def classify(X): global classifier model_name = 'TC_GENERAL_V131' model_path = ModelFetcher.get_model_path(model_name) if not classifier: if not os.path.exists(model_path): ModelFetcher.download(model_name) classifier = TextClassifier.load(model_path) sentence = Sentence(X) classifier.predict(sentence) labels = sentence.labels return labels
def sentiment(X): global classifier model_name = 'SA_BANK_V131' model_path = ModelFetcher.get_model_path(model_name) if not classifier: if not os.path.exists(model_path): ModelFetcher.download(model_name) classifier = TextClassifier.load(model_path) sentence = Sentence(X) classifier.predict(sentence) labels = sentence.labels if not labels: return None labels = [label.value for label in labels] return labels
def sentiment(X): global classifier model_name = 'SA_GENERAL_V131' model_path = ModelFetcher.get_model_path(model_name) if not classifier: if not os.path.exists(model_path): ModelFetcher.download(model_name) classifier = TextClassifier.load(model_path) sentence = Sentence(X) classifier.predict(sentence) labels = sentence.labels try: label_map = {'POS': 'positive', 'NEG': 'negative'} label = label_map[labels[0]] return label except Exception: return None
def download_model(model): ModelFetcher.download(model)