示例#1
0
def rgb2hsv(red, green, blue):
    # https://en.wikipedia.org/wiki/HSL_and_HSV#From_RGB
    # red, green, blue in 0..1hue, sat and value all 0..1
    # Returns hue, sat and value in 0..1
    try:
        length = len(red)
    except Exception:
        length = 1
    # Having to create and insert is due to an unfortunate limitation in ulab
    rgb = np.zeros((3, length), dtype=np.float)
    try:
        rgb[0] = red
        rgb[1] = green
        rgb[2] = blue
    except Exception:
        rgb[0] = red.flatten()
        rgb[1] = green.flatten()
        rgb[2] = blue.flatten()
    # These indexing games are because we can't index with integer arrays in ulab
    index = np.arange(length, dtype=np.uint16)
    index2d = np.zeros((length, 3), dtype=np.uint16)
    index2d[:, 0] = 0
    index2d[:, 1] = 1
    index2d[:, 2] = 2
    brightest = np.numerical.argmax(rgb, axis=0)
    isBrightest = index2d == brightest

    value = rgb[isBrightest]
    cc = value - np.min(rgb, axis=0)
    hueSelect = np.array([0, 2, 4])
    # Some unnecessary calculations, but still faster than a python loop
    hueCalc = np.array([green - blue, blue - red, red - green])
    hue = (hueSelect[index == brightest] + hueCalc[isBrightest] / cc) / 6
    sat = np.where(value == 0, 0.0, cc / value)
    return hue, sat, value
示例#2
0
def tdoa_multilateration_from_multiple_segments_gauss_newton(
        anchor_locations: list,
        range_diffs: list,
        init_soln: list,
        max_iters: int = 10,
        eta: float = 1E-3,
        abs_tol: float = 1E-6):
    # Gauss-Newton Iterations
    soln = np.array(init_soln)
    # Main iterations
    for j in range(max_iters):
        # ==== Calculate the LHS and RHS of Normal Equation: J'*J*d = -J'*res,
        # where J is Jacobian, d is descent direction, res is residual ====== #
        jTj = np.zeros((2, 2), dtype=np.float)
        jTres = np.zeros((2, 1), dtype=np.float)
        for locations, diffs in zip(anchor_locations, range_diffs):
            if use_ulab:
                m = locations.shape()[0]
            else:
                m = locations.shape[0]
            denom_1 = np.linalg.norm(soln - locations[0])
            for i in range(1, m):
                denom_2 = np.linalg.norm(soln - locations[i])
                res = (diffs[i - 1] - (denom_1 - denom_2))
                del_res = np.array([[((soln[0] - locations[i][0]) / denom_2 -
                                      (soln[0] - locations[0][0]) / denom_1)],
                                    [((soln[1] - locations[i][1]) / denom_2 -
                                      (soln[1] - locations[0][1]) / denom_1)]])
                if use_ulab:
                    jTj = jTj + np.linalg.dot(del_res, del_res.transpose())
                else:
                    jTj = jTj + np.dot(del_res, del_res.transpose())

                jTres = jTres + (del_res * res)
            # ===================== calculation ENDs here  ======================================================= #
        # Take next Step:
        # Modification according to Levenberg-Marquardt suggestion
        jTj = jTj + np.diag(np.diag(jTj) * eta)
        eta = eta / 2.0

        # Invert 2x2 matrix
        denom = jTj[0][0] * jTj[1][1] - jTj[1][0] * jTj[0][1]
        numer = np.array([[jTj[1][1], -jTj[0][1]], [-jTj[1][0], jTj[0][0]]])
        if denom >= 1E-9:
            inv_jTj = numer / denom
            if use_ulab:
                temp = np.linalg.dot(inv_jTj, jTres)
            else:
                temp = np.dot(inv_jTj, jTres)

            del_soln = np.array([temp[0][0], temp[1][0], 0.0])
            soln = soln - del_soln
            if np.linalg.norm(del_soln) <= abs_tol:
                break
        else:
            print("Can't invert the matrix!")
            break

    return soln
示例#3
0
def main():
    # This precomputes the color palette for maximum speed
    # You could change it to compute the color palette of your choice
    w = [wheel(i) for i in range(256)]

    # This sets up the initial wave as a smooth gradient
    u = ulab.zeros(num_pixels)
    um = ulab.zeros(num_pixels)
    f = ulab.zeros(num_pixels)

    slope = ulab.linspace(0, 256, num=num_pixels)
    th = 1

    # the first time is always random (is that a contradiction?)
    r = 0

    while True:

        # Some of the time, add a random new wave to the mix
        # increase .15 to add waves more often
        # decrease it to add waves less often
        if r < .01:
            ii = random.randrange(1, num_pixels - 1)
            # increase 2 to make bigger waves
            f[ii] = (random.random() - .5) * 2

        # Here's where to change dx, dt, and c
        # try .2, .02, 2 for relaxed
        # try 1., .7, .2 for very busy / almost random
        u, um = step(u, um, f, num_pixels, .1, .02, 1), u

        v = u * 200000 + slope + th
        for i, vi in enumerate(v):
            # Scale up by an empirical value, rotate by th, and look up the color
            pixels[i] = w[round(vi) % 256]

        # Take away a portion of the energy of the waves so they don't get out
        # of control
        u = u * .99

        # incrementing th causes the wheel to slowly cycle even if nothing else is happening
        th = (th + .25) % 256
        pixels.show()

        # Clear out the old random value, if any
        f[ii] = 0

        # and get a new random value
        r = random.random()
    def __init__(self, rv_eci, earth_rotation_angle_offset, t_epoch,
                 ground_stations):
        """Initialize the propagator with the stuff we received from
        the ground station, as well as pre-allocate other parameters.

        Args:
            rv_eci: state [r (km);v (km/s)] at t_epoch
            earth_rotation_angle_offset: GMST at t_epoch (radian)
            t_epoch: on board satellite time when propagator is initialized (s)
        """

        # [r;v] in km, km/s
        self.rv_eci = 1 * rv_eci

        # current earth rotation angle
        self.earth_rotation_angle_offset = earth_rotation_angle_offset

        # initial time that propagator was started
        self.t_epoch = t_epoch

        # store ecef location
        self.r_ecef = np.zeros(3)

        # constants
        self.earth = Earth()

        # visible to ground station
        self.visible = False

        # visible to ground station (previous step)
        self.old_visible = False

        # ground stations
        self.ground_stations = ground_stations
def diag(a: ulab.array) -> ulab.array:
    assert isinstance(a, ulab.array), "Input should be of type ulab.array!"
    m, n = a.shape()
    itemsize = a.itemsize()
    if itemsize == 1:
        dtype = ulab.int8
    elif itemsize == 2:
        dtype = ulab.int16
    elif itemsize == 8:
        dtype = ulab.float
    else:
        raise Exception("Unknown datatype of the input array!")

    if m <= 1 and n <= 1:
        return a
    elif (m == 1 and n > 1) or (m > 1 and n == 1):
        r = m if m > n else n
        b = ulab.eye(r, dtype=dtype)
        for i in range(r):
            b[i, i] = a[i]
        return b
    elif m == n:
        b = ulab.zeros(m, dtype=dtype)
        for i in range(m):
            b[i] = a[i][i]
        return b
    else:
        raise Exception("Input should be square matrix!")
示例#6
0
    def calc(self, xyz):
        '''
        Inverse kinematic model of leg, with angles theta(1;2;3)
        L0: horizontal distance between the second joint (up down on hip) 
        and the end effector
        D:  absolute distance between the second joint (up down on
        hip) and the end effector
        Alpha: internal angle formed by the thigh and shin
        Beta: Angle fored between end effector and horizontal about theta2
        Gamma: Internal angle between thigh and end effector about theta2
        '''

        xyz = rotate_z(self.offset, xyz)
        xyz = [xyz[0][0], xyz[1][0], xyz[2][0]]

        Theta = u.zeros(3)
        Theta[0] = m.atan2(xyz[1], xyz[0])
        L0 = m.sqrt(xyz[0]**2 + xyz[1]**2) - self.L[0]
        D = m.sqrt(L0**2 + xyz[2]**2)
        Alpha = m.acos((-D**2 + self.L[1]**2 + self.L[2]**2) /
                       (2 * self.L[1] * self.L[2]))
        Beta = m.atan2(xyz[2], L0)
        Gamma = m.asin(self.L[2] * m.sin(Alpha) / D)
        Theta[1] = Gamma + Beta
        Theta[2] = m.pi + Alpha

        for i in range(3):
            if Theta[i] > m.pi:
                Theta[i] = Theta[i] - 2 * pi
            if Theta[i] < -m.pi:
                Theta[i] = Theta[i] + 2 * pi

        return Theta
示例#7
0
    def __init__(self, lengths, offsets):
        self.num_legs = len(offsets)
        self.angles = u.zeros((self.num_legs, 3))

        self.legs = []
        for offset in offsets:
            self.legs.append(Leg_IK(lengths, offset))
示例#8
0
def dynamics(x,Earth):

    # generate the position and velocity
    pos = x[0:3]
    vel = x[3:6]

    # first we find the acceleration from two body
    #pos_norm = np.vector.sqrt(np.numerical.sum(pos ** 2))
    pos_norm = norm(pos)
    accel_twobody = -Earth.mu * \
    (pos_norm ** -3) * pos

    # now we find the J2 acceleration

    accel_J2 = np.zeros(3)
    accel_J2[0] = -3/2 * Earth.J2 * Earth.mu * Earth.R ** 2\
    * pos_norm ** -5 \
    * pos[0] * (1 - 5 * pos[2] ** 2 / pos_norm ** 2)
    accel_J2[1] = -3/2 * Earth.J2 * Earth.mu * Earth.R ** 2\
    * pos_norm ** -5 \
    * pos[1] * (1 - 5 * pos[2] ** 2 / pos_norm ** 2)
    accel_J2[2] = -3/2 * Earth.J2 * Earth.mu * Earth.R ** 2\
    * pos_norm ** -5 \
    * pos[2] * (3 - 5 * pos[2] ** 2 / pos_norm ** 2)

    # add together accelerations
    # accel = accel_twobody + accel_J2
    accel = accel_twobody + accel_J2

    return np.array([vel[0],vel[1],vel[2],accel[0],accel[1],accel[2]])
示例#9
0
def create_grid(x):
    N = x.shape[0]
    z = np.zeros((N, N, 3))
    z[:, :, 0] = x.reshape(-1, 1)
    z[:, :, 1] = x
    fast_grid = z.reshape(N * N, 3)
    return fast_grid
def check_mask(db, mask=(1, 0, 1)):
    out = np.zeros(db.shape[0],dtype=bool)
    for idx, line in enumerate(db):
        target, vector = line[0], line[1:]
        if (mask == np.bitwise_and(mask, vector)).all():
            if target == 1:
                out[idx] = 1
    return out
示例#11
0
 def __init__(self, palette):
     self.palette = palette
     ulab_palette = ulab.zeros((len(palette), 3))
     for i in range(len(palette)):
         rgb = int(palette[i])
         ulab_palette[i, 2] = rgb & 0xff
         ulab_palette[i, 1] = (rgb >> 8) & 0xff
         ulab_palette[i, 0] = rgb >> 16
     self.ulab_palette = ulab_palette
示例#12
0
def main2():

    N = 75
    Nx = 2
    Nu = 1

    Qf = np.eye(Nx) * 30
    Q = np.eye(Nx) * 0.01
    R = np.eye(1) * 0.03

    x0 = np.zeros(2)
    xg = np.array([math.pi, 0])
    utraj0 = np.zeros((Nu, N - 1))

    dt = 0.1
    tol = 0.35

    xtraj, utraj, K = iLQRsimple_py(x0, xg, utraj0, Q, R, Qf, dt, tol)
示例#13
0
def sortByVoltage(arrays, voltages):
    sort_idx_v = ulab.numerical.argsort(voltages, axis=0)
    o_arrays = [ulab.zeros(len(a)) for a in arrays]
    ### ulab doesn't seem to implement indexing by an array, hence
    ### the for loop
    for a, o_a in zip(arrays, o_arrays):
        for idx in range(len(sort_idx_v)):
            o_a[idx] = a[sort_idx_v[idx]]
    return o_arrays
示例#14
0
def averageVI(store, cycles_n, scale=1):
    """Calculate the voltages and currents for a cycle by averaging all cycles.
       Calculate the resistance from those values."""

    avg_len = store.shape[0] // cycles_n
    avg_v = ulab.zeros(avg_len)
    avg_i = ulab.zeros(avg_len)
    for s_idx, (v_set_neg, v_set_pos, v_meas_neg, v_meas_pos) in enumerate(store):
        i5 = (v_meas_neg - v_set_neg) / r_neg
        i6 = (v_set_pos - v_meas_pos) / r_pos
        c_v = v_meas_pos - v_meas_neg
        c_i = (i5 + i6) / 2
        v_idx = s_idx % avg_len
        avg_v[v_idx] += c_v
        avg_i[v_idx] += c_i

    avg_r = avg_v / avg_i
    avg_v *= scale / cycles_n
    avg_i *= scale / cycles_n
    return (avg_r, avg_v, avg_i)
示例#15
0
    def __call__(self, leds):
        num = len(leds)

        left = np.zeros(num, dtype=np.uint8)
        right = np.zeros(num, dtype=np.uint8)
        right[:self.length] = np.linspace(0, 255, self.length)

        while True:
            # Shift left/right
            offLeft = left[0]
            offRight = right[num - 1]
            left[:-1] = left[1:]
            right[1:] = right[:-1]
            right[0] = offLeft
            left[num - 1] = offRight

            # Display
            value = np.clip * ((left + right) / 255, 0.0, 1.0)
            leds[:] = hsv2rgb(self.hue, self.sat, value)
            yield self.pause
示例#16
0
def perform_robust_multilateration(loc_range_diff_info, depth):
    num_segment = len(loc_range_diff_info)
    estimated_locations = []
    # estimate location from each segment
    for i in range(num_segment):
        loc_range_diff = loc_range_diff_info[i]
        num_anchors = len(loc_range_diff)
        # create numpy array to hold anchor locations and range-differences
        locations = np.zeros((num_anchors, 3), dtype=np.float)
        range_diffs = np.zeros(num_anchors - 1, dtype=np.float)

        # extract locations and range-differences from list and store them into respective numpy array
        zone = None
        zone_letter = None
        for j in range(num_anchors):
            if j == 0:
                zone, zone_letter = loc_range_diff[j][0][0], loc_range_diff[j][
                    0][1]
                locations[j] = np.array(loc_range_diff[j][1])
            else:
                locations[j] = np.array(loc_range_diff[j][0:3])
                range_diffs[j - 1] = loc_range_diff[j][3]

        # Call Gauss Newton Method for location estimation
        initial_soln = np.mean(locations, axis=0)
        # replace 3 coordinate with sensor depth
        initial_soln[2] = depth
        estimated_location = tdoa_multilateration_from_single_segement_gauss_newton(
            locations, range_diffs, initial_soln)
        # estimated_location = TDOALocalization.perform_tdoa_multilateration_closed_form(locations, range_diffs, depth)
        if use_ulab:
            bflag_estimated = estimated_location.size() > 0
        else:
            bflag_estimated = estimated_location.size > 0
        # Convert to Lat/Lon
        if bflag_estimated > 0:
            lat, lon = to_latlon(estimated_location[0], estimated_location[1],
                                 zone, zone_letter)
            estimated_locations.append([lat, lon, estimated_location[2]])

    return estimated_locations
 def __init__(self, N, dt, Nx, Nu):
     self.K = [np.zeros((Nu, Nx)) for _ in range(N - 1)]
     self.l = [np.zeros(Nu) for _ in range(N - 1)]
     self.xtraj = [np.zeros(Nx) for _ in range(N)]
     self.utraj = [np.zeros(Nu) for _ in range(N - 1)]
     self.xnew = [np.zeros(Nx) for _ in range(N)]
     self.unew = [np.zeros(Nu) for _ in range(N - 1)]
def median(a: ulab.array, axis=None):
    assert isinstance(a, ulab.array), "Input should be ulab.array!"
    m, n = a.shape()
    a = ulab.numerical.sort(a, axis=axis)
    if axis is None:
        s = m * n
        if (s % 2) == 0:  # even
            l = math.floor((s + 1) / 2)
            u = math.ceil((s + 1) / 2)
            result = (a[l-1] + a[u-1]) / 2
        else:
            l = math.floor((s + 1)/2)
            result = a[l-1]
        return result
    elif axis == 0:
        result = ulab.zeros(n, dtype=ulab.float)
        if m % 2 == 0:
            l = math.floor((m + 1) / 2)
            u = math.ceil((m + 1) / 2)
            for i in range(n):
                result[i] = (a[l-1, i] + a[u-1, i]) / 2
        else:
            l = math.floor((m + 1) / 2)
            for i in range(n):
                result[i] = a[l-1, i]
        return result
    elif axis == 1:
        result = ulab.zeros(m, dtype=ulab.float)
        if n % 2 == 0:
            l = math.floor((n + 1) / 2)
            u = math.ceil((n + 1) / 2)
            for i in range(m):
                result[i] = (a[i, l-1] + a[i, u-1]) / 2
        else:
            l = math.floor((n + 1) / 2)
            for i in range(m):
                result[i] = a[i, l-1]
        return result
    else:
        raise Exception("Allowed axis are None, 0, and 1!")
示例#19
0
    def __init__(self, num, pin=None, order="grb", positions=None):
        self.pin = pin
        if pin is not None:
            pin.init(pin.OUT)
        self.order = order
        if positions is None:
            positions = {}
        self.positions = positions

        self.num = num
        self._red0 = order.lower().find("r")
        self._green0 = order.lower().find("g")
        self._blue0 = order.lower().find("b")

        self._state = np.zeros((num, 3), dtype=np.uint8)
示例#20
0
def dynamics_xdot(t, x, u):
    Nx = 2

    m = 1.0
    b = 0.1
    lc = 0.5
    I = 0.25
    g = 9.81

    xdot = np.zeros(Nx)

    xdot[0] = x[1]
    xdot[1] = (u - m * g * lc * math.sin(x[0]) - b * x[1]) / I

    return xdot
示例#21
0
def spatial_filter(img, kernel, dxy=None):
    """ Convolves `img` with `kernel` assuming a stride of 1. If `img` is linear,
     `dxy` needs to hold the dimensions of the image.
  """
    # Make sure that the image is 2D
    _img = np.array(img)
    if dxy is None:
        dx, dy = _img.shape()
        isInt = type(img[0:0])
        isFlat = False
    else:
        dx, dy = dxy
        if dx * dy != _img.size():
            raise TypeError("Dimensions do not match number of `img` elements")
        isInt = type(img[0])
        isFlat = True
    img2d = _img.reshape((dx, dy))

    # Check if kernel is a square matrix with an odd number of elements per row
    # and column
    krn = np.array(kernel)
    dk, dk2 = krn.shape()
    if dk != dk2 or dk % 2 == 0 or dk <= 1:
        raise TypeError(
            "`kernel` is not a square 2D matrix or does not have an "
            "odd number of row / column elements")

    # Make a padded copy of the image; pad with mean of image to reduce edge
    # effects
    padd = dk // 2
    img2dp = np.ones((dx + padd * 2, dy + padd * 2)) * numerical.mean(img2d)
    img2dp[padd:dx + padd, padd:dy + padd] = img2d
    imgRes = np.zeros(img2dp.shape())

    # Convolve padded image with kernel
    for x in range(0, dx):
        for y in range(0, dy):
            imgRes[x + padd, y + padd] = numerical.sum(
                img2dp[x:x + dk, y:y + dk] * krn[:, :])

    # Remove padding, flatten and restore value type if needed
    _img = imgRes[padd:dx + padd, padd:dy + padd]
    if isFlat:
        _img = _img.flatten()
    if isInt:
        _img = list(np.array(_img, dtype=np.int16))
    return _img
示例#22
0
def dynamics(t, x, u):
    Nx = 2

    m = 1.0
    b = 0.1
    lc = 0.5
    I = 0.25
    g = 9.81

    xdot = np.zeros(Nx)
    xdot[0] = x[1]
    xdot[1] = (u - m * g * lc * math.sin(x[0]) - b * x[1]) / I

    A = np.array([[0, 1], [-m * g * lc * math.cos(x[0]) / I, -b / I]])
    B = np.array([[0], [1 / I]])
    # dxdot = np.hstack((A, B))

    return xdot, A, B
示例#23
0
    def __init__(self, width, height, i2c, display_bus, display, reverse, font):
        # The board's integral display size (as informed by product page adafru.it/1770)
        self.WIDTH = width
        self.HEIGHT = height
        self.i2c = i2c
        self.display = display
        self.colours = Colours()
        self.reverse = reverse
        self.font = font

        # The image sensor's design-limited temperature range
        self.MIN_SENSOR_C = 0
        self.MAX_SENSOR_C = 80
        self.MIN_SENSOR_F = self.celsius_to_fahrenheit(self.MIN_SENSOR_C)
        self.MAX_SENSOR_F = self.celsius_to_fahrenheit(self.MAX_SENSOR_C)

        # Convert default alarm and min/max range values from config file
        self.MIN_RANGE_F =  60
        self.MAX_RANGE_F = 120
        self.MIN_RANGE_C = self.fahrenheit_to_celsius(self.MIN_RANGE_F)
        self.MAX_RANGE_C = self.fahrenheit_to_celsius(self.MAX_RANGE_F)

        # New stuff
        self.ALARM_F = 120
        self.ALARM_C = self.fahrenheit_to_celsius(self.ALARM_F)

        self.grid_size = 8
        self.sensor_data = ulab.array(range(self.grid_size * self.grid_size)).reshape((self.grid_size, self.grid_size))  # Color index narray
        self.grid_data = ulab.zeros(((2 * self.grid_size) - 1, (2 * self.grid_size) - 1))  # 15x15 color index narray
        #self.histogram = ulab.zeros((2 * self.grid_size) - 1)  # Histogram accumulation narray

        self.GRID_AXIS = (2 * self.grid_size) - 1  # Number of cells along the grid x or y axis
        self.GRID_SIZE = self.HEIGHT  # Maximum number of pixels for a square grid
        self.GRID_X_OFFSET = self.WIDTH - self.GRID_SIZE  # Right-align grid with display boundary
        self.CELL_SIZE = self.GRID_SIZE // self.GRID_AXIS  # Size of a grid cell in pixels

        self.PALETTE_SIZE = 100  # Number of colors in spectral palette (must be > 0)

        self.param_colors = [("ALARM", self.colours.WHITE), ("RANGE", self.colours.RED), ("RANGE", self.colours.CYAN)]

        # Define the sensor
        self.amg8833 = adafruit_amg88xx.AMG88XX(self.i2c)
示例#24
0
 def __call__(self, tree):
     num = sum(len(ss) for ss in tree)
     indices = np.zeros((num, 2), dtype=int)
     start = 0
     for ii in range(len(tree)):
         length = len(tree[ii])
         ss = slice(start, start + length)
         indices[ss, 0] = ii
         indices[ss, 1] = np.arange(length)
         start += length
     while True:
         tree.clear()
         order = sorted([(randFloat(), ii) for ii in range(num)])
         for _, ii in order:
             ss, tt = indices[ii]
             tree[ss][tt] = randomColor()
             yield
         for _, ii in order:
             ss, tt = indices[ii]
             tree[ss][tt] = BLACK
             yield
def main2():

    N = 25
    Nx = 6
    Nu = 3

    qp = 1
    qw = .01
    Q = np.array([[qp, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, qp, 0.0, 0.0, 0.0, 0.0],
                  [0.0, 0.0, qp, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, qw, 0.0, 0.0],
                  [0.0, 0.0, 0.0, 0.0, qw, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,
                                                  qw]])
    qpf = 100.0
    qwf = 10 * qpf
    Qf = np.array([[qpf, 0.0, 0.0, 0.0, 0.0, 0.0],
                   [0.0, qpf, 0.0, 0.0, 0.0, 0.0],
                   [0.0, 0.0, qpf, 0.0, 0.0, 0.0],
                   [0.0, 0.0, 0.0, qwf, 0.0, 0.0],
                   [0.0, 0.0, 0.0, 0.0, qwf, 0.0],
                   [0.0, 0.0, 0.0, 0.0, 0.0, qwf]])

    R = .1 * np.eye(3)
    #x0 = np.array([0.07500539420980451, 0.7678669790425526, 0.3299131467179552, 0.0, 0.0, 0.0])
    x0 = np.array([
        -0.274710632045161, 0.6780834943980876, 0.4108832368302142, 0.0, 0.0,
        0.0
    ])
    xg = np.array([0, 0, 0, 0, 0, 0.0])
    utraj0 = np.zeros((Nu, N - 1))

    dt = 12.0
    tol = 0.5

    xtraj, utraj, K = iLQRsimple_py(x0, xg, utraj0, Q, R, Qf, dt, tol)

    print(xtraj[-1])
humidity_svc = HumidityService()
humidity_svc.measurement_period = 100
humidity_last_update = 0

light_svc = LightSensorService()
light_svc.measurement_period = 100
light_last_update = 0

# Send 256 16-bit samples at a time.
MIC_NUM_SAMPLES = 256
mic_svc = MicrophoneService()
mic_svc.number_of_channels = 1
mic_svc.measurement_period = 100
mic_last_update = 0
mic_samples = ulab.zeros(MIC_NUM_SAMPLES, dtype=ulab.uint16)

temp_svc = TemperatureService()
temp_svc.measurement_period = 100
temp_last_update = 0

ble = BLERadio()
# The Web Bluetooth dashboard identifies known boards by their
# advertised name, not by advertising manufacturer data.
ble.name = "Sense"

# The Bluefruit Playground app looks in the manufacturer data
# in the advertisement. That data uses the USB PID as a unique ID.
# Feather Bluefruit Sense USB PID:
# This board is not yet support on the app.
# Arduino: 0x8087,  CircuitPython: 0x8088
示例#27
0
except ImportError:
    import numpy as np
    use_ulab = False

x = np.linspace(-np.pi, np.pi, num=8)
y = np.sin(x)
if use_ulab:
    a, b = np.fft.fft(y)
    c, d = np.fft.ifft(a, b)
    # c should be equal to y
    cmp_result = []
    for p, q in zip(list(y), list(c)):
        cmp_result.append(math.isclose(p, q, rel_tol=1e-09, abs_tol=1e-09))
    print(cmp_result)

    z = np.zeros(len(x))
    a, b = np.fft.fft(y, z)
    c, d = np.fft.ifft(a, b)
    # c should be equal to y
    cmp_result = []
    for p, q in zip(list(y), list(c)):
        cmp_result.append(math.isclose(p, q, rel_tol=1e-09, abs_tol=1e-09))
    print(cmp_result)

    g = np.fft.spectrogram(y)
    h = np.sqrt(a * a + b * b)
    cmp_result = []
    for p, q in zip(list(g), list(h)):
        cmp_result.append(math.isclose(p, q, rel_tol=1e-09, abs_tol=1e-09))
    print(cmp_result)
else:
示例#28
0
def least_median_square_estimate(loc_range_diff_info: list, depth: float,
                                 max_iters: int) -> list:
    num_segments = len(loc_range_diff_info)
    lead_anchor_locations_list = []
    asst_anchor_locations_list = []
    range_diffs_list = []
    zone_info_list = []
    lut = []

    for i in range(num_segments):
        loc_range_diff = loc_range_diff_info[i]
        num_anchors = len(loc_range_diff)
        lut += [i] * (num_anchors - 1)
        for j in range(num_anchors):
            if j == 0:
                zone, zone_letter = loc_range_diff[j][0][0], loc_range_diff[j][
                    0][1]
                zone_info_list.append([zone, zone_letter])
                lead_anchor_locations_list.append(loc_range_diff[j][1])
            else:
                asst_anchor_locations_list.append(loc_range_diff[j][0:3])
                range_diffs_list.append(loc_range_diff[j][3])

    # Check if all anchors belong to same zone
    bflag_zone = True
    zone, zone_letter = zone_info_list[0][0], zone_info_list[0][1]
    for zone_info in zone_info_list:
        if zone_info != [zone, zone_letter]:
            bflag_zone = False
            break

    if not bflag_zone:
        raise ValueError("All the anchors are not in same zone!")

    num_asst_anchors = len(lut)
    # Generate subsets of assistant anchors with each subset containing 3 elements
    subsets = list(random_combinations(range(num_asst_anchors), 3, max_iters))

    # For each subset, calculate the unknown location using multilateration
    # and then calculate median of square residues = (range_diff - (SA - SB))**2 ,
    # where A and B represent the lead and the assistant anchor, respectively, and
    # S represent estimated unknown location
    min_median = np.inf
    robust_location = None
    iter_count = 0
    for subset in subsets:
        # Pack together the assistant and the corresponding lead anchor's location
        anchor_locations = []
        range_diffs = []
        for index in subset:
            lead_anchor = lead_anchor_locations_list[lut[index]]
            asst_anchor = asst_anchor_locations_list[index]
            anchors = np.array([lead_anchor, asst_anchor])
            range_diff = np.array([range_diffs_list[index]])
            anchor_locations.append(anchors)
            range_diffs.append(range_diff)

        # Calculate initial soln as mean of Anchor Positions
        mean_anchor_location = np.zeros(3, dtype=np.float)
        num_anchors = 0
        for anchor in anchor_locations:
            mean_anchor_location = mean_anchor_location + np.sum(anchor,
                                                                 axis=0)
            if use_ulab:
                num_anchors += anchor.shape()[0]
            else:
                num_anchors += anchor.shape[0]

        init_soln = mean_anchor_location / num_anchors
        init_soln[2] = depth

        # Estimate location from selected subset of anchors using Gauss-Newton method
        sensor_location = tdoa_multilateration_from_multiple_segments_gauss_newton(
            anchor_locations, range_diffs, init_soln)
        # For each estimated location calculate the square of residues, i.e., (observed_range_diff - calculated_range_diff)**2
        sq_residues = []
        for index in subset:
            lead_anchor = np.array(lead_anchor_locations_list[lut[index]])
            asst_anchor = np.array(asst_anchor_locations_list[index])
            range_diff = np.array([range_diffs_list[index]])
            lead_to_sensor = np.linalg.norm((lead_anchor - sensor_location))
            asst_to_sensor = np.linalg.norm((asst_anchor - sensor_location))
            estimated_range_diff = lead_to_sensor - asst_to_sensor
            sq_residues.append((range_diff - estimated_range_diff)**2)
        # Calculate Median of Square-Residues
        current_median = np.median(np.array(sq_residues))
        # Select the subset which results into lowest median of errors
        if current_median <= min_median:
            min_median = current_median
            robust_location = sensor_location

        if iter_count >= max_iters:
            break
        iter_count += 1

    # Convert the location into Lat/Lon system
    try:
        lat, lon = to_latlon(robust_location[0], robust_location[1], zone,
                             zone_letter)
        estimated_location = [lat, lon, robust_location[2]]
    except Exception as e:
        print("Not a valid estimate: " + str(e))
        estimated_location = []

    return estimated_location
示例#29
0
def tdoa_multilateration_from_single_segement_gauss_newton(
        locations: np.array,
        deltas: np.array,
        initial_soln: np.array,
        max_iters: int = 10,
        eta: float = 1E-3,
        abs_tol: float = 1E-6):
    """
    tdoa_multilateration_gauss_newton solves the problem: argmin_x  sum_{i=1}^{N} (d_i - || x - a_0 ||_2 - || x - a_i ||_2)^{2}
    by Gauss-Newton Method, which finds a local optimum.
    :param locations: Nx3 array of anchor locations
    :param deltas: (N-1)x1 array of range-differences
    :param initial_soln: 3x1 array of initial solution
    :param max_iters: int
    :param eta: float
    :param abs_tol: float
    :return: 3x1 array of estimated solution
    """
    if use_ulab:
        m, n = locations.shape()
    else:
        m, n = locations.shape

    soln = np.array(initial_soln)

    for j in range(max_iters):
        # ==== Calculate the LHS and RHS of Normal Equation: J'*J*d = -J'*res,
        # where J is Jacobian, d is descent direction, res is residual ====== #
        jTj = np.zeros((n - 1, n - 1))
        jTres = np.zeros((n - 1, 1))
        denom_1 = np.linalg.norm(soln - locations[0])
        for i in range(1, m):
            denom_2 = np.linalg.norm(soln - locations[i])
            res = (deltas[i - 1] - (denom_1 - denom_2))
            del_res = np.array([[((soln[0] - locations[i, 0]) / denom_2 -
                                  (soln[0] - locations[0, 0]) / denom_1)],
                                [((soln[1] - locations[i, 1]) / denom_2 -
                                  (soln[1] - locations[0, 1]) / denom_1)]])
            if use_ulab:
                jTj = jTj + np.linalg.dot(del_res, del_res.transpose())
            else:
                jTj = jTj + np.dot(del_res, del_res.transpose())

            jTres = jTres + (del_res * res)
        # ===================== calculation ENDs here  ======================================================= #

        # ==================== Take next Step ========================= #
        # Modification according to Levenberg-Marquardt suggestion
        jTj = jTj + np.diag(np.diag(jTj) * eta)
        eta = eta / 2.0

        # Invert 2x2 matrix and update solution
        denom = jTj[0, 0] * jTj[1, 1] - jTj[1, 0] * jTj[0, 1]
        numer = np.array([[jTj[1, 1], -jTj[0, 1]], [-jTj[1, 0], jTj[0, 0]]])
        if denom >= 1E-9:
            inv_jTj = numer / denom
            if use_ulab:
                temp = np.linalg.dot(inv_jTj, jTres)
            else:
                temp = np.dot(inv_jTj, jTres)

            del_soln = np.array([temp[0, 0], temp[1, 0], 0.0])
            soln = soln - del_soln
            if np.linalg.norm(del_soln) <= abs_tol:
                break
        else:
            print("Can't invert the matrix!")
            break

    return soln
示例#30
0
def perform_tdoa_multilateration_closed_form(anchor_locations, range_diffs,
                                             sensor_depth):
    """
    Calculates the unknown location given the anchor locations and TDoA info
    :param anchor_locations: an array of dims [n,3]
    :param sensor_depth: float
    :param range_diffs: an array of dims [n-1,1]
    :return: an array of dim [3,1]
    """
    soln = np.array([])
    if use_ulab:
        bflag_proceed = anchor_locations.size() > 0 and range_diffs.size() > 0
    else:
        bflag_proceed = anchor_locations.size > 0 and range_diffs.size > 0

    if bflag_proceed:
        if use_ulab:
            n = range_diffs.size()
        else:
            n = range_diffs.size

        mat_m = np.zeros((n, 2), dtype=np.float)
        for i in range(n):
            mat_m[i, :] = np.array(
                [(anchor_locations[0, 0] - anchor_locations[i + 1, 0]),
                 (anchor_locations[0, 1] - anchor_locations[i + 1, 1])]) * 2.0
        vec_c = range_diffs * 2.0
        vec_d = np.zeros(n, dtype=np.float)
        for i in range(n):
            vec_d[i] = np.linalg.norm(anchor_locations[i + 1]) ** 2 - np.linalg.norm(anchor_locations[0]) ** 2 \
                       - range_diffs[i] ** 2 + 2.0 * (anchor_locations[0, 2] - anchor_locations[i + 1, 2]) * sensor_depth

        # Invert the matrix and find the solution if feasible
        if use_ulab:
            mTm = np.linalg.dot(mat_m.transpose(), mat_m)
        else:
            mTm = np.dot(mat_m.transpose(), mat_m)

        # Invert the matrix mTm
        denom = mTm[0, 0] * mTm[1, 1] - mTm[1, 0] * mTm[0, 1]
        numer = np.array([[mTm[1, 1], -mTm[0, 1]], [-mTm[1, 0], mTm[0, 0]]])
        if denom >= 1E-9:
            mTm_inv = numer / denom
            if use_ulab:
                mat_m_inv = np.linalg.dot(mTm_inv, mat_m.transpose())
            else:
                mat_m_inv = np.matmul(mTm_inv, mat_m.transpose())

            # Solve the quadratic equations
            if use_ulab:
                vec_a = -np.linalg.dot(mat_m_inv, vec_c)
                vec_b = -np.linalg.dot(mat_m_inv, vec_d)
                alpha = np.linalg.dot(vec_a, vec_a) - 1.0
                beta = 2.0 * np.linalg.dot(vec_a,
                                           (vec_b - anchor_locations[0][0:2]))
                gamma = np.linalg.dot(
                    (vec_b - anchor_locations[0][0:2]),
                    (vec_b - anchor_locations[0][0:2])) + (
                        sensor_depth - anchor_locations[0][2])**2
            else:
                vec_a = -np.dot(mat_m_inv, vec_c)
                vec_b = -np.dot(mat_m_inv, vec_d)
                alpha = np.dot(vec_a, vec_a) - 1.0
                beta = 2.0 * np.dot(vec_a, (vec_b - anchor_locations[0][0:2]))
                gamma = np.dot((vec_b - anchor_locations[0][0:2]),
                               (vec_b - anchor_locations[0][0:2])) + (
                                   sensor_depth - anchor_locations[0][2])**2

            delta = beta**2 - 4.0 * alpha * gamma

            if delta < 0.0:
                pass
            elif math.isclose(delta, 0.0, abs_tol=1E-5) and beta < 0.0:
                root = -beta / (2.0 * alpha)
                soln = vec_a * root + vec_b
                soln = np.array([soln[0], soln[1], sensor_depth])
            elif math.isclose(alpha, 0.0, abs_tol=1E-5) and beta < 0.0:
                root = -gamma / beta
                soln = vec_a * root + vec_b
                soln = np.array([soln[0], soln[1], sensor_depth])
            elif delta > 0.0 and not math.isclose(alpha, 0.0, abs_tol=1E-5):
                # print("delta > 0 and alpha != 0")
                sqrt_delta = np.sqrt(delta)
                root1 = (-beta - sqrt_delta) / (2 * alpha)
                root2 = (-beta + sqrt_delta) / (2 * alpha)
                # print("Root1={:0.4f} and Root2={:0.4f}".format(root1, root2))
                if root2 < 0.0 < root1:
                    soln = vec_a * root1 + vec_b
                    soln = np.array([soln[0], soln[1], sensor_depth])
                elif root1 < 0.0 < root2:
                    soln = vec_a * root2 + vec_b
                    soln = np.array([soln[0], soln[1], sensor_depth])
                elif root1 > 0.0 and root2 > 0.0:
                    pass
                else:  # Both roots are negative
                    pass
            else:
                pass
        else:
            pass

    return soln