def plot_cumul_hist(data, booklet=None): """ Plots cumulative histogram for PPMI data. data: output of load() booklet: optionally restrict to one of four booklets (1-4). """ if booklet: smell = [value['upsit'][booklet - 1] for key, value in data.items()] else: smell = [sum(value['upsit']) for key, value in data.items()] recruitment = [value['recruitment'] for key, value in data.items()] smell_ctl = [ smell[i] for i in range(len(recruitment)) if recruitment[i] == 0 ] smell_ctl = sorted(smell_ctl) smell_pd = [ smell[i] for i in range(len(recruitment)) if recruitment[i] == 1 ] smell_pd = sorted(smell_pd) cumul_hist(smell_ctl, color='k') cumul_hist(smell_pd, color='r') plt.xlabel('UPSIT score') plt.ylabel('Cumulative Probability')
def plot_cumul_hist(data,booklet=None): """ Plots cumulative histogram for PPMI data. data: output of load() booklet: optionally restrict to one of four booklets (1-4). """ if booklet: smell = [value['upsit'][booklet-1] for key,value in data.items()] else: smell = [sum(value['upsit']) for key,value in data.items()] recruitment = [value['recruitment'] for key,value in data.items()] smell_ctl = [smell[i] for i in range(len(recruitment)) if recruitment[i]==0] smell_ctl = sorted(smell_ctl) smell_pd = [smell[i] for i in range(len(recruitment)) if recruitment[i]==1] smell_pd = sorted(smell_pd) cumul_hist(smell_ctl,color='k') cumul_hist(smell_pd,color='r') plt.xlabel('UPSIT score') plt.ylabel('Cumulative Probability')
pd_p = np.random.binomial(23,pd_p0) / 23.0 diff[q-1] = ctrl_p - pd_p shuffle_diff = np.zeros(40000) for q in range(1,40001): q_ctrl = ((q-1) % 40) + 1 q_pd = np.random.randint(1,41) ctrl_p = proportion(q_ctrl,'ctrl') ctrl_x = np.log(ctrl_p/(1-ctrl_p)) pd_x = ctrl_x - 1.4 + 0.7*np.random.randn() pd_p0 = np.exp(pd_x)/(1+np.exp(pd_x)) pd_p = np.random.binomial(23,pd_p0) / 23.0 shuffle_diff[q-1] = ctrl_p - pd_p upsit.plt.figure() upsit.cumul_hist(diff,color='r') upsit.cumul_hist(shuffle_diff,color='k') upsit.plt.show() if 0: for test in tests: if test.subject.label == 'ctrl': ctrl.append(test.score) if test.subject.label == 'pd': pd.append(test.score) #pprint(upsit_key) #pprint(bbdp_data) #upsit.cumul_hist(ctrl,color='k') #upsit.cumul_hist(pd,color='r')
pd_p = np.random.binomial(23, pd_p0) / 23.0 diff[q - 1] = ctrl_p - pd_p shuffle_diff = np.zeros(40000) for q in range(1, 40001): q_ctrl = ((q - 1) % 40) + 1 q_pd = np.random.randint(1, 41) ctrl_p = proportion(q_ctrl, 'ctrl') ctrl_x = np.log(ctrl_p / (1 - ctrl_p)) pd_x = ctrl_x - 1.4 + 0.7 * np.random.randn() pd_p0 = np.exp(pd_x) / (1 + np.exp(pd_x)) pd_p = np.random.binomial(23, pd_p0) / 23.0 shuffle_diff[q - 1] = ctrl_p - pd_p upsit.plt.figure() upsit.cumul_hist(diff, color='r') upsit.cumul_hist(shuffle_diff, color='k') upsit.plt.show() if 0: for test in tests: if test.subject.label == 'ctrl': ctrl.append(test.score) if test.subject.label == 'pd': pd.append(test.score) #pprint(upsit_key) #pprint(bbdp_data) #upsit.cumul_hist(ctrl,color='k') #upsit.cumul_hist(pd,color='r')