class TestUKF(unittest.TestCase): def setUp(self): def fx(x, T): return x def hx(x): return x x0 = np.array([0, 0]) P0 = np.array([[1, 0.5], [0.5, 1]]) Q = np.eye(2) R = np.eye(2) self.ukf = UKF(fx, hx, Q, R, x0, P0) def test_predict(self): self.ukf.predict(T=1) (x, P) = self.ukf.get_state() x = np.round(x, decimals=5) P = np.round(P, decimals=5) self.assertTrue((x == np.array([0, 0])).all()) self.assertTrue((P == np.array([[2, 0.5], [0.5, 2]])).all()) def test_update(self): self.ukf.predict(T=1) self.ukf.update(np.array([1, 1])) (x, P) = self.ukf.get_state() x = np.round(x, decimals=5) P = np.round(P, decimals=5) self.assertTrue((x == np.array([0.71429, 0.71429])).all()) self.assertTrue((P == np.array([[0.65714, 0.05714], [0.05714, 0.65714]])).all())
def main(): np.set_printoptions(precision=3) # Process Noise q = np.eye(5) q[0][0] = 0.001 q[1][1] = 0.001 q[2][2] = 0.001 q[3][3] = 0.001 q[4][4] = 0.001 # q[5][5] = 0.0025 realx = [] realy = [] realv = [] realtheta = [] realw = [] estimatex = [] estimatey = [] estimatev = [] estimatetheta = [] estimatew = [] estimate2y = [] estimate2x = [] estimatev2 = [] realyaw = [] estimateyaw = [] estimateyaw2 = [] realyawr = [] estimateyawr = [] estimateyawr2 = [] estimate3x = [] estimate3y = [] ex = [] ey = [] # create measurement noise covariance matrices r_imu = np.zeros([1, 1]) r_imu[0][0] = 0.001 r_compass = np.zeros([1, 1]) r_compass[0][0] = 0.001 r_encoder = np.zeros([1, 1]) r_encoder[0][0] = 0.001 r_gpsx = np.zeros([1, 1]) r_gpsx[0][0] = 0.001 r_gpsy = np.zeros([1, 1]) r_gpsy[0][0] = 0.001 ini = np.array([0.000, 0.000, 0.000, 0.000, 0.000]) xest = np.array([[0.000], [0.000], [0.000], [0.000], [0.000]]) pest = np.eye(5) jf = np.eye(5) #ガウス分布の粒子の生成 p = 100 x_p = np.zeros((p, 5)) pw = np.zeros((p, 5)) x_p_update = np.zeros((p, 5)) z_p_update = np.zeros((p, 5)) for i in range(0, p): x_p[i] = np.random.randn(5) xp = np.zeros((1, 5)) # pass all the parameters into the UKF! # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function state_estimator = UKF(5, q, ini, np.eye(5), 0.04, 0.0, 2.0, iterate_x) with open('example.csv', 'r') as csvfile: reader = csv.reader(csvfile) headers = next(reader) last_time = 0 # read data for row in reader: row = [float(x) for x in row] cur_time = row[0] d_time = cur_time - last_time real_state = np.array([row[i] for i in [5, 6, 3, 4, 2]]) # create an array for the data from each sensor compass_hdg = row[9] compass_data = np.array([compass_hdg]) encoder_vel = row[10] encoder_data = np.array([encoder_vel]) gps_x = row[11] gpsx_data = np.array([gps_x]) gps_y = row[12] gpsy_data = np.array([gps_y]) imu_yaw_rate = row[8] imu_data = np.array([imu_yaw_rate]) last_time = cur_time observation_data = np.array([[row[11]], [row[12]], [row[10]], [row[9]], [row[8]]]) observation_con = np.eye(5) observation_con[0][0] = 0.001 observation_con[1][1] = 0.001 observation_con[2][2] = 0.001 observation_con[3][3] = 0.001 observation_con[4][4] = 0.001 # prediction is pretty simple state_estimator.predict(d_time) # updating isn't bad either # remember that the updated states should be zero-indexed # the states should also be in the order of the noise and data matrices state_estimator.update([4], imu_data, r_imu) state_estimator.update([3], compass_data, r_compass) state_estimator.update([2], encoder_data, r_encoder) state_estimator.update([1], gpsy_data, r_gpsy) state_estimator.update([0], gpsx_data, r_gpsx) #ekf ret2 = state_estimator.motion_model(xest) jf = state_estimator.jacobi(ret2) xest, pest = state_estimator.ekf_estimation( xest, pest, observation_data, observation_con, jf, ret2) """ #particle filter for i in range(0,p): x_p_update[i,:] = motion_model2(x_p[i,:]) z_p_update[i,:] = x_p_update[i,:] pw[i] = cul_weight(observation_data,z_p_update[i,:]) sum1=0.000 sum2=0.000 sum3=0.000 sum4=0.000 sum5=0.000 for i in range(0,p): sum1=sum1+pw[i,0] sum2=sum1+pw[i,1] sum3=sum1+pw[i,2] sum4=sum1+pw[i,3] sum5=sum1+pw[i,4] #normalize for i in range(0,p): pw[i,0]=pw[i,0]/sum1 pw[i,1]=pw[i,1]/sum2 pw[i,2]=pw[i,2]/sum3 pw[i,3]=pw[i,3]/sum4 pw[i,4]=pw[i,4]/sum5 #resampling for i in range(0,p): u = np.random.rand(1,5) qt1=np.zeros((1,5)) for j in range(0,p): qt1=qt1+pw[j] if np.all(qt1) > np.all(u): x_p[i]=x_p_update[j] break xest2 =np.zeros((1,5)) for i in range(0,p): xest2[0,0]=xest2[0,0]+x_p[i,0] xest2[0,1]=xest2[0,1]+x_p[i,1] xest2[0,2]=xest2[0,2]+x_p[i,2] xest2[0,3]=xest2[0,3]+x_p[i,3] xest2[0,4]=xest2[0,4]+x_p[i,4] xest2[0,0] = xest2[0,0] / p xest2[0,1] = xest2[0,1] / p xest2[0,2] = xest2[0,2] / p xest2[0,3] = xest2[0,3] / p xest2[0,4] = xest2[0,4] / p """ print("----------------------------------------------------------") print("Real state: ", real_state) print("UKF Estimated state: ", state_estimator.get_state()) print("EKF Estimated state: ", xest.T) ex.append(row[11]) ey.append(row[12]) realx.append(real_state[0]) realy.append(real_state[1]) estimatex.append(state_estimator.get_state(0)) estimatey.append(state_estimator.get_state(1)) realv.append(real_state[2]) estimatev.append(state_estimator.get_state(2)) estimate2x.append(xest[0, 0]) estimate2y.append(xest[1, 0]) estimatev2.append(xest[2, 0]) realyaw.append(real_state[3]) estimateyaw.append(state_estimator.get_state(3)) estimateyaw2.append(xest[3, 0]) realyawr.append(real_state[4]) estimateyawr.append(state_estimator.get_state(4)) estimateyawr2.append(xest[4, 0]) #figl=plt.figure(4) #plt.subplot(411) plt.plot(realx, realy, label="real_state") plt.plot(estimatex, estimatey, label="ufk_estimator") plt.plot(estimate2x, estimate2y, label="efk_estimator") #plt.plot(ex,ey,label="estimator") #plt.plot(estimate3x,estimate3y,label="pk_estimator") plt.xlabel("x") plt.ylabel("y") plt.legend(loc="best") #plt.xlim(0,2) #plt.ylim(0,2) """ plt.subplot(412) plt.plot(realv) plt.plot(estimatev) plt.plot(estimatev2) plt.xlabel("sample") plt.ylabel("v") plt.subplot(413) plt.plot(realyaw) plt.plot(estimateyaw) plt.plot(estimateyaw2) plt.xlabel("sample") plt.ylabel("yaw") plt.subplot(414) plt.plot(realyawr) plt.plot(estimateyawr) plt.plot(estimateyawr2) plt.xlabel("sample") plt.ylabel("yawr") """ sigma1 = 0 sigma2 = 0 sigma3 = 0 sigma4 = 0 sigma5 = 0 sigma6 = 0 sigma7 = 0 sigma8 = 0 sigma9 = 0 sigma10 = 0 for i in range(0, len(realx)): sigma1 += (realx[i] - estimatex[i])**2 sigma2 += (realy[i] - estimatey[i])**2 sigma3 += (realx[i] - estimate2x[i])**2 sigma4 += (realx[i] - estimate2y[i])**2 sigma5 += (realx[i] - estimatev[i])**2 sigma6 += (realy[i] - estimatev2[i])**2 sigma7 += (realx[i] - estimateyaw[i])**2 sigma8 += (realx[i] - estimateyaw2[i])**2 sigma9 += (realx[i] - estimateyawr[i])**2 sigma10 += (realy[i] - estimateyawr2[i])**2 REME_x = math.sqrt(sigma1 / len(realx)) REME_y = math.sqrt(sigma2 / len(realx)) REME_x2 = math.sqrt(sigma3 / len(realx)) REME_y2 = math.sqrt(sigma4 / len(realx)) REME_v1 = math.sqrt(sigma5 / len(realx)) REME_v2 = math.sqrt(sigma6 / len(realx)) REME_y1 = math.sqrt(sigma7 / len(realx)) REME_y2 = math.sqrt(sigma8 / len(realx)) REME_yr1 = math.sqrt(sigma9 / len(realx)) REME_yr2 = math.sqrt(sigma10 / len(realx)) print("RMSE(ukf)_x=", REME_x, "RMSE(ekf)_x=", REME_x2) print("RMSE(ukf)_y=", REME_y, "RMSE(ekf)_y=", REME_y2) print("RMSE(ukf)_v=", REME_v1, "RMSE(ekf)_v=", REME_v2) print("RMSE(ukf)_yaw=", REME_y1, "RMSE(ekf)_yaw=", REME_y2) print("RMSE(ukf)_yawr=", REME_yr1, "RMSE(ekf)_yawr=", REME_yr2) """
ukf_mses = [] ekf_mses = [] lstm_mses = [] lstm_stacked_mses = [] bar = ProgressBar() for s in bar(range(num_sims)): #x_0 = np.random.normal(0, x_var, 1) x_0 = np.array([0]) sim = UNGM(x_0, R, Q, x_var) ukf = UKF(sim.f, sim.F, sim.h, sim.H, sim.Q, sim.R, 5., first_x_0, 1) ekf = EKF(sim.f, sim.F, sim.h, sim.H, sim.Q, sim.R, first_x_0, 1) for t in range(T): x, y = sim.process_next() ukf.predict() ukf.update(y) ekf.predict() ekf.update(y) ukf_mses.append(MSE(ukf.get_all_predictions(), sim.get_all_x())) ekf_mses.append(MSE(ekf.get_all_predictions(), sim.get_all_x())) all_x.append(np.array(sim.get_all_x())) all_y.append(np.array(sim.get_all_y())) X = np.array(all_y)[:, :-1, :] y = np.array(all_x)[:, 1:, :] lstm10_pred = lstm10.predict(X) lstm100_pred = lstm100.predict(X) rnn10_pred = rnn10.predict(X) rnn100_pred = rnn100.predict(X)
def main(): np.set_printoptions(precision=3) # Process Noise q = np.eye(6) q[0][0] = 0.0001 q[1][1] = 0.0001 q[2][2] = 0.0004 q[3][3] = 0.0025 q[4][4] = 0.0025 q[5][5] = 0.0025 # create measurement noise covariance matrices r_imu = np.zeros([2, 2]) r_imu[0][0] = 0.01 r_imu[1][1] = 0.03 r_compass = np.zeros([1, 1]) r_compass[0][0] = 0.02 r_encoder = np.zeros([1, 1]) r_encoder[0][0] = 0.001 # pass all the parameters into the UKF! # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function state_estimator = UKF(6, q, np.zeros(6), 0.0001*np.eye(6), 0.04, 0.0, 2.0, iterate_x) i=0 csvfile=open('example.csv', 'r') for reader in csvfile: #print() #reader = csv.reader(csvfile) #reader=next(reader) row=reader.split(',') #print(reader) last_time = 0 # read data if i!=0: #for row in reader: print(row) ''' try: row = [float(x) for x in row] except ValueError: print("error") ''' cur_time = float(row[0]) d_time = cur_time - last_time real_state = np.array([float(row[i]) for i in [5, 6, 4, 3, 2, 1]]) # create an array for the data from each sensor compass_hdg = float(row[9]) compass_data = np.array([compass_hdg]) encoder_vel = float(row[10]) encoder_data = np.array([encoder_vel]) imu_accel = float(row[7]) imu_yaw_rate = float(row[8]) imu_data = np.array([imu_yaw_rate, imu_accel]) last_time = cur_time # prediction is pretty simple state_estimator.predict(d_time) # updating isn't bad either # remember that the updated states should be zero-indexed # the states should also be in the order of the noise and data matrices state_estimator.update([4, 5], imu_data, r_imu) state_estimator.update([2], compass_data, r_compass) state_estimator.update([3], encoder_vel, r_encoder) print ("--------------------------------------------------------") print ("Real state: ", real_state) print ("Estimated state: ", state_estimator.get_state()) print ("Difference: ", real_state - state_estimator.get_state()) i+=1
def move_wheelchair(self): self.ini_cwo_l = 2 * np.pi * np.random.random_sample() * -np.pi self.ini_cwo_r = 2 * np.pi * np.random.random_sample() * -np.pi while rospy.get_time() == 0.0: continue rospy.sleep(1) # self.ini_val = [self.wheel_cmd.angular.z, -self.wheel_cmd.linear.x, -self.odom_y, self.odom_x, self.odom_th, self.th_to_al(self.l_caster_angle), self.th_to_al(self.r_caster_angle)] self.ini_val = [ 0.0, 0.0, 0.0, 0.0, 0.0, self.ini_cwo_l, self.ini_cwo_r ] # self.ini_val = np.random.uniform(low=-1.0, high=1.0, size=(7,)).tolist() # UKF initialization def fx(x, dt): sol = self.ode2(x) return np.array(sol) def hx(x): return np.array([x[3], x[2], normalize_angle(x[4])]) # points = MerweScaledSigmaPoints(n=7, alpha=.00001, beta=2., kappa=-4.) points = JulierSigmaPoints(n=7, kappa=-4., sqrt_method=None) # points = SimplexSigmaPoints(n=7) kf = UKF(dim_x=7, dim_z=3, dt=self.dt, fx=fx, hx=hx, points=points, sqrt_fn=None, x_mean_fn=self.state_mean, z_mean_fn=self.meas_mean, residual_x=self.residual_x, residual_z=self.residual_z) x0 = np.array(self.ini_val) kf.x = x0 # initial mean state kf.Q *= np.diag([.0001, .0001, .0001, .0001, .0001, .01, .01]) kf.P *= 0.000001 # kf.P = eye(dim_x) ; adjust covariances if necessary kf.R *= 0.0001 count = 0 rospy.loginfo("Moving robot...") start = rospy.get_time() self.r.sleep() while (rospy.get_time() - start < self.move_time) and not rospy.is_shutdown(): self.pub_twist.publish(self.wheel_cmd) z = np.array([self.odom_x, -self.odom_y, self.odom_th]) self.zs.append(z) kf.predict() kf.update(z) self.xs.append(kf.x) self.pose_x_data.append(self.odom_x) self.pose_y_data.append(self.odom_y) self.pose_th_data.append(self.odom_th) self.l_caster_data.append(self.l_caster_angle) self.r_caster_data.append(self.r_caster_angle) count += 1 self.r.sleep() # Stop the robot self.pub_twist.publish(Twist()) self.xs = np.array(self.xs) rospy.sleep(1)
def main(): np.set_printoptions(precision=3) # Process Noise q = np.eye(5) q[0][0] = 0.001 q[1][1] = 0.001 q[2][2] = 0.004 q[3][3] = 0.025 q[4][4] = 0.025 # q[5][5] = 0.0025 realx = [] realy = [] realv = [] realtheta = [] realw = [] estimatex = [] estimatey = [] estimatev = [] estimatetheta = [] estimatew = [] estimate2y = [] estimate2x = [] # create measurement noise covariance matrices r_imu = np.zeros([1, 1]) r_imu[0][0] = 0.01 r_compass = np.zeros([1, 1]) r_compass[0][0] = 0.02 r_encoder = np.zeros([1, 1]) r_encoder[0][0] = 0.001 r_gpsx = np.zeros([1, 1]) r_gpsx[0][0] = 0.1 r_gpsy = np.zeros([1, 1]) r_gpsy[0][0] = 0.1 ini = np.array([0, 0, 0.3, 0, 0.3]) # pass all the parameters into the UKF! # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function state_estimator = UKF(5, q, ini, np.eye(5), 0.04, 0.0, 2.0, iterate_x, r_imu, r_compass, r_encoder, r_gpsx, r_gpsy) xest = np.zeros((5, 1)) pest = np.eye(5) jf = [] with open('example.csv', 'r') as csvfile: reader = csv.reader(csvfile) headers = next(reader) last_time = 0 # read data for row in reader: row = [float(x) for x in row] cur_time = row[0] d_time = cur_time - last_time real_state = np.array([row[i] for i in [5, 6, 3, 4, 2]]) # create an array for the data from each sensor compass_hdg = row[9] compass_data = np.array([compass_hdg]) encoder_vel = row[10] encoder_data = np.array([encoder_vel]) gps_x = row[11] gpsx_data = np.array([gps_x]) gps_y = row[12] gpsy_data = np.array([gps_y]) imu_yaw_rate = row[8] imu_data = np.array([imu_yaw_rate]) last_time = cur_time observation_data = np.array( [row[11], row[12], row[10], row[9], row[8]]) observation_datac = np.array([0.1, 0.1, 0.001, 0.02, 0.01]) # prediction is pretty simple state_estimator.predict(d_time) # updating isn't bad either # remember that the updated states should be zero-indexed # the states should also be in the order of the noise and data matrices state_estimator.update([4], imu_data, r_imu) state_estimator.update([3], compass_data, r_compass) state_estimator.update([2], encoder_data, r_encoder) state_estimator.update([1], gpsy_data, r_gpsy) state_estimator.update([0], gpsx_data, r_gpsx) jf = state_estimator.jacobi(xest) xest, pest = state_estimator.ekf_estimation( xest, pest, observation_data, observation_datac, jf) print("--------------------------------------------------------") print("Real state: ", real_state) print("Estimated state: ", state_estimator.get_state()) print("Difference: ", real_state - state_estimator.get_state()) print("Estimated state2: ", xest) realx.append(real_state[0]) realy.append(real_state[1]) estimatex.append(state_estimator.get_state(0)) estimatey.append(state_estimator.get_state(1)) realv.append(real_state[2]) estimatev.append(state_estimator.get_state(2)) estimate2x.append(xest[0]) estimate2y.append(xest[1]) figl = plt.figure(2) plt.subplot(211) plt.plot(estimatex, estimatey, "-b", label="ufk_estimator") plt.plot(realx, realy, "-r", label="real_position") plt.plot(estimate2x, estimate2y, "-g", label="efk_estimator") plt.xlabel("x") plt.ylabel("y") plt.legend(loc="best") plt.subplot(212) plt.plot(realv, "-r", label="real_v") plt.plot(estimatev, "-b", label="estimator_v") plt.legend(loc="best")
def ukf_move_wheelchair(self): while rospy.get_time() == 0.0: continue rospy.sleep(1) def fx(x, dt): x[0], x[1] = normalize_angle(x[0]), normalize_angle(x[1]) self.prev_alpha1 = x[0] self.prev_alpha2 = x[1] return self.caster_model_ukf(x, dt) def hx(x): # print "2: ", self.prev_alpha1 delta_alpha1 = x[0] - self.prev_alpha1 delta_alpha2 = x[1] - self.prev_alpha2 alpha1dot = delta_alpha1 / self.dt alpha2dot = delta_alpha2 / self.dt sol = self.meas_model(x[0], x[1], alpha1dot, alpha2dot) return sol self.ini_pose = [ self.wheel_cmd.angular.z, -self.wheel_cmd.linear.x, -self.odom_y, self.odom_x, self.odom_th ] self.save_pose_data.append( [self.ini_pose[2], self.ini_pose[3], self.ini_pose[4]]) points = MerweScaledSigmaPoints(n=2, alpha=.1, beta=1., kappa=-1.) kf = UKF(dim_x=2, dim_z=2, dt=self.dt, fx=fx, hx=hx, points=points, sqrt_fn=None, x_mean_fn=self.state_mean, z_mean_fn=self.meas_mean, residual_x=self.residual_x, residual_z=self.residual_z) # self.ini_val = [normalize_angle(self.l_caster_angle-np.pi), normalize_angle(self.r_caster_angle-np.pi)] self.ini_val = [3.1, -3.14] self.save_caster_data.append(self.ini_val) kf.x = np.array(self.ini_val) # initial mean state kf.P *= 0.0001 # kf.P = eye(dim_x) ; adjust covariances if necessary # kf.R *= 0 # kf.Q *= 0 zs = [] xs = [] # xs.append(self.ini_val) count = 0 # print "Est1: ", normalize_angle(kf.x[0]+np.pi), normalize_angle(kf.x[1]+np.pi) rospy.loginfo("Moving robot...") last_odom_x = self.odom_x last_odom_th = self.odom_th start = rospy.get_time() self.r.sleep() while (rospy.get_time() - start < self.move_time) and not rospy.is_shutdown(): curr_odom_x, curr_odom_th = self.odom_x, self.odom_th delta_x, delta_th = curr_odom_x - last_odom_x, curr_odom_th - last_odom_th z = np.array([delta_x / self.dt, delta_th / self.dt]) # z = np.array([self.odom_vx, self.odom_vth]) if count % self.factor == 0: zs.append(z) kf.predict() kf.update(z) xs.append([ normalize_angle(kf.x[0] + np.pi), normalize_angle(kf.x[1] + np.pi) ]) # print "Est: ", normalize_angle(kf.x[0]+np.pi), normalize_angle(kf.x[1]+np.pi) # print "Act: ", normalize_angle(self.l_caster_angle), normalize_angle(self.r_caster_angle) self.save_caster_data.append( [self.l_caster_angle, self.r_caster_angle]) self.save_pose_data.append( [self.odom_x, self.odom_y, self.odom_th]) # print len(self.save_caster_data) self.pub_twist.publish(self.wheel_cmd) count += 1 last_odom_x, last_odom_th = curr_odom_x, curr_odom_th self.r.sleep() # Stop the robot self.pub_twist.publish(Twist()) self.caster_sol_ukf = np.array(xs) self.caster_sol_act = np.array(self.save_caster_data) self.pose_act = np.array(self.save_pose_data) # self.pose_act = np.reshape(self.pose_act, (len(self.save_pose_data), 3)) rospy.sleep(1)
def main(): np.set_printoptions(precision=3) # Process Noise q = np.eye(6) q[0][0] = 0.0001 q[1][1] = 0.0001 q[2][2] = 0.0004 q[3][3] = 0.0025 q[4][4] = 0.0025 q[5][5] = 0.0025 realx = [0] realy = [0] estimatex = [0] estimatey = [0] t = [0] # create measurement noise covariance matrices r_imu = np.zeros([2, 2]) r_imu[0][0] = 0.01 r_imu[1][1] = 0.03 r_compass = np.zeros([1, 1]) r_compass[0][0] = 0.02 r_encoder = np.zeros([1, 1]) r_encoder[0][0] = 0.001 # pass all the parameters into the UKF! # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function state_estimator = UKF(6, q, np.zeros(6), 0.0001 * np.eye(6), 0.04, 0.0, 2.0, iterate_x) with open('example.csv', 'r') as csvfile: reader = csv.reader(csvfile) headers = next(reader) last_time = 0 # read data for row in reader: row = [float(x) for x in row] cur_time = row[0] d_time = cur_time - last_time real_state = np.array([row[i] for i in [5, 6, 4, 3, 2, 1]]) # create an array for the data from each sensor compass_hdg = row[9] compass_data = np.array([compass_hdg]) encoder_vel = row[10] encoder_data = np.array([encoder_vel]) imu_accel = row[7] imu_yaw_rate = row[8] imu_data = np.array([imu_yaw_rate, imu_accel]) last_time = cur_time # prediction is pretty simple state_estimator.predict(d_time) # updating isn't bad either # remember that the updated states should be zero-indexed # the states should also be in the order of the noise and data matrices state_estimator.update([4, 5], imu_data, r_imu) state_estimator.update([2], compass_data, r_compass) state_estimator.update([3], encoder_vel, r_encoder) print("--------------------------------------------------------") print("Real state: ", real_state) print("Estimated state: ", state_estimator.get_state()) print("Difference: ", real_state - state_estimator.get_state()) realx.append(real_state[3]) realy.append(real_state[1]) estimatex.append(state_estimator.get_state(3)) estimatey.append(state_estimator.get_state(1)) t.append(d_time) plt.plot(estimatex, "-b") plt.plot(realx, "-r")
err = truth - mu err_hist.append(err) #find which measurements to use while l_time.item(meas_index) < odom_t.item(i): meas_index += 1 if meas_index >= l_time.size: break meas_index -= 1 lm_ind = np.argwhere(np.isfinite(l_depth[:, meas_index])) r = l_depth[lm_ind, meas_index] phi = l_bearing[lm_ind, meas_index] zt = np.hstack((r, phi)).T mu, Sigma, K = ukf.update(mu, Sigma, zt, lm_ind, vel_odom[0, i], vel_odom[1, i], dt) covar_hist.append(np.diagonal(Sigma)) fig1, ax1 = plt.subplots(nrows=3, ncols=1, sharex=True) mu_hist = np.array(mu_hist).T odom_t = odom_t.flatten() th_truth = unwrap(th_truth) ax1[0].plot(t_truth, x_truth, label="Truth") ax1[0].plot(odom_t, mu_hist[0, :], label="Est") ax1[0].set_ylabel("x (m)") ax1[0].legend() ax1[1].plot(t_truth, y_truth, label="Truth") ax1[1].plot(odom_t, mu_hist[1, :], label="Est") ax1[1].set_ylabel("y (m)") ax1[1].legend() ax1[2].plot(t_truth, th_truth, label="Truth")
#stuff for plotting x_hist.append(state) mu_hist.append(mu) err = state - mu err[2] = unwrap(err[2]) err_hist.append(err) x_covar_hist.append(Sigma[0,0]) y_covar_hist.append(Sigma[1,1]) psi_covar_hist.append(Sigma[2,2]) Car.animateCar(state, mu, dead_reckon) plt.pause(0.02) state = ukf.propagateState(state, v[i], w[i]) zt = getMeasurements(state) mu, Sigma, K = ukf.update(mu, Sigma, zt, vc[i], wc[i]) dead_reckon = ukf.propagateState(dead_reckon, vc[i], wc[i]) K_hist.append(K) fig1, ax1 = plt.subplots(nrows=3, ncols=1, sharex=True) x_hist = np.array(x_hist).T mu_hist = np.array(mu_hist).T ax1[0].plot(t, x_hist[0,:], label="Truth") ax1[0].plot(t, mu_hist[0,:], label="Est") ax1[0].set_ylabel("x (m)") ax1[0].legend() ax1[1].plot(t, x_hist[1,:], label="Truth") ax1[1].plot(t, mu_hist[1,:], label="Est") ax1[1].set_ylabel("y (m)") ax1[1].legend()