示例#1
0
    def fit(self, data, dim_reduction=False):
        """
        TODO: precomputed PCA subspace model
        :param data:
        :param dim_reduction:
        :return:
        """
        start = time.time()

        if dim_reduction is True:
            # ExtractSubspace
            self.basis, self.mean = ExtractSubspace(data, 0.999)
            if self.__verbose:
                log.info(
                    'cl',
                    "reduced dimension to: {}".format(np.size(self.basis, 1)))

            # project data onto subspace
            self.data = ProjectOntoSubspace(data, self.mean, self.basis)
        else:
            self.basis = None
            self.mean = None
            self.data = data

        # calculate intra-cluster distances
        # todo: cleanup
        self.cluster_distances = pairwise_distances(self.data,
                                                    self.data,
                                                    metric='euclidean')

        log.info(
            'cl', "New ABOD Classifier initialized in {}s".format(
                "%.4f" % (time.time() - start)))
示例#2
0
    def __predict(self, samples):
        """predict classes: for each sample on every class, tells whether or not (+1 or -1) it belongs to class"""
        predictions = []
        class_ids = []

        # TODO: instead of mean thresh, count min. percent of samples near class mean

        with self.training_lock:
            for class_id, __clf in self.classifiers.iteritems():
                # log.error("cluster mean: {}".format(__clf.data_cluster.data_mean))

                # only predict for "reasonable"/near classes
                range = np.mean(
                    self.classifiers[class_id].class_mean_dist(samples))
                if range < 0.7:
                    class_ids.append(class_id)
                    predictions.append(__clf.predict(samples))
                    log.info('cl',
                             "Class {} range: {}".format(class_id, range))
                else:
                    log.info(
                        'cl', "Class {} out of range (0.7 [ref] < {})".format(
                            class_id, range))

        return np.array(predictions), np.array(class_ids)
    def __init__(self, server, conn, handle):
        # receive user id
        user_id = server.receive_uint(conn)

        log.info('server', 'Updating profile picture for user with ID {}'.format(user_id))

        # receive images
        image = server.receive_image_squared(conn)

        # generate embedding
        embedding = server.embedding_gen.get_embeddings([image])

        if not embedding.any():
            r.Error(server, conn, "Could not generate face embeddings.")
            return

        # predict user id
        # user_id_predicted = server.classifier.predict(embedding)

        # # check if correct user
        # if user_id_predicted is None:
        #     r.Error(server, conn, "Label could not be predicted - Face is unambiguous.")
        #     return
        # elif user_id_predicted != user_id:
        #     # unknown user
        #     r.Error(server, conn, "The profile image does not come from the same person!")
        #     return

        server.user_db.set_profile_picture(user_id, image)

        # send back image
        r.QuadraticImage(server, conn, image)
示例#4
0
    def listen_to_client(self, conn, addr):
        log.info(
            'server',
            "--- Parallel connection to {}:{} ---".format(addr[0], addr[1]))

        if self.ONE_REQ_PER_CONN:
            # handle single request
            succ = self.handle_request(conn, addr)

            # check status - eventually shutdown server
            if self.SERVER_STATUS == -1:
                conn.close()  # close connection
                return

            # block till client has disconnected
            while 1:
                data = conn.recv(1024)
                if not data:
                    # close connection - allow new socket connections
                    conn.close()
                    return
        else:
            # handle request
            # while connection open
            while self.handle_request(conn, addr):

                # check status - eventually shutdown server
                if self.SERVER_STATUS == -1:
                    conn.close()  # close connection
                    return

            # client has disconnected
            # close connection - allow new socket connections
            conn.close()
示例#5
0
    def update(self, samples, poses=np.array([])):
        # check if we already have very similar samples
        if len(self.data) > 0:
            dist = pairwise_distances(samples, self.data, metric='euclidean')
            dist = np.square(dist)
            mask = dist < 0.02
            ignore_mask = np.any(mask, axis=1)

            nr_ignored = np.count_nonzero(ignore_mask)
            if np.count_nonzero(ignore_mask):
                log.info(
                    'db',
                    "Ignoring {} samples (too similar)".format(nr_ignored))

            samples = samples[~ignore_mask]

            if len(samples) == 0:
                return

            if len(poses) > 0:
                poses = poses[~ignore_mask]

        # add data
        self.data = np.concatenate(
            (self.data, samples)) if self.data.size else np.array(samples)
        self.poses = np.concatenate(
            (self.poses, poses)) if self.poses.size else np.array(poses)

        # calculate mean
        self.data_mean = np.mean(self.data, axis=0).reshape(1, -1)
        # reduce data
        self.__reduce_after()
    def handle_request(self, conn, addr):
        """
        general request handler
        return: Breaks user connection, in case batch request handling is enabled, else: ignored
        """
        # request_id = self.receive_uchar(conn, timeout=9999)

        byte = conn.recv(1)
        if not byte:
            log.info('server', "Client has disconnected")
            return False

        request_id = ord(byte)

        if request_id in self.req_lookup:
            req_type = self.req_lookup[request_id]
            log.info('server', "Incomming request: " + req_type)

            try:
                req = getattr(M_REQUESTS, req_type)
                # feedback handle
                handle = [True]
                # handle request
                req(self, conn, handle=handle)
                # batch mode: False: breaks client communication
                # regular mode: ignored
                return handle[0]
            except AttributeError:
                log.error("Request model '"+req_type+"' is not yet implemented or an Exception occurred.")
        else:
            log.error("Unsupported request type: " + str(request_id))

        # batch mode: communication continues (can be used to break client loop)
        # regular mode: ignored
        return True
    def add_samples(self, user_id, new_samples, new_poses):
        """pose cluster update"""
        if user_id not in self.class_clusters:
            # initialize
            self.class_clusters[user_id] = MeanShiftPoseCluster(
                self.weight_gen, max_size=300)
            self.class_clusters[user_id].update(new_samples, new_poses)
            # display minimal class distances
            means = []
            ids = []
            for id, c in self.class_clusters.iteritems():
                means.append(c.data_mean[0])
                ids.append(id)

            means = np.array(means)
            dist = pairwise_distances(means, means, metric='euclidean')
            dist = np.square(dist)
            dist = np.unique(dist)

            if len(dist) > 5:
                dist = dist[0:5]

            # first one is zero
            if len(dist) > 1:
                log.info('db',
                         "Min. inter-class distances: {}".format(dist[1:]))
        else:
            # update
            self.class_clusters[user_id].update(new_samples, new_poses)
    def get_decision_functions_in_range(self, samples):
        """
        :param samples:
        :return: class scores in range
        """

        # no classifiers yet, predict novelty
        if not self.classifiers:
            return {}

        # select classes in range
        classes_in_range = self.data_controller.classes_in_range(
            samples=samples, metric='cosine', thresh=0.7)

        if len(classes_in_range) == 0:
            log.info('cls', "No class in range... (cosine < 0.7)")
            return {}

        # predict class values
        decision_functions = {}
        for cl_id in classes_in_range:
            decision_functions[cl_id] = self.classifiers[
                cl_id].decision_function(samples)

        # test identify always the same id
        return decision_functions
    def train_classifier(self, class_id):
        """
        Retrain One-Class Classifiers (partial_fit)
        """

        log.info('cl',
                 "(Re-)training Classifier for user ID {}".format(class_id))

        # extract data
        with self.trainig_data_lock:
            # get update samples from stack
            if class_id in self.classifier_update_stacks:
                update_samples = self.classifier_update_stacks[class_id]
                # clear
                self.classifier_update_stacks[class_id] = np.array([])
            else:
                update_samples = []

        start = time()

        if len(update_samples) > 0:
            """
            INCREMENTAL Methods: Use partial fit with stored update data
                - Samples: Partially stored in Cluster
            """
            self.classifiers[class_id].partial_fit(update_samples)
            self.classifier_states[class_id] += 1
        else:
            log.warning("No training/update samples available")

        if self.__verbose:
            log.info('cl', "fitting took {} seconds".format(time() - start))
    def __init__(self, server, conn, handle):
        # receive tracking id
        tracking_id = server.receive_uint(conn)

        log.info('server', "Dropping identification queue for tracking id {}".format(tracking_id))
        # drop samples
        server.classifier.id_controller.drop_samples(tracking_id=tracking_id)
        r.OK(server, conn)
    def __init__(self, server, conn, handle):

        log.info('server', 'Getting all profile pictures')

        uids, pictures = server.user_db.get_all_profile_pictures()

        # send back image
        r.ProfilePictures(server, conn, uids, pictures)
示例#12
0
 def __init__(self):
     start = time.time()
     log.info('cnn', "EmbeddingGen: loading models...")
     # load neural net
     self.neural_net = openface.TorchNeuralNet(self.networkModel, imgDim=self.size, cuda=self.cuda)
     # load dlib model
     self.dlib_aligner = openface.AlignDlib(dlibModelDir + "/" + self.dlibFacePredictor)
     log.info('cnn', "EmbeddingGen: model loading took {} seconds".format("%.3f" % (time.time() - start)))
示例#13
0
 def __predict(self, samples):
     start = time.time()
     # dist_table = pairwise_distances(samples, samples, metric='euclidean')
     abof = self.__abof_multi(samples)
     log.info(
         'cl', "ABOF: {} | calc time: {}s".format(
             ["%.5f" % item for item in abof],
             "%.4f" % (time.time() - start)))
     return abof
    def __init__(self, server, conn, handle):

        nr_users = server.receive_uint(conn)
        target_users = []
        for x in range(0, nr_users):
            # get target class ids (uint)
            user_id = server.receive_uint(conn)
            target_users.append(user_id)

        # receive images
        images = server.receive_image_batch_squared_same_size(conn)

        log.severe("ImageIdentificationPrealignedCS, possible IDs: ",
                   target_users)

        # generate embedding
        embeddings = server.embedding_gen.get_embeddings(rgb_images=images,
                                                         align=False)

        if not embeddings.any():
            r.Error(server, conn, "Could not generate face embeddings.")
            return

        if -1 in target_users:
            # open set user id prediction
            # current_weights = np.repeat(1, len(embeddings))
            is_consistent, user_id, confidence = server.classifier.predict_class(
                embeddings, sample_poses=None)
        else:
            # closed set user id prediction
            user_id = server.classifier.predict_closed_set(
                target_users, embeddings)

            if user_id is None:
                r.Error(
                    server, conn,
                    "Label could not be predicted - Samples are contradictory."
                )
                return

        # get user nice name
        user_name = server.user_db.get_name_from_id(user_id)

        if user_name is None:
            user_name = "unnamed"

        # get profile picture
        profile_picture = server.user_db.get_profile_picture(user_id)
        log.info(
            'server',
            "User identification complete: {} [ID], {} [Username]".format(
                user_id, user_name))
        r.Identification(server,
                         conn,
                         int(user_id),
                         user_name,
                         profile_picture=profile_picture)
    def __init__(self, server, conn, handle):
        # receive user id
        user_id = server.receive_uint(conn)

        log.info('server', 'User Update (Aligned, Robust) for ID {}'.format(user_id))

        # receive images
        images = server.receive_image_batch_squared_same_size(conn)

        # get sample poses
        sample_poses = []
        for x in range(0, len(images)):
            pitch = server.receive_char(conn)
            yaw = server.receive_char(conn)
            sample_poses.append([pitch, yaw])
        sample_poses = np.array(sample_poses)

        # TODO: calculate weights
        weights = np.repeat(10, len(images))

        # generate embedding
        embeddings = server.embedding_gen.get_embeddings(images, align=False)

        if not embeddings.any():
            r.Error(server, conn, "Could not generate face embeddings.")
            return

        # accumulate samples - check for inconsistencies
        verified_data, reset_user, id_pred, confidence = server.classifier.update_controller.accumulate_samples(user_id, embeddings, weights)

        log.info('cl', "verified_data (len: {}), reset_user: {}: ID {}, conf {}".format(len(verified_data), reset_user, id_pred, confidence))

        # forward save part of data
        if verified_data.size:
            # for s in embeddings:
            #     print "new: {:.8f}".format(s[0])
            # print "------------------"
            # for s in verified_data:
            #     print "s: {:.5f}".format(s[0])

            # add to data model
            server.classifier.data_controller.add_samples(user_id=user_id, new_samples=verified_data)
            # add to classifier training queue
            server.classifier.add_training_data(user_id, verified_data)

        # reset user if queue has become inconsistent or wrong user is predicted
        if reset_user:
            log.severe("USER VERIFICATION FAILED - FORCE REIDENTIFICATION")
            r.Reidentification(server, conn)
            return

        # return prediction feedback
        user_name = server.user_db.get_name_from_id(id_pred)
        if user_name is None:
            user_name = "unnamed"
        r.PredictionFeedback(server, conn, id_pred, user_name, confidence=int(confidence*100.0))
示例#16
0
    def __dep_predict_sum(self, samples):
        """
        Prediction cases:
        - Only target class is identified with ratio X (high): Class
        - Target and other class is identified with ration X (high) and Y (small): Class with small confusion
        - Multiple classes are identified with small ratios Ys: Novelty
        - No classes identified: Novelty
        :param samples:
        :return: Class ID, -1 (Novelty), None invalid samples (multiple detections)
        """

        # no classifiers yet, predict novelty
        if not self.classifiers:
            # 100% confidence
            self.__decision_function = np.array([len(samples)]), np.array([-1])
            return -1

        predictions, class_ids = self.__predict(samples)

        if len(predictions) == 0:
            # no class in reach - classify as novel class
            self.__decision_function = np.array([len(samples)]), np.array([-1])
            return -1

        cls_scores = np.sum(predictions, axis=1)
        self.__decision_function = cls_scores, class_ids
        nr_samples = len(samples)
        self.__decision_nr_samples = nr_samples

        log.info(
            'cl',
            "Classifier scores: {} | max: {}".format(cls_scores, nr_samples))

        # no classes detected at all - novelty
        # novelty_mask = cls_scores <= self.__novelty_thresh * nr_samples
        novelty_mask = cls_scores < 0

        if len(cls_scores[novelty_mask]) == len(cls_scores):
            return -1

        # identification_mask = cls_scores >= self.__class_thresh * nr_samples

        identification_mask = cls_scores >= 0
        ids = cls_scores[identification_mask]
        if len(ids) > 0:

            # multiple possible detection - invalid samples
            if len(ids) > 1:
                return None

            # single person identified - return id
            return int(class_ids[identification_mask][0])
        else:
            # samples unclear
            return None
    def process_labeled_stream_data(self,
                                    class_id,
                                    samples,
                                    check_update=False):
        """
        Incorporate labeled data into the classifiers. Classifier for {class_id} must be initialized already
        (retraining is done once the samples can't be explained by the model anymore)
        :param class_id: class id
        :param samples: class samples
        :param check_update: Evaluate update on the current model before using it (robust to sample pollution)
        :return: -
        """

        log.info(
            'cl',
            "Processing labeled stream data for user ID {}".format(class_id))
        class_id = int(class_id)

        if class_id not in self.classifiers:
            log.severe(
                "Class {} has not been initialized yet!".format(class_id))
            return False, 1  # force reidentification

        confidence = 1

        if check_update:
            prediction = self.predict(samples)
            # samples are not certain enough
            if prediction == None:
                return None, 1
            # calculate confidence
            confidence = self.prediction_proba(class_id)
            # detected different class
            if prediction != class_id:
                log.severe(
                    "Updating invalid class! Tracker must have switched!")
                return False, confidence  # force reidentification

        with self.training_lock:
            # add update data to stack
            if class_id not in self.classifier_update_stacks or len(
                    self.classifier_update_stacks[class_id]) == 0:
                # create new list
                self.classifier_update_stacks[class_id] = samples
            else:
                # append
                self.classifier_update_stacks[class_id] = np.concatenate(
                    (self.classifier_update_stacks[class_id], samples))

            # request classifier update
            # Todo: only request update if available update data exceeds threshold
            self.add_training_task(class_id)

        return True, confidence
    def init_from_files(self, embedding_file="pose_matthias2.pkl", pose_file="pose_matthias2_poses.pkl"):

        log.info('db', "Initializing weight generator...")
        # initialize grid
        embeddings = load_data(embedding_file)
        poses = load_data(pose_file)
        if embeddings is None or poses is None:
            log.severe("Could not load file {} in dir uids/models/confience_weights/ for weight generator...".format(embeddings))
            sys.exit(0)

        self.generate(embeddings, poses)
示例#19
0
    def classes_in_range(self, samples, thresh=1.3, metric='euclidean'):
        class_ids = []
        for id, c in self.class_clusters.iteritems():
            # only predict for "reasonable"/near classes
            range = np.mean(c.class_mean_dist(samples, metric))
            if range < thresh:
                class_ids.append(id)
            else:
                log.info('db', "Class {} out of range [{}] ({} [ref] < {:.3f})".format(id, metric, thresh, range))

        return class_ids
示例#20
0
    def __classifier_trainer(self):
        if self.__verbose is True:
            log.info('cl', "Starting classifier training thread")

        while self.STATUS == 1:
            if self.__verbose is True:
                log.info('cl', "Begin classifier training in thread")

            # print "==== queue size: "+str(self.__tasks.qsize())
            training_id = self.__tasks.get()
            self.train_classifier(training_id)
            self.__tasks.task_done()
    def is_guaranteed_new_class(self, samples):
        if not self.classifiers:
            return True

        # select classes in range
        classes_in_range = self.data_controller.classes_in_range(samples=samples, metric='euclidean', thresh=1.3)

        if len(classes_in_range) == 0:
            log.info('db', "Guaranteed new class - No class in range... (L2^2 < 1.3)")
            return True

        return False
示例#22
0
 def save(self):
     filename = "{}/userdb_{}.pkl".format(DBDir, self.version_name)
     log.info('db', "Saving database to '{}'".format(filename))
     with open(filename, 'wb') as f:
         pickle.dump((
             self.version_name,
             self.id_increment,
             self.__user_list,
             self.__class_samples,
             self.__profile_pictures
         ), f)
         f.close()
    def predict_closed_set(self, target_classes, samples):

        # choose nearest class
        mean_dist_l2, clean_ids = self.data_controller.class_mean_distances(samples, target_classes)

        if len(clean_ids) == 0:
            return None

        mean_dist_l2 = list(mean_dist_l2)
        clean_ids = list(clean_ids)
        log.info('cl', "Closed set distance scores (L2 squared): IDs {} | Class dist. : {}".format(clean_ids, mean_dist_l2))

        min_index = mean_dist_l2.index(min(mean_dist_l2))
        return clean_ids[min_index]
示例#24
0
    def __reduce_after(self, metric='cosine', reverse=True):
        if len(self.data) < self.__max_size:
            return

        # delete X samples which are most distant
        dist = pairwise_distances(self.data_mean, self.data, metric=metric)
        dist = dist[0]
        to_remove = len(self.data) - self.__max_size
        indices = np.arange(0, len(self.data))
        dist_sorted, indices_sorted = zip(
            *sorted(zip(dist, indices), reverse=reverse))

        # delete X samples which are most distant
        indices_to_delete = indices_sorted[0:to_remove]
        log.info('cl', "Removing {} points".format(len(indices_to_delete)))
        # delete
        self.data = np.delete(self.data, indices_to_delete, axis=0)
    def __init__(self, server, conn, handle):

        log.info('server', "Image alignment")

        # receive image
        img = server.receive_rgb_image_squared(conn)

        # align image
        # innerEyesAndBottomLip, outerEyesAndNose
        aligned = server.embedding_gen.align_face(img, 'outerEyesAndNose', 96)

        if aligned is None:
            r.Error(server, conn, "Could not align the image")
            return

        # send aligned image back
        r.QuadraticImage(server, conn, aligned)
    def __init__(self, classifier_type):

        # define valid classifiers
        self.define_classifiers()

        if classifier_type not in self.VALID_CLASSIFIERS:
            raise ValueError(
                'Invalid Classifier "{}". You can choose between: {}'.format(
                    classifier_type, str(list(self.VALID_CLASSIFIERS))))

        self.CLASSIFIER = classifier_type

        # perform classifier training in tasks
        # self.__start_classifier_trainers()

        log.info('cl',
                 "{} Classifier Tree initialized".format(self.CLASSIFIER))
    def init_new_class(self, class_id, class_samples):
        """
        Initialise a One-Class-Classifier with sample data
        :param class_id: new class id
        :param class_samples: samples belonging to the class
        :return: True/False - success
        """

        log.info('cl',
                 "Initializing new Classifier for user ID {}".format(class_id))
        if class_id in self.classifiers:
            log.severe("Illegal reinitialization of classifier")
            return False

        # init new data model
        self.data_controller.add_samples(user_id=class_id,
                                         new_samples=class_samples)
        cluster_ref = self.data_controller.get_class_cluster(class_id)

        # init new classifier
        if self.CLASSIFIER == 'SetSimilarityHardThreshold':
            # link to data controller: similarity matching - model = data
            self.classifiers[class_id] = SetSimilarityHardThreshold(
                metric='ABOD',
                threshold=0.3,
                cluster=
                cluster_ref  # TODO: data model is connected - might also be separate?
            )
        elif self.CLASSIFIER == 'non-incremental':
            # link to data controller: non-incremental learner
            pass
        elif self.CLASSIFIER == 'incremental':
            # regular model. No need to pass data reference
            pass

        self.nr_classes += 1
        self.classifier_states[class_id] = 0

        # add samples to update stack
        with self.trainig_data_lock:
            self.classifier_update_stacks[class_id] = class_samples
        # directly train classifier
        return self.train_classifier(class_id)
    def __init__(self, server, conn, handle):

        # receive images
        images = server.receive_image_batch_squared_same_size(
            conn, switch_rgb_bgr=True)

        # generate embedding
        embeddings = server.embedding_gen.get_embeddings(rgb_images=images,
                                                         align=True)

        if not embeddings.any():
            r.Error(server, conn, "Could not generate face embeddings.")
            return

        # unified weights
        sample_poses = None

        # open set user id prediction
        is_consistent, user_id, confidence = server.classifier.predict_class(
            embeddings, sample_poses)

        if is_consistent:
            # get user nice name
            user_name = server.user_db.get_name_from_id(user_id)

            if user_name is None:
                user_name = "unnamed"

            # get profile picture
            profile_picture = server.user_db.get_profile_picture(user_id)
            log.info(
                'server',
                "User identification complete: {} [ID], {} [Username]".format(
                    user_id, user_name))
            r.Identification(server,
                             conn,
                             int(user_id),
                             user_name,
                             confidence=confidence,
                             profile_picture=profile_picture)
        else:
            r.Error(server, conn, "Result is inconsistent.")
    def __init__(self):
        start = time.time()

        log.info('cnn', "EmbeddingGenLightCNN: loading models...")
        # load face aligner
        #self.aligner = FaceAligner

        # load neural net
        caffe.set_mode_cpu()
        self.neural_net = caffe.Classifier(
                         self.networkDef, self.networkModel,  # "Data set image mean of [Channels x Height x Width] dimensions "
                                                              # "(numpy array). Set to '' for no mean subtraction."
                         image_dims=[self.size, self.size],  # input size of images
                         mean=None,
                         input_scale=1.0,
                         raw_scale=1.0,  # raw input is multiplied by this scale (caffe needs grayscale range [0-255])
                         channel_swap=None  # input format: BGR (BGR is caffe and OpenCV default)
                         )

        log.info('cnn', "EmbeddingGenLightCNN: model loading took {} seconds".format("%.3f" % (time.time() - start)))
    def __init__(self, server, conn, handle):

        log.info('server', "Image alignment")

        # receive image
        img = server.receive_rgb_image_squared(conn, switch_rgb_bgr=True)

        # align image
        # innerEyesAndBottomLip, outerEyesAndNose
        aligned = server.embedding_gen.align_face(img, 'outerEyesAndNose', 96)

        if aligned is None:
            r.Error(server, conn, "Could not align the image")
            return

        # convert back to bgr
        aligned = cv2.cvtColor(aligned, cv2.COLOR_RGB2BGR)

        # send aligned image back
        r.QuadraticImage(server, conn, aligned)