Zero):
                        self.p11 += diff(J,self.theta) * dthetadp * self.dp * self.var_p * self.dx_[n]
                else:
                    Ctang_p = Cmat_p
                    Jtang = Jmat
                
                self.jac_up += self.timefac * self.vf.Lin_deltaW_int_dp(self.ki.F(self.u), Ctang_p, self.dx_[n])
                self.jac_pu += self.timefac * self.vf.Lin_deltaW_int_pres_du(self.ki.F(self.u), Jtang, self.u, self.dx_[n])
                
                # for saddle-point block-diagonal preconditioner
                self.a_p11 += inner(self.dp, self.var_p) * self.dx_[n]

        if self.prestress_initial:
            # quasi-static weak forms (don't dare to use fancy growth laws or other inelastic stuff during prestressing...)
            self.weakform_prestress_u = self.deltaW_int - self.deltaW_prestr_ext
            self.jac_prestress_uu = derivative(self.weakform_prestress_u, self.u, self.du)
            if self.incompressible_2field:
                self.weakform_prestress_p = self.deltaW_p
                self.jac_prestress_up = derivative(self.weakform_prestress_u, self.p, self.dp)
                self.jac_prestress_pu = derivative(self.weakform_prestress_p, self.u, self.du)