def main(): global config args = get_args.train25d() config = path_utils.update_is_augment(args, config) data_path, _, _, _, _ = path_utils.get_training_h5_paths(BRATS_DIR, args) if args.overwrite or not os.path.exists(data_path): prepare_data(args) train(args)
def main(): args = get_args.train25d() depth_unet = args.depth_unet n_base_filters_unet = args.n_base_filters_unet patch_shape = args.patch_shape is_crf = args.is_crf batch_size = args.batch_size is_hist_match = args.is_hist_match loss = args.loss header = ("dice_WholeTumor", "dice_TumorCore", "dice_EnhancingTumor") model_scores = list() model_ids = list() for is_augment in ["1"]: args.is_augment = is_augment for model_name in ["unet"]: args.model = model_name for is_denoise in ["0"]: args.is_denoise = is_denoise for is_normalize in ["z"]: args.is_normalize = is_normalize for is_hist_match in ["0"]: args.is_hist_match = is_hist_match for loss in ["weighted"]: args.loss = loss # for patch_shape in ["160-192-3", "160-192-5", "160-192-7", "160-192-9", "160-192-11", "160-192-13", "160-192-15", "160-192-17"]: for patch_shape in [ "160-192-11", "160-192-13", "160-192-15", "160-192-17" ]: args.patch_shape = patch_shape args.model_dim = 25 print("=" * 120) print( ">> processing model-{}{}, depth-{}, filters-{}, patch_shape-{}, is_denoise-{}, is_normalize-{}, is_hist_match-{}, loss-{}" .format(model_name, args.model_dim, depth_unet, n_base_filters_unet, patch_shape, is_denoise, is_normalize, is_hist_match, loss)) is_test = "0" predict(args) # print("="*60) print(">> finished") print("=" * 120) gc.collect() from keras import backend as K K.clear_session() print(list_already_predicted) print(len(list_already_predicted))
model_path = os.path.join( BRATS_DIR, "database/model", model_filename) if os.path.exists(model_path): print("{} exists. Will skip!!".format(model_path)) else: try: print(">> RUNNING:", cmd) except: print("something wrong") from keras import backend as K os.system(cmd) K.clear_session() args = get_args.train25d() task = "brats/train25d" args.is_test = "0" model_list = list() cmd_list = list() out_file_list = list() for is_augment in ["1"]: args.is_augment = is_augment for model_name in ["unet"]: args.model = model_name for is_denoise in ["0"]: args.is_denoise = is_denoise for is_normalize in ["z"]: args.is_normalize = is_normalize
def main(): args = get_args.train25d() depth_unet = args.depth_unet n_base_filters_unet = args.n_base_filters_unet patch_shape = args.patch_shape is_crf = args.is_crf batch_size = args.batch_size is_hist_match = args.is_hist_match loss = args.loss header = ("dice_WholeTumor", "dice_TumorCore", "dice_EnhancingTumor") model_scores = list() model_ids = list() for is_augment in ["1"]: args.is_augment = is_augment for model_name in ["unet"]: args.model = model_name for is_denoise in ["0"]: args.is_denoise = is_denoise for is_normalize in ["z"]: args.is_normalize = is_normalize for is_hist_match in ["0"]: args.is_hist_match = is_hist_match for loss in ["weighted"]: args.loss = loss for patch_shape in ["160-192-3", "160-192-5", "160-192-7", "160-192-9", "160-192-11", "160-192-13", "160-192-15", "160-192-17"]: # for patch_shape in ["160-192-3", "160-192-5", "160-192-7", "160-192-9", "160-192-11"]: # for patch_shape in ["160-192-3", "160-192-13", "160-192-15", "160-192-17"]: args.patch_shape = patch_shape model_dim = 25 print("="*120) print( ">> processing model-{}{}, depth-{}, filters-{}, patch_shape-{}, is_denoise-{}, is_normalize-{}, is_hist_match-{}, loss-{}".format( model_name, model_dim, depth_unet, n_base_filters_unet, patch_shape, is_denoise, is_normalize, is_hist_match, loss)) is_test = "0" model_score, model_path = evaluate(args) if model_score is not None: print("="*120) print(">> finished:") model_ids.append( get_filename_without_extension(model_path)) row = get_model_info_header(args.challenge, args.year, args.image_shape, args.is_bias_correction, args.is_denoise, args.is_normalize, args.is_hist_match, model_name, model_dim, patch_shape, loss, depth_unet, n_base_filters_unet) score = [np.mean(model_score["dice_WholeTumor"]), np.mean( model_score["dice_TumorCore"]), np.mean( model_score["dice_EnhancingTumor"]), (np.mean(model_score["dice_WholeTumor"])+np.mean(model_score["dice_TumorCore"])+np.mean(model_score["dice_EnhancingTumor"]))/3] row.extend(score) model_scores.append(row) header = ("challenge", "year", "image_shape", "is_bias_correction", "is_denoise", "is_normalize", "is_hist_match", "model_name", "model_dim", "depth_unet", "n_base_filters_unet", "loss", "patch_shape", "dice_WholeTumor", "dice_TumorCore", "dice_EnhancingTumor", "dice_Mean") final_df = pd.DataFrame.from_records( model_scores, columns=header, index=model_ids) print(final_df) prediction_df_csv_folder = os.path.join( BRATS_DIR, "database/prediction/csv/") make_dir(prediction_df_csv_folder) to_file = prediction_df_csv_folder + "compile.csv" final_df.to_csv(to_file)