def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
    """
  Runs the Union Pooler capacity experiment.

  :param params: A dict containing the following experiment parameters:

        patternDimensionality - Dimensionality of sequence patterns
        patternCardinality - Cardinality (# ON bits) of sequence patterns
        sequenceLength - Length of sequences shown to network
        sequenceCount - Number of unique sequences used
        trainingPasses - Number of times Temporal Memory is trained on each
        sequence
        temporalMemoryParams - A dict of Temporal Memory parameter overrides
        unionPoolerParams - A dict of Union Pooler parameter overrides

  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
    start = time.time()
    print "Running Union Pooler Capacity Experiment...\n"
    print "Params dir: {0}".format(
        os.path.join(os.path.dirname(__file__), paramDir))
    print "Output dir: {0}\n".format(
        os.path.join(os.path.dirname(__file__), outputDir))

    patternDimensionality = params["patternDimensionality"]
    patternCardinality = params["patternCardinality"]
    sequenceLength = params["sequenceLength"]
    sequenceCount = params["numberOfSequences"]
    trainingPasses = params["trainingPasses"]
    tmParamOverrides = params["temporalMemoryParams"]
    upParamOverrides = params["unionPoolerParams"]

    # Generate input data
    inputSequences, seqLabels = generateSequences(patternDimensionality,
                                                  patternCardinality,
                                                  sequenceLength,
                                                  sequenceCount)

    print "\nCreating Network..."
    experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

    # Train the Temporal Memory on the generated sequences
    print "\nTraining Temporal Memory..."
    for i in xrange(trainingPasses):
        print "\nTraining pass {0} ...\n".format(i)
        experiment.runNetworkOnSequences(
            inputSequences,
            seqLabels,
            tmLearn=True,
            upLearn=None,
            verbosity=consoleVerbosity,
            progressInterval=_SHOW_PROGRESS_INTERVAL)

        if consoleVerbosity > 0:
            stats = experiment.getBurstingColumnsStats()
            print "\nPass\tMean\t\tStdDev\t\tMax\t\t(Bursting Columns)"
            print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
        experiment.tm.mmGetDefaultMetrics())
    print
    experiment.tm.mmClearHistory()

    # Run test phase recording Union SDRs
    unionSdrs = runTestPhase(experiment, inputSequences, seqLabels,
                             sequenceCount, sequenceLength, consoleVerbosity)

    # Output distinctness metric
    print "\nSequences\tDistinctness Ave\tStdDev\tMax"
    ave, stdDev, maxDist = getDistinctness(unionSdrs)
    print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, ave, stdDev, maxDist)

    # Check bursting columns metric during test phase
    print "\nSequences\tBursting Columns Mean\tStdDev\tMax"
    stats = experiment.getBurstingColumnsStats()
    print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, stats[0], stats[1],
                                      stats[2])
    if trainingPasses > 0 and stats[0] > 0:
        print "***Warning! Mean bursing columns > 0 in test phase***"

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
        experiment.tm.mmGetDefaultMetrics() +
        experiment.up.mmGetDefaultMetrics())
    print
    print "Total time: {0:2} seconds.".format(int(time.time() - start))
def experiment2():
  paramDir = 'params/1024_baseline/5_trainingPasses.yaml'
  outputDir = 'results/'
  params = yaml.safe_load(open(paramDir, 'r'))
  options = {'plotVerbosity': 2, 'consoleVerbosity': 2}
  plotVerbosity = 2
  consoleVerbosity = 1


  print "Running SDR overlap experiment...\n"
  print "Params dir: {0}".format(paramDir)
  print "Output dir: {0}\n".format(outputDir)

  # Dimensionality of sequence patterns
  patternDimensionality = params["patternDimensionality"]

  # Cardinality (ON / true bits) of sequence patterns
  patternCardinality = params["patternCardinality"]

  # TODO If this parameter is to be supported, the sequence generation code
  # below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Length of sequences shown to network
  sequenceLength = params["sequenceLength"]

  # Number of sequences used. Sequences may share common elements.
  numberOfSequences = params["numberOfSequences"]

  # Number of sequence passes for training the TM. Zero => no training.
  trainingPasses = params["trainingPasses"]

  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "\nGenerating sequences..."
  patternAlphabetSize = sequenceLength * numberOfSequences
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(numberOfSequences, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(numberOfSequences)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  # if trainingPasses > 0:
  #
  #   print "\nTraining Temporal Memory..."
  #   if consoleVerbosity > 0:
  #     print "\nPass\tBursting Columns Mean\tStdDev\tMax"
  #
  #   for i in xrange(trainingPasses):
  #     experiment.runNetworkOnSequences(generatedSequences,
  #                                      labeledSequences,
  #                                      tmLearn=True,
  #                                      upLearn=None,
  #                                      verbosity=consoleVerbosity,
  #                                      progressInterval=_SHOW_PROGRESS_INTERVAL)
  #
  #     if consoleVerbosity > 0:
  #       stats = experiment.getBurstingColumnsStats()
  #       print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])
  #
  #     # Reset the TM monitor mixin's records accrued during this training pass
  #     # experiment.tm.mmClearHistory()
  #
  #   print
  #   print MonitorMixinBase.mmPrettyPrintMetrics(
  #     experiment.tm.mmGetDefaultMetrics())
  #   print
  #
  #   if plotVerbosity >= 2:
  #     plotNetworkState(experiment, plotVerbosity, trainingPasses, phase="Training")
  #
  # experiment.tm.mmClearHistory()
  # experiment.up.mmClearHistory()


  print "\nRunning test phase..."

  inputSequences = generatedSequences
  inputCategories = labeledSequences
  tmLearn = True
  upLearn = False
  classifierLearn = False
  currentTime = time.time()

  experiment.tm.reset()
  experiment.up.reset()

  poolingActivationTrace = numpy.zeros((experiment.up._numColumns, 1))
  activeCellsTrace = numpy.zeros((experiment.up._numColumns, 1))
  activeSPTrace = numpy.zeros((experiment.up._numColumns, 1))

  for _ in xrange(trainingPasses):
    for i in xrange(len(inputSequences)):
      sensorPattern = inputSequences[i]
      inputCategory = inputCategories[i]
      if sensorPattern is None:
        pass
      else:
        experiment.tm.compute(sensorPattern,
                        formInternalConnections=True,
                        learn=tmLearn,
                        sequenceLabel=inputCategory)

        if upLearn is not None:
          activeCells, predActiveCells, burstingCols, = experiment.getUnionPoolerInput()
          experiment.up.compute(activeCells,
                          predActiveCells,
                          learn=upLearn,
                          sequenceLabel=inputCategory)

          currentPoolingActivation = experiment.up._poolingActivation

          currentPoolingActivation = experiment.up._poolingActivation.reshape((experiment.up._numColumns, 1))
          poolingActivationTrace = numpy.concatenate((poolingActivationTrace, currentPoolingActivation), 1)

          currentUnionSDR = numpy.zeros((experiment.up._numColumns, 1))
          currentUnionSDR[experiment.up._unionSDR] = 1
          activeCellsTrace = numpy.concatenate((activeCellsTrace, currentUnionSDR), 1)

          currentSPSDR = numpy.zeros((experiment.up._numColumns, 1))
          currentSPSDR[experiment.up._activeCells] = 1
          activeSPTrace = numpy.concatenate((activeSPTrace, currentSPSDR), 1)

    print "\nPass\tBursting Columns Mean\tStdDev\tMax"
    stats = experiment.getBurstingColumnsStats()
    print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
    print
    print MonitorMixinBase.mmPrettyPrintMetrics(\
        experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
    print
    experiment.tm.mmClearHistory()


  # estimate fraction of shared bits across adjacent time point
  unionSDRshared = experiment.up._mmComputeUnionSDRdiff()

  bitLifeList = experiment.up._mmComputeBitLifeStats()
  bitLife = numpy.array(bitLifeList)


  # Plot SP outputs, UP persistence and UP outputs in testing phase
  def showSequenceStartLine(ax, trainingPasses, sequenceLength):
    for i in xrange(trainingPasses):
      ax.vlines(i*sequenceLength, 0, 100, linestyles='--')

  plt.figure()
  ncolShow = 100
  f, (ax1, ax2, ax3) = plt.subplots(nrows=1,ncols=3)
  ax1.imshow(activeSPTrace[1:ncolShow,:], cmap=cm.Greys,interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax1, trainingPasses, sequenceLength)
  ax1.set_title('SP SDR')
  ax1.set_ylabel('Columns')
  ax2.imshow(poolingActivationTrace[1:100,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax2, trainingPasses, sequenceLength)
  ax2.set_title('Persistence')
  ax3.imshow(activeCellsTrace[1:ncolShow,:], cmap=cm.Greys, interpolation="nearest",aspect='auto')
  showSequenceStartLine(ax3, trainingPasses, sequenceLength)
  plt.title('Union SDR')

  ax2.set_xlabel('Time (steps)')

  pp = PdfPages('results/UnionPoolingDuringTMlearning_Experiment2.pdf')
  pp.savefig()
  pp.close()

  f, (ax1, ax2, ax3) = plt.subplots(nrows=3,ncols=1)
  ax1.plot((sum(activeCellsTrace))/experiment.up._numColumns*100)
  ax1.set_ylabel('Union SDR size (%)')
  ax1.set_xlabel('Time (steps)')
  ax1.set_ylim(0,25)

  ax2.plot(unionSDRshared)
  ax2.set_ylabel('Shared Bits')
  ax2.set_xlabel('Time (steps)')

  ax3.hist(bitLife)
  ax3.set_xlabel('Life duration for each bit')
  pp = PdfPages('results/UnionSDRproperty_Experiment2.pdf')
  pp.savefig()
  pp.close()
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the Union Pooler capacity experiment.

  :param params: A dict containing the following experiment parameters:

        patternDimensionality - Dimensionality of sequence patterns
        patternCardinality - Cardinality (# ON bits) of sequence patterns
        sequenceLength - Length of sequences shown to network
        sequenceCount - Number of unique sequences used
        trainingPasses - Number of times Temporal Memory is trained on each
        sequence
        temporalMemoryParams - A dict of Temporal Memory parameter overrides
        unionPoolerParams - A dict of Union Pooler parameter overrides

  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  start = time.time()
  print "Running Union Pooler Capacity Experiment...\n"
  print "Params dir: {0}".format(os.path.join(os.path.dirname(__file__),
                                              paramDir))
  print "Output dir: {0}\n".format(os.path.join(os.path.dirname(__file__),
                                                outputDir))

  patternDimensionality = params["patternDimensionality"]
  patternCardinality = params["patternCardinality"]
  sequenceLength = params["sequenceLength"]
  sequenceCount = params["numberOfSequences"]
  trainingPasses = params["trainingPasses"]
  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate input data
  inputSequences, seqLabels = generateSequences(patternDimensionality,
                                                patternCardinality,
                                                sequenceLength,
                                                sequenceCount)

  print "\nCreating Network..."
  experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train the Temporal Memory on the generated sequences
  print "\nTraining Temporal Memory..."
  for i in xrange(trainingPasses):
    print "\nTraining pass {0} ...\n".format(i)
    experiment.runNetworkOnSequence(inputSequences,
                                    seqLabels,
                                    tmLearn=True,
                                    upLearn=None,
                                    verbosity=consoleVerbosity,
                                    progressInterval=_SHOW_PROGRESS_INTERVAL)

    if consoleVerbosity > 0:
      stats = experiment.getBurstingColumnsStats()
      print "\nPass\tMean\t\tStdDev\t\tMax\t\t(Bursting Columns)"
      print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
    experiment.tm.mmGetDefaultMetrics())
  print
  experiment.tm.mmClearHistory()

  # Run test phase recording Union SDRs
  unionSdrs = runTestPhase(experiment, inputSequences, seqLabels, sequenceCount,
                           sequenceLength, consoleVerbosity)

  # Output distinctness metric
  print "\nSequences\tDistinctness Ave\tStdDev\tMax"
  ave, stdDev, maxDist = getDistinctness(unionSdrs)
  print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, ave, stdDev, maxDist)

  # Check bursting columns metric during test phase
  print "\nSequences\tBursting Columns Mean\tStdDev\tMax"
  stats = experiment.getBurstingColumnsStats()
  print "{0}\t{1}\t{2}\t{3}".format(sequenceCount, stats[0], stats[1], stats[2])
  if trainingPasses > 0 and stats[0] > 0:
    print "***Warning! Mean bursing columns > 0 in test phase***"

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
  print
  print "Total time: {0:2} seconds.".format(int(time.time() - start))
示例#4
0
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the union overlap experiment.

  :param params: A dict of experiment parameters
  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  print "Running SDR overlap experiment...\n"
  print "Params dir: {0}".format(paramDir)
  print "Output dir: {0}\n".format(outputDir)

  # Dimensionality of sequence patterns
  patternDimensionality = params["patternDimensionality"]

  # Cardinality (ON / true bits) of sequence patterns
  patternCardinality = params["patternCardinality"]

  # TODO If this parameter is to be supported, the sequence generation code
  # below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Length of sequences shown to network
  sequenceLength = params["sequenceLength"]

  # Number of sequences used. Sequences may share common elements.
  numberOfSequences = params["numberOfSequences"]

  # Number of sequence passes for training the TM. Zero => no training.
  trainingPasses = params["trainingPasses"]

  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "\nGenerating sequences..."
  patternAlphabetSize = sequenceLength * numberOfSequences
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(numberOfSequences, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(numberOfSequences)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tBursting Columns Mean\tStdDev\tMax"

    for i in xrange(trainingPasses):
      experiment.runNetworkOnSequences(generatedSequences,
                                       labeledSequences,
                                       tmLearn=True,
                                       upLearn=None,
                                       verbosity=consoleVerbosity,
                                       progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
    if plotVerbosity >= 2:
      plotNetworkState(experiment, plotVerbosity, trainingPasses,
                       phase="Training")

  print "\nRunning test phase..."
  experiment.runNetworkOnSequences(generatedSequences,
                                   labeledSequences,
                                   tmLearn=False,
                                   upLearn=False,
                                   verbosity=consoleVerbosity,
                                   progressInterval=_SHOW_PROGRESS_INTERVAL)

  print "\nPass\tBursting Columns Mean\tStdDev\tMax"
  stats = experiment.getBurstingColumnsStats()
  print "{0}\t{1}\t{2}\t{3}".format(0, stats[0], stats[1], stats[2])
  if trainingPasses > 0 and stats[0] > 0:
    print "***WARNING! MEAN BURSTING COLUMNS IN TEST PHASE IS GREATER THAN 0***"

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
  print
  plotNetworkState(experiment, plotVerbosity, trainingPasses, phase="Testing")

  elapsed = int(time.time() - start)
  print "Total time: {0:2} seconds.".format(elapsed)

  # Write Union SDR trace
  metricName = "activeCells"
  outputFileName = "unionSdrTrace_{0}learningPasses.csv".format(trainingPasses)
  writeMetricTrace(experiment, metricName, outputDir, outputFileName)

  if plotVerbosity >= 1:
    raw_input("Press any key to exit...")
def run(params, paramDir, outputDir, plotVerbosity=0, consoleVerbosity=0):
  """
  Runs the noise robustness experiment.

  :param params: A dict containing the following experiment parameters:

        patternDimensionality - Dimensionality of sequence patterns
        patternCardinality - Cardinality (# ON bits) of sequence patterns
        sequenceLength - Length of sequences shown to network
        sequenceCount - Number of unique sequences used
        trainingPasses - Number of times Temporal Memory is trained on each
        sequence
        testPresentations - Number of sequences presented in test phase
        perturbationChance - Chance of sequence perturbations during test phase
        temporalMemoryParams - A dict of Temporal Memory parameter overrides
        unionPoolerParams - A dict of Union Pooler parameter overrides

  :param paramDir: Path of parameter file
  :param outputDir: Output will be written to this path
  :param plotVerbosity: Plotting verbosity
  :param consoleVerbosity: Console output verbosity
  """
  print "Running Noise robustness experiment...\n"
  print "Params dir: {0}".format(os.path.join(os.path.dirname(__file__),
                                              paramDir))
  print "Output dir: {0}\n".format(os.path.join(os.path.dirname(__file__),
                                                outputDir))

  patternDimensionality = params["patternDimensionality"]
  patternCardinality = params["patternCardinality"]
  sequenceLength = params["sequenceLength"]
  sequenceCount = params["numberOfSequences"]
  trainingPasses = params["trainingPasses"]
  testPresentations = params["testPresentations"]
  perturbationChance = params["perturbationChance"]
  tmParamOverrides = params["temporalMemoryParams"]
  upParamOverrides = params["unionPoolerParams"]

  # TODO If this parameter is to be supported, the sequence generation
  # code below must change
  # Number of unique patterns from which sequences are built
  # patternAlphabetSize = params["patternAlphabetSize"]

  # Generate a sequence list and an associated labeled list (both containing a
  # set of sequences separated by None)
  start = time.time()
  print "Generating sequences..."
  patternAlphabetSize = sequenceLength * sequenceCount
  patternMachine = PatternMachine(patternDimensionality, patternCardinality,
                                  patternAlphabetSize)
  sequenceMachine = SequenceMachine(patternMachine)

  numbers = sequenceMachine.generateNumbers(sequenceCount, sequenceLength)
  generatedSequences = sequenceMachine.generateFromNumbers(numbers)
  sequenceLabels = [str(numbers[i + i*sequenceLength: i + (i+1)*sequenceLength])
                    for i in xrange(sequenceCount)]
  labeledSequences = []
  for label in sequenceLabels:
    for _ in xrange(sequenceLength):
      labeledSequences.append(label)
    labeledSequences.append(None)

  # Set up the Temporal Memory and Union Pooler network
  print "\nCreating network..."
  experiment = UnionPoolerExperiment(tmParamOverrides, upParamOverrides)

  # Train only the Temporal Memory on the generated sequences
  if trainingPasses > 0:

    print "\nTraining Temporal Memory..."
    if consoleVerbosity > 0:
      print "\nPass\tMean\t\tStdDev\t\tMax\t\t(Bursting Columns)"

    for i in xrange(trainingPasses):

      experiment.runNetworkOnSequence(generatedSequences,
                                      labeledSequences,
                                      tmLearn=True,
                                      upLearn=None,
                                      verbosity=consoleVerbosity,
                                      progressInterval=_SHOW_PROGRESS_INTERVAL)

      if consoleVerbosity > 0:
        stats = experiment.getBurstingColumnsStats()
        print "{0}\t{1}\t{2}\t{3}".format(i, stats[0], stats[1], stats[2])

      # Reset the TM monitor mixin's records accrued during this training pass
      # experiment.tm.mmClearHistory()

    print
    print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics())
    print
    if plotVerbosity >= 2:
      plotNetworkState(experiment, plotVerbosity, trainingPasses,
                       phase="Training")

  print "\nRunning test phase..."

  # Input sequence pattern by pattern. Sequence-to-sequence
  # progression is randomly selected. At each step there is a chance of
  # perturbation. Specifically the following
  # perturbations may occur:
  # Establish a baseline without noise
  # Establish a baseline adding the following perturbations one-by-one
  # 1) substitution of some other pattern for the normal expected pattern
  # 2) skipping expected pattern and presenting next pattern in sequence
  # 3) addition of some other pattern putting off expected pattern one time step
  # Finally measure performance on more complex perturbation
  # TODO 4) Jump to another sequence randomly (Random jump to start or random
  # position?)

  runTestPhase(experiment, generatedSequences, sequenceCount, sequenceLength,
               testPresentations, perturbationChance)

  print
  print MonitorMixinBase.mmPrettyPrintMetrics(
      experiment.tm.mmGetDefaultMetrics() + experiment.up.mmGetDefaultMetrics())
  print
  # plotNetworkState(experiment, plotVerbosity, trainingPasses, phase="Testing")

  elapsed = int(time.time() - start)
  print "Total time: {0:2} seconds.".format(elapsed)

  ## Write Union SDR trace
  # metricName = "activeCells"
  # outputFileName = "unionSdrTrace_{0}learningPasses.csv".format(trainingPasses)
  # writeMetricTrace(experiment, metricName, outputDir, outputFileName)

  if plotVerbosity >= 1:
    raw_input("\nPress any key to exit...")