def mass_bh(lum, fwhm, a=0.660, b=0.53):
    mbh = unumpy.uarray(np.zeros(len(lum)), np.zeros(len(lum)))
    successful = (unumpy.nominal_values(lum) >
                  0) & (unumpy.nominal_values(fwhm) > 0)
    try:
        mbh[successful] = 10**(a + b * unumpy.log10(lum[successful] / 1e44) +
                               2 * unumpy.log10(fwhm[successful]))
    except:
        print('Runtime Error in the FWHM, no number printed')
    return mbh
示例#2
0
def phot_error(cat_name, phot_gc_dens, ch):
    phot_err = np.loadtxt(cat_name, usecols=(2, ))
    dens_err = unp.uarray(phot_gc_dens, phot_err)

    if ch == 'l':
        denslog_err = unp.log10(dens_err)
    else:
        denslog_err = -2.5 * unp.log10(dens_err)
    error = unp.std_devs(denslog_err)

    return error
def compute_distance_modulus(par_mas):
    if par_mas > 0:
        dist_pc = 1. / (par_mas * 1e-3)
        mu = 5. * unp.log10(dist_pc) - 5
        return dist_pc, mu
    else:
        return unp.uarray(np.nan, np.nan), unp.uarray(np.nan, np.nan)
示例#4
0
def get_oddsratio_file(datanum, iteration):
    lls, ells = scale_ll(datanum, iteration)
    lls = unp.uarray(lls, ells)

    # compute odd ratios
    numerator, denominator = np.zeros(3), np.zeros(3)
    median_ratio, sigma_ratio = np.zeros(3), np.zeros(3)
    for i in range(3):
        numerator[i], denominator[i] = i + 1, i
        try:
            log10_oddsratio = unp.log10(unp.exp(lls[i + 1] - lls[i]))
        except ValueError:
            log10_oddsratio = unp.uarray(-np.inf, np.nan)
        median_ratio[i], sigma_ratio[i] = unp.nominal_values(log10_oddsratio), \
                                          unp.std_devs(log10_oddsratio)

    # create odds ratio files
    f = open(
        'Cloutier/TimeSeriesCV/oddsratio_%.4d%s.txt' % (datanum, iteration),
        'w')
    g = '# Number of lnL evaluations, planet model denominator, planet model numerator, mode log10(odds ratio), median log10(odds ratio), minus 2 sigma (not used), minus 1 sigma, plus 1 sigma, plus 2 sigma (not used)'
    for i in range(3):
        g += '\n1.6E+07,%i,%i,%.6f,%.6f,NaN,%.6f,%.6f,NaN' % (
            denominator[i], numerator[i], median_ratio[i], median_ratio[i],
            sigma_ratio[i], sigma_ratio[i])
    g = g.replace('nan', 'NaN')
    f.write(g)
    f.close()
示例#5
0
def other(g=True):
    freq = unumpy.uarray([100, 500, 1000, 5000, 10000, 50000], np.array([100, 500, 1000, 5000, 10000, 50000]) * 0.01)
    vin = ufloat(1.01, 0.01)
    vout = unumpy.uarray([0.640, 3.02, 5.27, 9.2, 9.6, 6.4], [0.01, 0.01, 0.01, 0.1, 0.1, 0.1])
    fase = unumpy.uarray([92, 108, 123, 166, 178, -125], [1, 2, 1, 1, 1, 1])

    Gs = vout / vin
    dB = 10 * unumpy.log10(Gs)

    if not g:
        return None

    f = plt.figure(figsize=(8, 8))
    f.suptitle("Differenziatore", fontsize=15, y=0.98)
    
    ax = f.add_subplot(211)

    ax.errorbar(x=unumpy.nominal_values(freq),
        y=unumpy.nominal_values(Gs),
        c='black', fmt='o-')

    ax.set_xlabel('Frequenza', fontsize=14)
    ax.set_ylabel('Guadagno G', fontsize=14)

    ax.set_xscale('log')
    #ax.set_ylim((-13, 1))
    #ax.set_yticklabels(('', 2, 4, 6, 8, 10, 12))
    ax.set_xticklabels(('', '100 Hz', u"1 kHz", u"10 kHz", u"100 kHz", u"1 MHz"))
    
    ax.minorticks_on()
    ax.grid(b=True, which='major', color='0.7', linestyle='-', zorder=-5)
    ax.grid(b=True, which='minor', color='0.9', linestyle='-', zorder=-9)
    ax.set_axisbelow(True)
    
    ax2 = f.add_subplot(212)

    ax2.errorbar(x=unumpy.nominal_values(freq),
        y=unumpy.nominal_values(fase),
        c='black', fmt='o-')

    ax2.set_ylabel('Sfasamento [Gradi]', fontsize=14)

    ax2.set_xscale('log')
    #ax2.set_yticklabels(('', 25, 50, 75, 100))
    ax2.set_xticklabels(('', '100 Hz', u"1 kHz", u"10 kHz", u"100 kHz"))
    
    ax2.minorticks_on()
    ax2.grid(b=True, which='major', color='0.7', linestyle='-', zorder=-5)
    ax2.grid(b=True, which='minor', color='0.9', linestyle='-', zorder=-9)
    ax2.set_axisbelow(True)

    ax3 = ax2.twiny()
    ax3.set_xticks((0, 0.333, 0.666, 1))
    ax3.set_xticklabels(('', "1 kHz", u"10 kHz", u"100 kHz"))

    f.subplots_adjust(top=0.93, hspace=0.25, bottom=0.07, right=0.95)

    plt.savefig("../latex/diff.pdf")

    plt.show()
示例#6
0
def pH_from_R(R, temp, sal):
    """
    Calculate pH from Base/Acid absorption ratio, at known temperature and salinity.

    Equation 11 of Nand & Ellwood (2018, doi:10.1002/lom3.10253)

    Form:

    pH = pK + log10((R - e1) / (e2 - R * e3))

    Parameters
    ----------
    R : array_like
        Measured Base/Acid absorption ratio.
    temp : array_like
        Temperature of measurement (C)
    sal : array_like
        Salinity in PSU
    
    Returns
    -------
    array_like : Solution pH (Total Scale)
    """

    e1 = 5.3259624e-3
    e2 = 2.2319033
    e3 = 3.19e-2

    pKa = calc_pKBPB(sal)
    R25 = calc_R25(R, temp)

    return pKa + unp.log10((R25 - e1) / (e2 - R25 * e3))
示例#7
0
def DTM_oxy(axs, i):
    
    import Wiseman_data_OH
    Wiseman_OH = Wiseman_data_OH.OH_abund
    Wiseman_z = Wiseman_data_OH.z
    Wiseman_DTM = Wiseman_data_OH.DTM_all
    
    import De_Cia_data 
    Cia_OH = De_Cia_data.OH_abund
    Cia_z = De_Cia_data.z
    Cia_DTM = De_Cia_data.DTM_all
    Cia_xuplims = De_Cia_data.xuplims
    Cia_yuplims = De_Cia_data.yuplims
    
    if(i == 0):
        x = RR_2015['Oxygen']
        y = RR_2015['DTM_1B']
        yerror = np.abs((0.75*RR_2015['DTM_1B']))
        yall = unumpy.uarray(y, yerror)
        ynew = yall - unumpy.log10(1. + 10**yall)
        axs.errorbar(x, unumpy.nominal_values(ynew), yerr=unumpy.std_devs(ynew), color='g',label=r'$\mathrm{Remy-Ruyer}$ $\mathrm{2015}$',fmt='o') 
    if(i == 2):
        ok = np.where(Wiseman_z == 2)
        x = Wiseman_OH[ok]
        y = Wiseman_DTM[ok]
        axs.errorbar(unumpy.nominal_values(x), unumpy.nominal_values(y), xerr =  unumpy.std_devs(x), yerr = unumpy.std_devs(y), color='r',label=r'$\mathrm{Wiseman}$ $\mathrm{2017}$',fmt='o')
        
        ok = np.where(Cia_z == 2)
        x = Cia_OH[ok]
        y = Cia_DTM[ok]
        xuplims = Cia_xuplims[ok]
        yuplims = Cia_yuplims[ok]
        up = np.logical_and(xuplims == 0, yuplims == 0)
        axs.errorbar(unumpy.nominal_values(x[up]), unumpy.nominal_values(y[up]), xerr =  unumpy.std_devs(x[up]), yerr = unumpy.std_devs(y[up]), color='b',label=r'$\mathrm{De}$ $\mathrm{Cia}$ $\mathrm{2016}$',fmt='o')
        axs.errorbar(unumpy.nominal_values(x[~up]), unumpy.nominal_values(y[~up]), xerr =  unumpy.std_devs(x[~up]), yerr = unumpy.std_devs(y[~up]), xuplims = xuplims[~up], uplims = yuplims[~up], color='b', markerfacecolor='None', markeredgecolor = 'b', fmt='o', alpha = 0.8, elinewidth=0.5)
    if(i == 3):
        ok = np.where(Wiseman_z == 3)
        x = Wiseman_OH[ok]
        y = Wiseman_DTM[ok]
        axs.errorbar(unumpy.nominal_values(x), unumpy.nominal_values(y), xerr =  unumpy.std_devs(x), yerr = unumpy.std_devs(y), label=r'$\mathrm{Wiseman}$ $\mathrm{2017}$', color='r',fmt='o')
        
        ok = np.where(Cia_z == 3)
        x = Cia_OH[ok]
        y = Cia_DTM[ok]
        xuplims = Cia_xuplims[ok]
        yuplims = Cia_yuplims[ok]
        up = np.logical_and(xuplims == 0, yuplims == 0)
        axs.errorbar(unumpy.nominal_values(x[up]), unumpy.nominal_values(y[up]), xerr =  unumpy.std_devs(x[up]), yerr = unumpy.std_devs(y[up]), color='b',label=r'$\mathrm{De}$ $\mathrm{Cia}$ $\mathrm{2016}$',fmt='o')
        axs.errorbar(unumpy.nominal_values(x[~up]), unumpy.nominal_values(y[~up]), xerr =  unumpy.std_devs(x[~up]), yerr = unumpy.std_devs(y[~up]), xuplims = xuplims[~up], uplims = yuplims[~up], color='b', markerfacecolor='None', markeredgecolor = 'b', fmt='o', alpha = 0.8, elinewidth=0.5)
    if(i == 4):
        ok = np.where(Wiseman_z == 4)
        x = Wiseman_OH[ok]
        y = Wiseman_DTM[ok]
        axs.errorbar(unumpy.nominal_values(x), unumpy.nominal_values(y), xerr =  unumpy.std_devs(x), yerr = unumpy.std_devs(y), label=r'$\mathrm{Wiseman}$ $\mathrm{2017}$', color='r',fmt='o')
    if(i == 5):
        ok = np.where(Wiseman_z == 5)
        x = Wiseman_OH[ok]
        y = Wiseman_DTM[ok]
        axs.errorbar(unumpy.nominal_values(x), unumpy.nominal_values(y), xerr =  unumpy.std_devs(x), yerr = unumpy.std_devs(y), label=r'$\mathrm{Wiseman}$ $\mathrm{2017}$', color='r',fmt='o')
示例#8
0
def O3N2(OIII5007, NII6583, Halpha, Hbeta):
    ''' Calculate O3N3 from Yin et al. 2007:

    O3N2 = log[([O iii]λ5007/Hβ)/([N ii] λ6583/Hα)]
    '''
    O3N2 = unp.log10((OIII5007 / Hbeta) /
                    (NII6583 / Halpha))
    return O3N2
def calcSFR(DMpc, logFHa, logFHa_err):
	Dpc = DMpc*(1E6)
	logFHa_arr = unumpy.uarray(logFHa,logFHa_err)
	F_Ha = 10**(logFHa_arr)
	L_Ha = F_Ha*(4*np.pi*((Dpc*(3.086E18))**2.))
	logsfr = unumpy.log10(L_Ha) - 41.27
	sfr = 10**(logsfr)
	return sfr
示例#10
0
def DTM_stell(axs, i):

    if(i == 0):
        x = RR_2015['SM']
        y = RR_2015['DTM_1B']
        yerror = np.abs((0.75*RR_2015['DTM_1B']))
        yall = unumpy.uarray(y, yerror)
        ynew = yall - unumpy.log10(1. + 10**yall)
        axs.errorbar(x, unumpy.nominal_values(ynew), yerr=unumpy.std_devs(ynew), color='g',label=r'$\mathrm{Remy-Ruyer}$ $\mathrm{2015}$',fmt='o') 
示例#11
0
 def getLumin(self):
     ''' Set the sample log luminosities (and error if flux errors available)
         based on given flux values and luminosity distance values
     '''
     if self.flux_e is not None: 
         ulum = unumpy.log10(4.0*np.pi*(self.DL*3.086e24)**2 * unumpy.uarray(self.flux,self.flux_e))
         self.lum, self.lum_e = unumpy.nominal_values(ulum), unumpy.std_devs(ulum)
     else:
         self.lum = np.log10(4.0*np.pi*(self.DL*3.086e24)**2 * self.flux)
         self.lum_e = None
示例#12
0
def EBV_calzetti(HaHb):
    ''' Computes E(B-V) based on the method of Domínguez et al. 2012,
    ArXiv 1206.1867, assuming a reddening curve from Calzetti(2000).
    (NB! Explanation in Atek 2012 is good!)

    With Calzetti 2000 values of k(alpha) and k(beta), we get:

        E(B-V) = 1.97 log10((Ha/Hb) / 2.86)
    '''
    EBV = 1.97* unp.log10(HaHb / 2.86)
    return EBV
示例#13
0
    def evaluate(energy, amplitude, reference, alpha, beta):
        """Evaluate the model (static function)."""
        try:
            xx = energy / reference
            exponent = -alpha - beta * np.log10(xx)
        except AttributeError:
            from uncertainties.unumpy import log10
            xx = energy / reference
            exponent = -alpha - beta * log10(xx)

        return amplitude * np.power(xx, exponent)
示例#14
0
def config_logplots(dens, err, r):

    denslog10 = unp.uarray(dens, err)
    denslog10 = unp.log10(denslog10)
    errlog = unp.std_devs(denslog10)

    #rmin = r/60

    rlog = r
    #TO DO: add binsizes

    return dens, errlog, rlog
示例#15
0
def OH_from_TeO3(fluxes, Te=None):
    ''' Again, translated from Miguel's code.
    '''
    if Te is None:
        Te = Te_O3(fluxes['OIII4363'], fluxes['OIII4959'],
                fluxes['OIII5007'], fluxes['Hbeta'])
    if not 'Te4' in Te.columns:
        Te['Te4'] = Te['Te'] * 1.e4
    Oplus = 7.34e-7 * (fluxes['OII3726'] + fluxes['OII3729'])/fluxes['Hbeta']\
        * unp.exp(3.9/Te['Te4'])
    O2plus = (1.3e-6 / Te['Te4']**0.38) * unp.exp(2.9/Te['Te4'])\
        * 4.2 * fluxes['OIII4959']/fluxes['Hbeta']
    return 12. + unp.log10(Oplus + O2plus)
示例#16
0
    def evaluate(energy, amplitude, reference, alpha, beta, z):
        """Evaluate the model (static function)."""
        scale_factor = 1 / (1 + z)
        scaled_energy = energy * scale_factor
        try:
            xx = (scaled_energy / reference).to("")
            exponent = -alpha - beta * np.log10(xx)
        except AttributeError:
            from uncertainties.unumpy import log10

            xx = scaled_energy / reference
            exponent = -alpha - beta * log10(xx)
        return amplitude * np.power(xx, exponent) * scale_factor
示例#17
0
    def hi_scalelength(self,m=0.86,m_error=0.04,c=0.79,c_error=0.02,
                        k=0.19,k_error=0.03): # Wang+14, Lelli+16
        exists = 'R_hi' in self.__dict__
        if exists is False:
            m_param = uf(m,m_error)
            c_param = uf(c,c_error)
            k_param = uf(k,k_error)

            r_d = self.R_disc
            log_r_d = unp.log10(r_d)
            logr_hi = m_param * log_r_d + c_param
            r_hi = 10**logr_hi
            self.R_hi = k_param * r_hi
        return self.R_hi
示例#18
0
def density(nbin, r, rgal, ):
    import numpy as np
    import uncertainties.unumpy as unp
    n = len(r)
    NGC = np.zeros(nbin)    #number of GC in each bin
    rmed = [[] for i in range(0,nbin)]
    for h in range(0, nbin):                              
         for i in range(0, n):
             if (rgal[h+1] >= r[i] and r[i] > rgal[h]):
                 NGC[h] = NGC[h] + 1
                 rmed[h].append(r[i])
             
    #median value of the bins
    radius = [[] for i in range(0,nbin)]
    for i in range(0,nbin):
            radius[i] = np.linspace(rgal[i], rgal[i+1], 1000)   

    median = np.linspace(0,0,nbin)
    medianGC = np.linspace(0,0,nbin)
    for i in range(0,nbin):
        median[i] = np.median(radius[i])
        medianGC[i] = np.median(rmed[i])

    area = []
    for h in range(0, nbin):
        area.append((np.pi*rgal[h+1]**2)-(np.pi*rgal[h]**2)) #area per bin
    
    binsize = np.linspace(0,0,nbin)    
    for h in range(0,nbin):
        binsize[h] = rgal[h+1]-rgal[h]  
        binsize = binsize/2
    
    dens2 = np.linspace(0,0,nbin)
    for h in range(0, nbin):
        dens2[h] = NGC[h]/area[h]

    
    #error in density

    poi_err = (np.sqrt(NGC)/area)
    dens2err = unp.uarray(dens2, poi_err)
    denslog2 = -2.5*np.log10(dens2)    
    denslog2err = -2.5*unp.log10(dens2err)  
    poi_err2 = unp.std_devs(denslog2err)
    
    return denslog2, poi_err2, area, NGC, median, rgal, binsize 
    
示例#19
0
def ZOH_M13(fluxtab, ext='', method='o3n2', name='ZOH', err=False):

    N2F = fluxtab['flux_[NII]6583'+ext]
    O3F = fluxtab['flux_[OIII]5007'+ext]
    HaF = fluxtab['flux_Halpha'+ext]
    HbF = fluxtab['flux_Hbeta'+ext]
    if method == 'o3n2':
        good = (N2F>0) & (O3F>0) & (HaF>0) & (HbF>0)
    elif method == 'n2':
        good = (N2F>0) & (HaF>0)
    else:
        raise Exception('Method {} is not recognized'.format(method))
    nelt = len(N2F)

    BPT = bpt_type(fluxtab, ext=ext)

    if err == False:
        O3N2 = np.full(nelt, np.nan)
        O3N2[good] = (np.log10(O3F[good]) - np.log10(HbF[good]) 
                    - (np.log10(N2F[good]) - np.log10(HaF[good])))                    
        N2 = np.full(nelt, np.nan)
        N2[good] = np.log10(N2F[good]) - np.log10(HaF[good])                   
    else:
        try:
            from uncertainties import ufloat
            import uncertainties.unumpy as unp 
        except:
            print('uncertainties package required for err=True')

        uN2F = unp.uarray(N2F, fluxtab['e_flux_[NII]6583'+ext])
        uO3F = unp.uarray(O3F, fluxtab['e_flux_[OIII]5007'+ext])
        uHaF = unp.uarray(HaF, fluxtab['e_flux_Halpha'+ext])
        uHbF = unp.uarray(HbF, fluxtab['e_flux_Hbeta'+ext])
        O3N2 = unp.uarray(np.full(nelt, np.nan),np.full(nelt, np.nan))
        O3N2[good] = (unp.log10(uO3F[good]) - unp.log10(uHbF[good]) 
                    - (unp.log10(uN2F[good]) - unp.log10(uHaF[good])))
        N2 = unp.uarray(np.full(nelt, np.nan),np.full(nelt, np.nan))
        N2[good] = unp.log10(uN2F[good]) - unp.log10(uHaF[good])

    if method == 'o3n2':
        ZOH_M13 = 8.533 - 0.214 * O3N2 # Eq(2) from Marino+2013
    else:
        ZOH_M13 = 8.743 + 0.462 * N2   # Eq(4) from Marino+2013

    desc = '12+log(O/H) using {} method in Marino+13'.format(method)
    if err == False: 
        ZOH_M13[BPT != -1] = np.nan
        return Column(ZOH_M13, name=name, unit='dex', dtype='f4', description=desc)
    else:            
        ZOH_M13[BPT != -1] = ufloat(np.nan, np.nan)
        return (Column(unp.nominal_values(ZOH_M13), name=name, dtype='f4',
                       unit='dex', description=desc), 
                Column(unp.std_devs(ZOH_M13), name='e_'+name, dtype='f4',
                       unit='dex', description='error in '+desc))
示例#20
0
    def R_halo(self):
        exists = 'R200' in self.__dict__
        exists = False
        # unit converter
        cf = (1 * u.Msun)**(1 / 3) * (1 * u.kg)**(-1 / 3) * (1 * u.m)
        cf = cf.to(u.kpc).value
        if exists is False:
            h = 0.7
            K = 3 / (4 * np.pi * 200 * self.rho_crit.value)
            M200 = self.M_halo()
            logc200 = (0.905 - 0.101 * unp.log10(M200 / (10**12 * h**(-1))))

            c200 = 10**logc200
            self.R200 = (K * (M200))**(1 / 3) * cf
            self.a_h = self.R200 / c200

        return self.a_h, self.R200
示例#21
0
    def doPlotWithUnc(self):
        #plot absolute and phase along with uncertainties
        f=1

        uabs=unumpy.uarray(self.getFAbs(),self.getFAbsUnc())
        #scale the uncertainty for the 20*log10 plot
        uabs=20*unumpy.log10(uabs)
        u_a=unumpy.nominal_values(uabs)
        u_s=unumpy.std_devs(uabs)
        
        py.figure('FD-ABS-UNC-Plot')
        py.plot(self.getfreqsGHz(),u_a)
        py.plot(self.getfreqsGHz(),u_a+u_s,'--',self.getfreqsGHz(),u_a-u_s,'--')

        py.figure('FD-PH-UNC-Plot')
        py.plot(self.getfreqsGHz(),self.getFPh())
        py.plot(self.getfreqsGHz(),self.getFPh()+f*self.getFPhUnc(),'--',self.getfreqsGHz(),self.getFPh()-self.getFPhUnc(),'--')
示例#22
0
def mag(lc: LightCurve) -> LightCurve:
    """
    Converts and normalizes a LighCurve object to magnitudes.

    :param lc: lightcurve object
    :return: reduced light curve object
    """

    lc = lc.remove_nans()

    flux = lc.flux + (np.abs(2 * np.amin(lc.flux)) if np.amin(lc.flux) < 0 else 100)
    flux = unp.uarray(flux, lc.flux_err)
    flux = -2.5 * unp.log10(flux)
    flux = flux[~unp.isnan(flux)]
    flux -= np.median(flux)

    lc.flux = unp.nominal_values(flux) * u.mag
    lc.flux_err = unp.std_devs(flux) * u.mag
    return lc
示例#23
0
def config_pne(N, area, r):
    area = area / 3600

    denslog = N / area
    #denslog = np.log10(density)

    errlog = np.sqrt(N) / area
    #errlog = err/(2.3*(density))
    #errlog = np.log10(err)

    denslog10 = unp.uarray(denslog, errlog)
    denslog10 = unp.log10(denslog10)
    errlog = unp.std_devs(denslog10)

    rmin = r / 60

    rlog = rmin
    #TO DO: add binsizes

    return denslog, errlog, rlog
示例#24
0
文件: astro.py 项目: NewHarmony/nmmn
def mjy(lognu, ll, dist, llerr=None):
    """
Converts log(nu/Hz), log(nu Lnu [erg/s]), error in log(nuLnu) to
log(lambda/micron), log(Fnu/mJy), error in log(Fnu).
The input units are CGS.

Usage:
If you have errors in the flux:

>>> lamb,fnu,ferr=mjy(xdata,ydata,dist,yerr)

If you do not have errors in the flux:

>>> lamb,fnu=mjy(xdata,ydata,dist)

:param dist: distance in Mpc
    """
    import uncertainties.unumpy as unumpy

    c = 29979245800.  # speed of light in CGS
    dist = dist * 3.085677581e24  # Mpc -> cm

    nu = 10**lognu
    lamb = c / nu * 1e4  # cm -> micron
    if llerr != None:
        lllerr = unumpy.uarray(ll, llerr)
    else:
        lllerr = ll
    lnuerr = 10**lllerr / nu
    fluxerr = lnuerr / (1e-26 * 4. * numpy.pi * dist**2
                        )  # Lnu (erg/s/Hz) -> Fnu (mJy)
    if llerr != None:
        fluxerr = unumpy.log10(fluxerr)
        return numpy.log10(lamb), unumpy.nominal_values(
            fluxerr), unumpy.std_devs(fluxerr)
    else:
        return numpy.log10(lamb), numpy.log10(fluxerr)
示例#25
0
文件: banda.py 项目: frapa/lab4
from math import *
import matplotlib.pyplot as plt
import numpy as np
from uncertainties import ufloat, unumpy

# 20 dB
data20 = np.genfromtxt(open("../dati/banda_20.csv"), delimiter=",", skip_header=1)

freq20 = data20[:,0]
vout20 = unumpy.uarray(data20[:,1] / 2.0, 10*np.ones(len(freq20)))
phase20 = data20[:,2]
dphase20 = data20[:,3]

vin20 = ufloat(50, 0.5)
db20 = 20.0 * unumpy.log10(vout20/vin20)
m3db = db20[0].nominal_value - 3.0


p3db = None
for f1, db1, f2, db2 in zip(freq20[:-1], db20[:-1], freq20[1:], db20[1:]):
    if db1 > m3db and db2 < m3db:
        p3db = f1 + (f2 - f1) * (m3db - db1) / (db2 - db1)

print(p3db)

# 40 dB
data40 = np.genfromtxt(open("../dati/banda_40.csv"), delimiter=",", skip_header=1)

freq40 = data40[:,0]
vout40 = unumpy.uarray(data40[:,1] / 2.0, data40[:,3]) * 1000
phase40 = data40[:,2]
示例#26
0
pylab.savefig("bode.png",
              dpi=None,
              facecolor='w',
              edgecolor='w',
              orientation='portrait',
              papertype=None,
              format=None,
              transparent=False,
              bbox_inches=None,
              pad_inches=0.1,
              frameon=None)

print(covm)

logF = unumpy.log10(F)
logf = unumpy.nominal_values(logF)
dlogf = unumpy.std_devs(logF)

pylab.figure(num=None, figsize=(12, 6), dpi=80, facecolor='w', edgecolor='k')
pylab.errorbar(logf, phi, dphi, dlogf, linestyle='', marker='')
#pylab.xscale("log")
#pylab.xlim(400, 3200)
pylab.legend(numpoints=1, loc='upper right')
pylab.xlabel('log(f/1kHz)', size="16")
pylab.ylabel(' $\phi$ [$\pi$ rad]', size="16")
#pylab.xlim(0,2000)
pylab.title('Sfasamento', fontsize="18")
pylab.grid()

#Fare attenzione che gli errori devono essere sempre sommati con le stesse unita di misura,
示例#27
0
retaMax = [InterceptMax, InterceptMax + (Txmax * Esp)]
retaMin = [InterceptMin, InterceptMin + (Txmin * Esp)]

#retaMax=[IdadeB,IdadeB+(Txmax*IdadeA)]
#retaMin=[IdadeB,IdadeB+(Txmin*IdadeA)]

plt.figure('taxa Sed')
plt.plot([0, Esp], [IdadeB, IdadeA], 'ro')
plt.errorbar([0, Esp], [IdadeB, IdadeA], yerr=[ErroB, ErroA], zorder=10)
plt.errorbar([0, Esp], [IdadeB, IdadeA], zorder=11)
plt.plot([0, Esp], retaMax, 'w--')
plt.plot([0, Esp], retaMin, 'w--')

plt.fill_between([0, Esp],
                 retaMax,
                 retaMin,
                 color='tomato',
                 alpha=0.2,
                 label='erro taxa')
plt.title(f'Simulação taxa sedimentação\ntaxa={TaxaSed} m/mil anos')
plt.xlabel('distância estratigráfica (m)')
plt.ylabel('idade (mil anos)')
plt.legend(loc='upper left')

plt.savefig('Erro_taxa.png')

Zeta = (UArr[0]**UArr[1]) / (unumpy.log10(UArr[2] - unumpy.log10(UArr[3])))
print(Zeta)

#plt.show()
示例#28
0
def pH_from_F(F, K):
    return -log10(K / F)
    def _trapz_loglog(self, y, x, axis=-1, intervals=False):
        """
        Integrate along the given axis using the composite trapezoidal rule in
        loglog space. Integrate y(x) along given axis in loglog space. This follows 
        the script in the Naima package.
        
        Parameters
        ----------
        - y (array_like): Input array to integrate.
        - x (array_like):  optional. Independent variable to integrate over.
        - axis (int): Specify the axis.
        - intervals (bool): Return array of shape x not the total integral, default: False
        
        Returns
        -------
        trapz (float): Definite integral as approximated by trapezoidal rule in loglog space.
        """

        log10 = np.log10

        #----- Check for units
        try:
            y_unit = y.unit
            y = y.value
        except AttributeError:
            y_unit = 1.0
        try:
            x_unit = x.unit
            x = x.value
        except AttributeError:
            x_unit = 1.0

        y = np.asanyarray(y)
        x = np.asanyarray(x)

        #----- Define the slices
        slice1 = [slice(None)] * y.ndim
        slice2 = [slice(None)] * y.ndim
        slice1[axis] = slice(None, -1)
        slice2[axis] = slice(1, None)
        slice1, slice2 = tuple(slice1), tuple(slice2)

        #----- arrays with uncertainties contain objects, remove tiny elements
        if y.dtype == "O":
            from uncertainties.unumpy import log10
            # uncertainties.unumpy.log10 can't deal with tiny values see
            # https://github.com/gammapy/gammapy/issues/687, so we filter out the values
            # here. As the values are so small it doesn't affect the final result.
            # the sqrt is taken to create a margin, because of the later division
            # y[slice2] / y[slice1]
            valid = y > np.sqrt(np.finfo(float).tiny)
            x, y = x[valid], y[valid]

        #----- reshaping x
        if x.ndim == 1:
            shape = [1] * y.ndim
            shape[axis] = x.shape[0]
            x = x.reshape(shape)

        #-----
        with np.errstate(invalid="ignore", divide="ignore"):
            # Compute the power law indices in each integration bin
            b = log10(y[slice2] / y[slice1]) / log10(x[slice2] / x[slice1])

            # if local powerlaw index is -1, use \int 1/x = log(x); otherwise use normal
            # powerlaw integration
            trapzs = np.where(
                np.abs(b + 1.0) > 1e-10,
                (y[slice1] * (x[slice2] *
                              (x[slice2] / x[slice1])**b - x[slice1])) /
                (b + 1), x[slice1] * y[slice1] * np.log(x[slice2] / x[slice1]))

        tozero = (y[slice1] == 0.0) + (y[slice2] == 0.0) + (x[slice1]
                                                            == x[slice2])
        trapzs[tozero] = 0.0

        if intervals:
            return trapzs * x_unit * y_unit

        ret = np.add.reduce(trapzs, axis) * x_unit * y_unit

        return ret
            T_OIII = 0.8254 - 0.0002415*ROIII + (47.77/ROIII)

            RSII = SII_6716_Flux / SII_6730_Flux
            
            a_0 = 2.21 - 1.3/T_OIII - 1.25*T_OIII + 0.23*T_OIII**2
            a_1 = -3.35 + 1.94/T_OIII + 1.93*T_OIII - 0.36*T_OIII**2
            b_0 = -4.33 + 2.33/T_OIII + 2.72*T_OIII - 0.57*T_OIII**2
            b_1 = 1.84 - 1.0/T_OIII - 1.14*T_OIII + 0.24*T_OIII**2
            
            n_SII = (10.0**3)*(RSII*a_0 + a_1)/(RSII*b_0 + b_1)
            
            if n_SII > 0.0:
            
                T_OII = (1.2 + 0.002*n_SII + 4.2/n_SII)/(1/T_OIII + 0.08 + 0.003*n_SII + 2.5/n_SII)
        
                logOII_logHII = -12 + unumpy.log10(OII_7319_Flux/HBeta_Flux) + 6.895 + 2.44/T_OII -0.58*unumpy.log10(T_OII) - unumpy.log10(1.0 + 0.0047*n_SII)
    
                logOIII_logHII = -12 + unumpy.log10((OIII_4959_Flux+OIII_5007_Flux)/HBeta_Flux) + 6.144 + 1.251/T_OIII - 0.55*unumpy.log10(T_OII)
                
                OII_HII = 10**(logOII_logHII)
                 
                OIII_HII = 10**(logOIII_logHII)
                
                OI_HI = OII_HII + OIII_HII
                
                O_Abundances.append(OI_HI)
            
            else:
                if (n_SII < None):
                    Error_Message = "Aritmetic error: n_SII < 0"
                    Comments.append(Error_Message)   
示例#31
0
INPUT = "/home/federico/Laboratorio3/relazione4/datiBode.txt"
OUTPUT = "/home/federico/Laboratorio3/relazione4/datiBode.txt"

Vout, dVout, f, df = pylab.loadtxt(INPUT, unpack=True)

#Nelle visualizzazioni devo introdurre gli errori

F = unumpy.uarray(f, df)
VOUT = unumpy.uarray(Vout, dVout)
VOUT3 = unumpy.uarray(Vout, (dVout**2 + (0.03*Vout)**2))
VIN = ufloat(1.00, 0.01) 
VIN3 = ufloat(1.00, ((0.01)**2+(0.03*1.00)**2)**0.5)
#Per la visualizzazione inserisco il 3%
A = VOUT3/VIN3
dB = 20*unumpy.log10(A)
logF = unumpy.log10(F)

pylab.title('A vs logf')
pylab.xlim(-6, 1)
pylab.ylim(-5, 25)
pylab.xlabel('log(f/1MHz)')
pylab.ylabel('A (dB)')
pylab.grid(color = "gray")

pylab.errorbar(unumpy.nominal_values(logF), unumpy.nominal_values(dB), 
	unumpy.std_devs(dB), unumpy.std_devs(logF), "o", color="black")

pylab.show()

示例#32
0
mT = unumpy.matrix(XHB)
filename = "resXHB.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

concH = (0.0000169) * (1 + XB) / (XHB)

mT = unumpy.matrix(concH)
filename = "resconcH.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

FI = 0.5 * (XB * 4 * 0.0000169 + XHB * 0.0000169 + 2 * conc)

mT = unumpy.matrix(FI)
filename = "resFI.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

pkc = -(unumpy.log10(0.0000169 * XB * (1 + XB) / (1 - XB)))

mT = unumpy.matrix(pkc)
filename = "respkc.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

sqI = unumpy.sqrt(FI)
fi = (sqI) / (1 + 2.3 * sqI)

mT = unumpy.matrix(fi)
filename = "resfi.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

#http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html
import uncertainties
from uncertainties import ufloat
import math
import numpy
import numpy
import pylab
from scipy.optimize import curve_fit
import math
import scipy.stats
import uncertainties
from uncertainties import unumpy

V_IN = ufloat(0.340, 0.002)
V_OUT = ufloat(13.00, 0.2)
A = 20.0 * unumpy.log10(V_OUT / V_IN)
Amis = A - 3.0
V_OUT_mis = V_IN * 10**(Amis / 20)
print(V_OUT_mis)
示例#34
0
文件: freq.py 项目: frapa/lab4
freq_low = data_low[:,0]
va_low = unumpy.uarray(data_low[:,1] / 2.0, data_low[:,3])
vout_low = unumpy.uarray(data_low[:,2] / 2.0, data_low[:,4])

G_low = 1001 * vout_low / va_low

data_high = np.genfromtxt(open("../dati/guadagno_alta_freq_sum.csv"), delimiter=",", skip_header=1)

freq_high = data_high[:,0] * 1000
va_high = unumpy.uarray(data_high[:,1] / 2.0, data_high[:,3])
vout_high = unumpy.uarray(data_high[:,2] / 2.0, data_high[:,4])

G_high = vout_high / va_high

print(G_low, G_high)
print(20*unumpy.log10(G_low), 20*unumpy.log10(G_high))

f1 = plt.figure()
ax1 = f1.add_subplot(111)
ax1.set_xscale('log')
ax1.set_yscale('log')

p1 = ax1.errorbar(x=freq_low, y=unumpy.nominal_values(G_low), yerr=unumpy.std_devs(G_low), fmt="o", c="black")
p2 = ax1.errorbar(x=freq_high, y=unumpy.nominal_values(G_high), yerr=unumpy.std_devs(G_high), fmt="o", c="gray")

ax1.set_title("Guadagno di un opamp in funzione della frequenza")
ax1.set_xlabel("Frequenza [Hz]")
ax1.set_ylabel("Amplificazione")
ax1.set_xlim((1, 3e6))
ax1.set_ylim((1e-1, 1e6))
ax1.grid(True)
            Errors[n] = Valid_EmLines[n][5]
            np_HBeta[n] = HBeta_Flux
            np_HBeta_error[n] = HBeta_Error
                 
                        
    #Calculation gradient:
        x = np.zeros(NumberRecombinationRatios)        
        y = np.zeros(NumberRecombinationRatios)
        FluxEL_and_error = unumpy.uarray([Flux_EL], [Errors])  
        HBeta_and_Error =  unumpy.uarray([np_HBeta], [np_HBeta_error]) 
        
        for o in range(NumberRecombinationRatios):
            x[o] = f_lambda[o] - f_Beta
            y[o] = math.log10(TheoRatio[o]/ObsRatio[o])
                
        y_and_error = unumpy.log10(TheoRatio / (FluxEL_and_error/HBeta_and_Error))
        y_err=unumpy.std_devs(y_and_error)  
        
        y_err = y_err[0]
        
        #Old method   
        A = np.vstack([x, np.ones(len(x))]).T
        cHBeta_Old, n_Old = np.linalg.lstsq(A, y)[0]
        TrendLine =  Axis1.plot(x, cHBeta_Old*x+n_Old, color=Colors[2][1], label='Fitted line')

        #New method
        Regression_Fit, Uncertainty_Matrix, Red_Chi_Sq, Residuals = linfit(x, y, y_err, cov=True, relsigma=False, chisq=True, residuals=True)
        m_n_error = [np.sqrt(Uncertainty_Matrix[t,t]) for t in range(2)] 
        R_Factor = Uncertainty_Matrix[0,1]/(m_n_error[0]*m_n_error[1])
    
        cHbeta, cHbeta_error = Regression_Fit[0], m_n_error[0]
    wfc_g102_file = input_path + 'sgas1723_1Dsum_'+item+'_G102_wcontMWdr_meth2.fitdf'
    wfc_g102_file = cr.deredden(wfc_g102_file, 0.3, 0.02, niter=int(1e5), constant=1e-17, dered=True, change_ID=True, change_errors=True,
                        SNR_thresh=0.014, readcsv=True)  # to deredden WFC3 spectra and re-write the file

    wfc_g141_file = input_path + 'sgas1723_1Dsum_'+item+'_G141_wcontMWdr_meth2.fitdf'
    wfc_g141_file = cr.deredden(wfc_g141_file, 0.3, 0.02, niter=int(1e5), constant=1e-17, dered=True, change_ID=True, change_errors=True,
                        SNR_thresh=0.014, readcsv=True)  # to deredden WFC3 spectra and re-write the file

    g102 = pd.read_table(wfc_g102_file, delim_whitespace=True, comment='#')
    g141 = pd.read_table(wfc_g141_file, delim_whitespace=True, comment='#')
    H_g102 = unp.uarray(cr.getf(g102, g102_hlist), cr.gete(g102, g102_hlist))
    H_g141 = unp.uarray(cr.getf(g141, g141_hlist), cr.gete(g141, g141_hlist))

    ratio_obs = [H_g141[0] / H_g141[1], H_g141[0] / H_g102[0], H_g102[0] / H_g102[1],
                 H_g102[0] / H_g102[2]]  # , H_g102[0]/H_g102[3], H_g102[0]/(H_esi[0]*esi_to_mmt_scale), H_esi[0]/H_esi[1]]
    Eb_v = (2.5 / delta_k) * unp.log10(ratio_obs / ratio_theoretical)
    print '\nMean E(B-V) =', np.mean(Eb_v)
    edf = pd.concat([edf, pd.DataFrame(np.transpose(np.vstack([ratio_labels, spec_labels, ['%.2F' % x.n for x in Eb_v], ['%.2F' % x.s for x in Eb_v], ['%.2F' % x.n for x in ratio_obs], ['%.2F' % x.s for x in ratio_obs]])),
        columns=['Line ratio', 'Grism(s)', 'E(B-V)', r'E(B-V)$_u$', 'Observed ratio', 'Observed ratio uncert'])])
    # ------to plot the E(B-V) values for visual comparison-----
    col_ar = ['r', 'g', 'b', 'orange']
    for ii in range(len(Eb_v)):
        ax.scatter(index + ii*0.1, Eb_v[ii].n, s=40, color=col_ar[ii], lw=0, label=ratio_labels[ii]+' '+spec_labels[ii] if not index else None)
        ax.errorbar(index + ii*0.1, Eb_v[ii].n, yerr=Eb_v[ii].s, color=col_ar[ii])

fs = 15 # plot label fontsize
plt.legend(loc='lower left', fontsize=fs)
ax.set_xticks(np.arange(len(filenames)))
ax.set_xticklabels(filenames, rotation=50, fontsize=fs, ha='right', va='top')
plt.ylim(-0.6,0.8)
plt.ylabel('E(B-V)', fontsize=fs)
示例#37
0
mT = unumpy.matrix(XHB)
filename = "resXHB.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

concH = (0.0000169)*(1+ XB)/(XHB)

mT = unumpy.matrix(concH)
filename = "resconcH.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

FI = 0.5*(XB*4*0.0000169+XHB*0.0000169+2*conc)

mT = unumpy.matrix(FI)
filename = "resFI.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

pkc = -(unumpy.log10(0.0000169*XB*(1+XB)/(1-XB)))

mT = unumpy.matrix(pkc)
filename = "respkc.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

sqI = unumpy.sqrt(FI)
fi = (sqI)/(1+2.3 * sqI)

mT = unumpy.matrix(fi)
filename = "resfi.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')

#http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html
示例#38
0
        validity_entry = catalogue_df.loc[objName, element + '_valid']
        element_abundance_key = '{}I_HI_emis2nd'.format(element)
        element_abundance_check = isnull(catalogue_df.loc[objName, element_abundance_key])
        print objName, element, element_abundance_check
        if element_abundance_check is False:
            if (validity_entry not in ['ignored', 'NO_excess', 'Wide Component']):
                regressions_employed.append(element)
        else:
            print 'Fallo', objName, element
    name_superscript = r'\textsuperscript{{{regrens}}}'.format(regrens = ', '.join(regressions_employed))
           
    entry_name = r'{text}{expo}'.format(text=catalogue_df.loc[objName].quick_index, expo=name_superscript)

    objData         = catalogue_df.loc[objName]
    abundValues     = objData[metals_list].values
    objData[metals_list] = 12.0 + unumpy.log10(abundValues)
    
    HeI_HI_entry    = dz.format_for_table(catalogue_df.loc[objName, 'HeII_HII_from_O' + ext_data], rounddig=3, rounddig_er=2)
    Ymass_O_entry   = dz.format_for_table(catalogue_df.loc[objName, 'Ymass_O' + ext_data], rounddig=3, rounddig_er=2)
    Ymass_S_entry   = dz.format_for_table(catalogue_df.loc[objName, 'Ymass_S' + ext_data], rounddig=3, rounddig_er=2)

    print objName, objData[['OI_HI' + ext_data]].values, objData[['OI_HI' + ext_data]].isnull().values.any(), regressions_employed

    row             = [entry_name] + [HeI_HI_entry, Ymass_O_entry, Ymass_S_entry]
    row             += list(objData[['OI_HI' + ext_data, 'NI_HI' + ext_data, 'SI_HI' + ext_data]].values)

    dz.addTableRow(row, last_row = False if catalogue_df.index[-1] != objName else True, rounddig=3, rounddig_er=1)

# dz.generate_pdf()   
dz.generate_pdf(output_address=pdf_address)
def X_H(F, M_H):

    #A = unumpy.uarray([-0.02], [0.1])
    #B = unumpy.uarray([-0.15], [0.09])

    A = unumpy.uarray([-0.145], [0.051])
    B = unumpy.uarray([-0.225], [0.053])

    return A + B * (F - 0.598) + M_H
    #return A + B*(F-0.598)


data = np.genfromtxt('./Obs_data/Wiseman_data_2017.txt', delimiter=',')
F, Ferr, M_H, M_Herror, z, DTM, DTMerr = data[:,
                                              0], data[:,
                                                       1], data[:,
                                                                2], data[:,
                                                                         3], data[:,
                                                                                  4], data[:,
                                                                                           5], data[:,
                                                                                                    6]

F_all = unumpy.uarray(F, Ferr)
M_H_all = unumpy.uarray(M_H, M_Herror)
DTM_all = unumpy.log10(unumpy.uarray(DTM, DTMerr) * 0.464)

depl = X_H(F_all, M_H_all)
OH_abund = depl + 8.69

z = np.round(z, 0)
示例#40
0
def plot_lines_and_other_points_NII():
    # PLOT LINES
    plt.figure('BPT_NII')
    # y1: log([OIII]5007/Hbeta) = 0.61 / (log([NII]6584/Halpha) - 0.05) + 1.3  (curve of Kauffmann+03 line)
    # y2: log([OIII]5007/Hbeta) = 0.61 / (log([NII]6584/Halpha) - 0.47) + 1.19    (curve of Kewley+01 line)
    x1 = np.arange(-2, 0.02, 0.01)
    y1 = 0.61 / (x1 - 0.05) + 1.3
    x2 = np.arange(-2, 0.44, 0.01)
    y2 = 0.61 / (x2 - 0.47) + 1.19
    plt.plot(x1, y1, 'k--')
    plt.plot(x2, y2, 'k--')

    # AREA LABELS
    plt.text(-1.25, -0.5, r'Photoionization', fontsize=12)
    plt.text(0.05, 0.55, r'Shocks', fontsize=12)
    # plt.text(-1, -0.8, r'Starburst', fontsize=12)
    # plt.text(-0.22, -0.75, r'Transition', fontsize=12)
    # plt.text(-0.18, -0.9, r'Objects', fontsize=12)
    # plt.text(0.16, -0.5, r'LINERs', fontsize=12)
    # plt.text(0.05, 0.55, r'Seyferts', fontsize=12)
    # plt.text(-1.46, 1.1, r'Extreme Starburst Line', fontsize=12)

    # OTHER POINTS FROM PAPER
    # Olave et al., 2015 (regions of NGC6845)
    hBetaAbs = [
        0.025, 0.033, 0.007, 0.084, 0.632, 0.075, 0.015, 0.082, 0.013, 0.038,
        0.078, 0.055, 0.008, 0.021, 0.894, 0.408, 0.052, 0.009, 0.024, 0.007,
        0.012
    ]
    hBetaErr = [
        0.011, 0.027, 0.003, 0.019, 0.03, 0.022, 0.009, 0.017, 0.004, 0.017,
        0.019, 0.016, 0.006, 0.013, 0.08, 0.026, 0.014, 0.004, 0.014, 0.003,
        0.008
    ]
    oIII5007Abs = [
        0.035, 0.092, 0.036, 0.473, 4.651, 0.134, 0.021, 0.183, 0.02, 0.068,
        0.135, 0.082, 0.018, 0.014, 0.672, 0.503, 0.038, 0.008, 0.036, 0.013,
        0.028
    ]
    oIII5007Err = [
        0.012, 0.025, 0.029, 0.247, 0.698, 0.027, 0.013, 0.015, 0.007, 0.018,
        0.023, 0.018, 0.007, 0.008, 0.072, 0.028, 0.006, 0.004, 0.014, 0.007,
        0.016
    ]
    hAlphaAbs = [
        0.069, 0.102, 0.032, 0.377, 3.011, 0.224, 0.05, 0.256, 0.046, 0.111,
        0.246, 0.172, 0.027, 0.062, 3.3, 1.66, 0.161, 0.013, 0.062, 0.015,
        0.035
    ]
    hAlphaErr = [
        0.01, 0.025, 0.011, 0.029, 0.452, 0.032, 0.015, 0.034, 0.019, 0.024,
        0.035, 0.027, 0.013, 0.019, 0.204, 0.14, 0.02, 0.01, 0.017, 0.008,
        0.012
    ]
    nII6584Abs = [
        0.011, 0.014, 0.007, 0.04, 0.227, 0.036, 0.009, 0.033, 0.01, 0.022,
        0.041, 0.036, 0.006, 0.021, 1.064, 0.48, 0.056, 0.003, 0.011, 0.003,
        0.004
    ]
    nII6584Err = [
        0.005, 0.009, 0.006, 0.016, 0.024, 0.017, 0.007, 0.013, 0.004, 0.011,
        0.016, 0.012, 0.003, 0.012, 0.062, 0.033, 0.014, 0.002, 0.007, 0.003,
        0.003
    ]
    hBeta = (unumpy.uarray(hBetaAbs, hBetaErr))
    oIII5007 = unumpy.uarray(oIII5007Abs, oIII5007Err)
    hAlpha = unumpy.uarray(hAlphaAbs, hAlphaErr)
    nII6584 = unumpy.uarray(nII6584Abs, nII6584Err)

    ratioNII = unumpy.log10(nII6584 / hAlpha)
    ratioOIII = unumpy.log10(oIII5007 / hBeta)
    x = unumpy.nominal_values(ratioNII)
    xErr = unumpy.std_devs(ratioNII)
    y = unumpy.nominal_values(ratioOIII)
    yErr = unumpy.std_devs(ratioOIII)

    plt.scatter(x,
                y,
                marker='s',
                color='grey',
                alpha=0.3,
                label="Olave et al. 2015")
    plt.errorbar(x,
                 y,
                 xerr=xErr,
                 yerr=yErr,
                 color='grey',
                 ecolor='grey',
                 elinewidth=0.5,
                 fmt='none',
                 alpha=0.3)
示例#41
0
文件: utils.py 项目: gammapy/gammapy
def _trapz_loglog(y, x, axis=-1, intervals=False):
    """
    Integrate along the given axis using the composite trapezoidal rule in
    loglog space.

    Integrate `y` (`x`) along given axis in loglog space.

    Parameters
    ----------
    y : array_like
        Input array to integrate.
    x : array_like, optional
        Independent variable to integrate over.
    axis : int, optional
        Specify the axis.
    intervals : bool, optional
        Return array of shape x not the total integral, default: False

    Returns
    -------
    trapz : float
        Definite integral as approximated by trapezoidal rule in loglog space.
    """
    log10 = np.log10

    try:
        y_unit = y.unit
        y = y.value
    except AttributeError:
        y_unit = 1.0
    try:
        x_unit = x.unit
        x = x.value
    except AttributeError:
        x_unit = 1.0

    y = np.asanyarray(y)
    x = np.asanyarray(x)

    slice1 = [slice(None)] * y.ndim
    slice2 = [slice(None)] * y.ndim
    slice1[axis] = slice(None, -1)
    slice2[axis] = slice(1, None)
    slice1, slice2 = tuple(slice1), tuple(slice2)

    # arrays with uncertainties contain objects
    if y.dtype == "O":
        from uncertainties.unumpy import log10

        # uncertainties.unumpy.log10 can't deal with tiny values see
        # https://github.com/gammapy/gammapy/issues/687, so we filter out the values
        # here. As the values are so small it doesn't affect the final result.
        # the sqrt is taken to create a margin, because of the later division
        # y[slice2] / y[slice1]
        valid = y > np.sqrt(np.finfo(float).tiny)
        x, y = x[valid], y[valid]

    if x.ndim == 1:
        shape = [1] * y.ndim
        shape[axis] = x.shape[0]
        x = x.reshape(shape)

    with np.errstate(invalid="ignore", divide="ignore"):
        # Compute the power law indices in each integration bin
        b = log10(y[slice2] / y[slice1]) / log10(x[slice2] / x[slice1])

        # if local powerlaw index is -1, use \int 1/x = log(x); otherwise use normal
        # powerlaw integration
        trapzs = np.where(
            np.abs(b + 1.0) > 1e-10,
            (y[slice1] * (x[slice2] * (x[slice2] / x[slice1]) ** b - x[slice1]))
            / (b + 1),
            x[slice1] * y[slice1] * np.log(x[slice2] / x[slice1]),
        )

    tozero = (y[slice1] == 0.0) + (y[slice2] == 0.0) + (x[slice1] == x[slice2])
    trapzs[tozero] = 0.0

    if intervals:
        return trapzs * x_unit * y_unit

    ret = np.add.reduce(trapzs, axis) * x_unit * y_unit

    return ret
示例#42
0
def _trapz_loglog(y, x, axis=-1, intervals=False, ulog10=False):
    """
    Integrate along the given axis using the composite trapezoidal rule in
    loglog space.

    Integrate `y` (`x`) along given axis in loglog space.

    Parameters
    ----------
    y : array_like
        Input array to integrate.
    x : array_like, optional
        Independent variable to integrate over.
    axis : int, optional
        Specify the axis.
    intervals : bool, optional
        Return array of shape x not the total integral, default: False
    ulog10 : bool, optional
        Use `~uncertainties.unumpy.log10` to allow uarrays for y and do error
        propagation for the integral value.

    Returns
    -------
    trapz : float
        Definite integral as approximated by trapezoidal rule in loglog space.
    """
    log10 = np.log10

    if ulog10:
        from uncertainties.unumpy import log10

    try:
        y_unit = y.unit
        y = y.value
    except AttributeError:
        y_unit = 1.
    try:
        x_unit = x.unit
        x = x.value
    except AttributeError:
        x_unit = 1.

    y = np.asanyarray(y)
    x = np.asanyarray(x)

    slice1 = [slice(None)] * y.ndim
    slice2 = [slice(None)] * y.ndim
    slice1[axis] = slice(None, -1)
    slice2[axis] = slice(1, None)

    if x.ndim == 1:
        shape = [1] * y.ndim
        shape[axis] = x.shape[0]
        x = x.reshape(shape)

    with np.errstate(invalid='ignore', divide='ignore'):
        # Compute the power law indices in each integration bin
        b = log10(y[slice2] / y[slice1]) / log10(x[slice2] / x[slice1])

        # if local powerlaw index is -1, use \int 1/x = log(x); otherwise use normal
        # powerlaw integration
        trapzs = np.where(
            np.abs(b + 1.) > 1e-10, (y[slice1] * (
                x[slice2] * (x[slice2] / x[slice1]) ** b - x[slice1])) / (b + 1),
            x[slice1] * y[slice1] * np.log(x[slice2] / x[slice1]))

    tozero = (y[slice1] == 0.) + (y[slice2] == 0.) + (x[slice1] == x[slice2])
    trapzs[tozero] = 0.

    if intervals:
        return trapzs * x_unit * y_unit

    ret = np.add.reduce(trapzs, axis) * x_unit * y_unit

    return ret