示例#1
0
def make_data_tuple(event):
    vector_list  = []
    for jet in event['jets']:
        vec = LV.from_ptetaphie(
            jet['vbf_candidates_pT'],
            jet['vbf_candidates_eta'],
            jet['vbf_candidates_phi'],
            jet['vbf_candidates_E']
        )
        vector_list.append(vec)

    return( prepare_tuple(vector_list) )
示例#2
0
                                   marker='.',
                                   color='green')
#_plots['rocs'].add_marker('mjjmax', 1000, annotation='1000 GeV', marker='.', color='blue')
#_plots['rocs_2jet'].add_marker('mjjSL', 735, annotation='735 GeV', marker='*', color='red')
#_plots['rocs_3jet'].add_marker('mjjSL', 735, annotation='735 GeV', marker='*', color='red')

_output_branches = [
    'run_number', 'event_number', 'mc_sf', 'ntag', 'njets', 'n_vbf_candidates',
    ('jets', [
        'vbf_candidates_E', 'vbf_candidates_pT', 'vbf_candidates_eta',
        'vbf_candidates_phi'
    ])
]
_output_branches += [f'FoxWolfram{i}' for i in _fw_moments]

make_reco_vector = lambda jet: LV.from_ptetaphie(jet['resolvedJets_pt'], jet[
    'resolvedJets_eta'], jet['resolvedJets_phi'], jet['resolvedJets_E'])
make_nano_vector = lambda jet: LV.from_ptetaphie(jet['vbf_candidates_pT'], jet[
    'vbf_candidates_eta'], jet['vbf_candidates_phi'], jet['vbf_candidates_E'])


def process_events(events, skip_num=0, bgd=False, cvv_value=-1):
    basic_efficiency_count = [0, 0, 0]
    num_jets = [0] * 20
    num_shared = 0
    num_not_shared = 0
    num_pt_matched = 0
    num_pt_not_matched = 0
    num_negative_weighted = 0
    for event_index, event in enumerate(events):
        if event_index < skip_num: continue
        weight = event['mc_sf'][0]
示例#3
0
    'nresolvedJets',
    (
        'resolved_jets',
        [
            'resolvedJets_pt',
            'resolvedJets_phi',
            'resolvedJets_eta',
            'resolvedJets_E',  #resolved pt in GeV
            'resolvedJets_HadronConeExclTruthLabelID',
            'resolvedJets_is_DL1r_FixedCutBEff_77'
        ])
]

_output_branches = ['event_number']

make_reco_vector = lambda jet: LV.from_ptetaphie(jet['resolvedJets_pt'], jet[
    'resolvedJets_eta'], jet['resolvedJets_phi'], jet['resolvedJets_E'])


def get_vbf_jet_info(non_b_tagged_jets):
    vbf_jet_info = {'x': [], 'y': [], 'c': []}
    if len(non_b_tagged_jets) > 1:
        mjj_pair = max([
            ((pair[0] + pair[1]).mass, pair)
            for pair in itertools.combinations(non_b_tagged_jets, 2)
        ])[1]
        color = 'white' if abs(mjj_pair[0].eta -
                               mjj_pair[1].eta) > 3 else 'black'
        vbf_jet_info['x'] = [mjj_pair[0].eta, mjj_pair[1].eta]
        vbf_jet_info['y'] = [mjj_pair[0].phi, mjj_pair[1].phi]
        vbf_jet_info['c'] = [color, color]
    return vbf_jet_info
示例#4
0
import itertools

from uproot_methods import TLorentzVector as LV

_fourvec_names = [ f'vbf_candidates_{v}' for v in ['pT', 'eta', 'phi', 'E'] ]
make_vector_list = lambda datarow: [ LV.from_ptetaphie(*vec) for vec in zip(*datarow[_fourvec_names]) ]


def valid_vbf(datarow):
    vector_list = make_vector_list(datarow)
    Deta = max([ ( (i+j).mass, abs(i.eta-j.eta) ) for i,j in itertools.combinations(vector_list, 2) ])[1]
    return Deta > 3



def get_features_mjj_deta(datarow):
    vector_list = make_vector_list(datarow)
    pair_list = [ (i,j) for i,j in itertools.combinations(vector_list, 2) ]
    if len(pair_list) > 0:
        mjj_deta_pair_list = [ ( (i+j).mass, abs(i.eta-j.eta) ) for i,j in pair_list]
        mjj_deta_pair_list.sort(reverse=True)
        prepared_features = [
            mjj_deta_pair_list[0][0],
            mjj_deta_pair_list[0][1]
        ]
    else:
        prepared_features = [-1,-1]
    return prepared_features