示例#1
0
 def test_without_endgaps_basic(self):
     a = AlignedPair(
         ("q", "--ABCDE---"),
         ("s", "FGHIJKLMNO"))
     r = AlignedRegion.without_endgaps(a)
     self.assertEqual(r.start_idx, 2)
     self.assertEqual(r.end_idx, 7)
示例#2
0
    def _get_indiv_probability(self, alignment):
        region = AlignedRegion.without_endgaps(alignment).trim_ends()
        region_positions = region.alignment_len
        region_matches = region.count_matches()
        region_mismatches = region_positions - region_matches

        alpha = region_mismatches + self.prior_alpha
        beta = region_matches + self.prior_beta

        nonregion_subject_positions = (alignment.subject_len -
                                       region.subject_len)
        total_positions = (region_positions + nonregion_subject_positions)

        species_mismatch_threshold = 1 - self.species_threshold
        max_total_mismatches = int(
            math.floor(species_mismatch_threshold * total_positions))
        max_nonregion_mismatches = max_total_mismatches - region_mismatches

        prob_compatible = beta_binomial_cdf(max_nonregion_mismatches,
                                            nonregion_subject_positions, alpha,
                                            beta)
        prob_incompatible = 1 - prob_compatible

        return {
            "typestrain_id": alignment.subject_id,
            "probability_incompatible": prob_incompatible,
            "region_mismatches": region_mismatches,
            "region_positions": region_positions,
            "region_matches": region_matches,
            "nonregion_positions_in_subject": nonregion_subject_positions,
            "max_nonregion_mismatches": max_nonregion_mismatches,
        }
示例#3
0
 def test_without_endgaps_hard(self):
     a = AlignedPair(
         ("q", "--A-CDEFGH"),
         #        |||||
         ("s", "FG-IJ-L---"))
     r = AlignedRegion.without_endgaps(a)
     self.assertEqual(r.start_idx, 2)
     self.assertEqual(r.end_idx, 7)
示例#4
0
    def unassign_threshold(self, min_id=0.975, soft_threshold=False):
        # Use all the beta-binomial logic from ConstantMismatchRate,
        # just adjust alpha and beta based on reference
        # sequences. Here's how. Reparameterize beta as mu and v,
        # following wikipedia. Hold v constant. We are going to update
        # mu. In the constant rate algorithm, mu2 = mu1. In the
        # variable rate algorithm, we determine log(mu2 / mu1) by
        # averaging the observed values from the reference
        # sequences. To stabilize things, start with a list of
        # [0,0,0,0,0]. Then, for each reference sequence, compute mu2
        # and mu1, take the log, and append to the list. Average the
        # values in the list. Now use this as the new value of mu2 for
        # the query sequence.

        # Clip out the aligned region
        region = AlignedRegion.without_endgaps(self.alignment)
        region_alignment = region.trim_ends()
        region_positions = region_alignment.alignment_len
        region_matches = region_alignment.count_matches()
        region_mismatches = region_positions - region_matches
        region_subject_positions = region_alignment.subject_len

        # Calcuate alpha, beta, mu, and v in aligned region
        alpha1 = region_mismatches + 0.5
        beta1 = region_matches + 0.5
        v1 = alpha1 + beta1
        mu1 = alpha1 / v1

        # Compute number of positions outside aligned region
        nonregion_subject_positions = (self.alignment.subject_len -
                                       region_subject_positions)
        total_positions = (region_positions + nonregion_subject_positions)

        # Get mismatches from database
        typestrain_id = self.alignment.subject_id
        typestrain_start_idx, typestrain_end_idx = region.in_subject()
        reference_mismatches = self._get_mismatches(typestrain_id,
                                                    typestrain_start_idx,
                                                    typestrain_end_idx)

        # Get estimate for gamma = log(mu2 / mu1)
        # From reference alignments
        reference_logvals = [0, 0, 0, 0, 0]
        for region_mms, nonregion_mms in reference_mismatches:
            # mu = alpha / (alpha + beta)
            # alpha = mismatches + 0.5
            # beta = matches + 0.5
            # matches = len - mismatches
            # beta = len - mismatches + 0.5
            # mu = (mismatches + 0.5) / (len + 1)
            ref_mu1 = (region_mms + 0.5) / (region_subject_positions + 1)
            ref_mu2 = (nonregion_mms + 0.5) / (nonregion_subject_positions + 1)
            log_mu2_mu1 = math.log(ref_mu2 / ref_mu1)
            reference_logvals.append(log_mu2_mu1)
        # TODO: add weighting
        gamma = numpy.mean(reference_logvals)

        # Calculate mu2, get alpha2 and beta2
        # log(mu2 / mu1) = gamma
        # log(mu2) - log(mu1) = gamma
        # log(mu2) = log(mu1) + gamma
        # mu2 = exp(log(mu1) + gamma)
        mu2 = math.exp(math.log(mu1) + gamma)
        v2 = v1
        # alpha2, beta2
        # mu2 = alpha2 / v2
        # alpha2 = mu2 * v2
        alpha2 = mu2 * v2
        # v2 = alpha2 + beta2
        beta2 = v2 - alpha2

        # Maximum number of mismatches outside observed region
        species_mismatch_threshold = 1 - min_id
        max_total_mismatches = int(
            math.floor(species_mismatch_threshold * total_positions))
        max_nonregion_mismatches = max_total_mismatches - region_mismatches

        # Compute probability
        if soft_threshold:
            threshold_fcn = soft_species_probability
        else:
            threshold_fcn = hard_species_probability
        prob_compatible = threshold_assignment_probability(
            region_mismatches,
            region_positions,
            nonregion_subject_positions,
            alpha2,
            beta2,
            100 * species_mismatch_threshold,
            threshold_fcn,
        )
        prob_incompatible = 1 - prob_compatible

        return {
            "typestrain_id": self.alignment.subject_id,
            "region_mismatches": region_mismatches,
            "region_positions": region_positions,
            "probability_incompatible": prob_incompatible,
            "mu1": mu1,
            "num_references": len(reference_logvals),
            "mu2": mu2,
            "nonregion_positions_in_subject": nonregion_subject_positions,
            "max_nonregion_mismatches": max_nonregion_mismatches,
        }