def test_rest(x, y): print('Random under-sampling') US = UnderSampler(verbose=verbose) usx, usy = US.fit_transform(x, y) print('Tomek links') TL = TomekLinks(verbose=verbose) tlx, tly = TL.fit_transform(x, y) print('Clustering centroids') CC = ClusterCentroids(verbose=verbose) ccx, ccy = CC.fit_transform(x, y) print('NearMiss-1') NM1 = NearMiss(version=1, verbose=verbose) nm1x, nm1y = NM1.fit_transform(x, y) print('NearMiss-2') NM2 = NearMiss(version=2, verbose=verbose) nm2x, nm2y = NM2.fit_transform(x, y) print('NearMiss-3') NM3 = NearMiss(version=3, verbose=verbose) nm3x, nm3y = NM3.fit_transform(x, y) print('Neighboorhood Cleaning Rule') NCR = NeighbourhoodCleaningRule(verbose=verbose) ncrx, ncry = NCR.fit_transform(x, y) print('Random over-sampling') OS = OverSampler(verbose=verbose) ox, oy = OS.fit_transform(x, y) print('SMOTE Tomek links') STK = SMOTETomek(verbose=verbose) stkx, stky = STK.fit_transform(x, y) print('SMOTE ENN') SENN = SMOTEENN(verbose=verbose) sennx, senny = SENN.fit_transform(x, y) print('EasyEnsemble') EE = EasyEnsemble(verbose=verbose) eex, eey = EE.fit_transform(x, y)
def tomek_links(self): TL = TomekLinks(verbose=self.verbose) tlx, tly = TL.fit_transform(self.x, self.y) print "TomekLins Transformed" return tlx, tly
plt.scatter(x_vis[y==0, 0], x_vis[y==0, 1], label="Class #0", alpha=0.5, edgecolor=almost_black, facecolor='red', linewidth=0.15) plt.scatter(x_vis[y==1, 0], x_vis[y==1, 1], label="Class #1", alpha=0.5, edgecolor=almost_black, facecolor='blue', linewidth=0.15) plt.legend() plt.show() # Generate the new dataset using under-sampling method verbose = False # 'Random under-sampling' US = UnderSampler(verbose=verbose) usx, usy = US.fit_transform(x, y) # 'Tomek links' TL = TomekLinks(verbose=verbose) tlx, tly = TL.fit_transform(x, y) # 'Clustering centroids' CC = ClusterCentroids(verbose=verbose) ccx, ccy = CC.fit_transform(x, y) # 'NearMiss-1' NM1 = NearMiss(version=1, verbose=verbose) nm1x, nm1y = NM1.fit_transform(x, y) # 'NearMiss-2' NM2 = NearMiss(version=2, verbose=verbose) nm2x, nm2y = NM2.fit_transform(x, y) # 'NearMiss-3' NM3 = NearMiss(version=3, verbose=verbose) nm3x, nm3y = NM3.fit_transform(x, y) # 'Condensed Nearest Neighbour' CNN = CondensedNearestNeighbour(size_ngh=51, n_seeds_S=51, verbose=verbose) cnnx, cnny = CNN.fit_transform(x, y)