示例#1
0
 def test_download_eval_file(self):
     WHOIS.get_registrar_certification_list.return_value = self._get_registrar_certs(
     )
     FILE_MANAGER.info.return_value = FileInfo(
         id=2,
         name='test.html',
         path='2015/12/9/1',
         mimetype='text/html',
         filetype=6,
         crdate='2015-12-09 16:16:28.598757',
         size=5)
     content = "<html><body>The content.</body></html>"
     FILE_MANAGER.load.return_value.download.return_value = content
     response = self.client.get(
         reverse("webwhois:download_evaluation_file",
                 kwargs={"handle": "REG-MOJEID"}))
     self.assertEqual(response.content, content.encode())
     self.assertEqual(response['Content-Type'], 'text/html')
     self.assertEqual(response['Content-Disposition'],
                      'attachment; filename="test.html"')
     self.assertEqual(WHOIS.mock_calls,
                      [call.get_registrar_certification_list()])
     self.assertEqual(FILE_MANAGER.mock_calls, [
         call.info(2),
         call.load(2),
         call.load().download(5),
         call.load().finalize_download()
     ])
示例#2
0
    def test_givenSeq2SeqModelRetrained_whenLoadRetrainedWeights_thenLoadProperly(
            self, torch_nn_mock, torch_mock):
        all_layers_params_mock = MagicMock()
        all_layers_params_mock.__getitem__(
        ).__len__.return_value = self.decoder_output_size
        torch_mock.load.return_value = all_layers_params_mock

        seq2seq_model = Seq2SeqModel(
            self.a_cpu_device,
            input_size=self.encoder_input_size_dim,
            encoder_hidden_size=self.encoder_hidden_size,
            encoder_num_layers=self.encoder_num_layers,
            decoder_hidden_size=self.decoder_hidden_size,
            decoder_num_layers=self.decoder_num_layers,
            output_size=self.decoder_output_size,
            verbose=True,
        )
        seq2seq_model._load_weights(self.a_fake_retrain_path)

        torch_mock.assert_has_calls([
            call.load(self.a_fake_retrain_path, map_location=self.a_cpu_device)
        ])

        torch_nn_mock.assert_called()
        torch_nn_mock.asser_has_calls([call(all_layers_params_mock)])
    def test_givenRetrainedWeights_whenInstantiatingAFastTextSeq2SeqModel_thenShouldUseRetrainedWeights(
            self, load_state_dict_mock, torch_mock):
        all_layers_params = MagicMock()
        torch_mock.load.return_value = all_layers_params
        self.seq2seq_model = FastTextSeq2SeqModel(self.a_torch_device,
                                                  self.verbose,
                                                  path_to_retrained_model=self.a_path_to_retrained_model)

        torch_load_call = [call.load(self.a_path_to_retrained_model, map_location=self.a_torch_device)]
        torch_mock.assert_has_calls(torch_load_call)

        load_state_dict_call = [call(all_layers_params)]
        load_state_dict_mock.assert_has_calls(load_state_dict_call)
    def it_adds_a_load_method(utilities, mixed_instance):
        mixed_instance.load()

        expect(utilities.mock_calls) == [call.load(mixed_instance)]
示例#5
0
    def it_adds_a_load_method(utilities, mixed_instance):
        mixed_instance.load()

        expect(utilities.mock_calls) == [
            call.load(mixed_instance)
        ]