fh = open(path, "r") csvf = csv.reader(fh) io_codes = common.io_codes_for_year(year) data = {} row = next(csvf) for row in csvf: if len(row) == 6: sector = row[0] btu = row[1] # total #btu = row[2] # coal #btu = row[3] # natural gas #btu = row[5] # PA-nontrans data[sector] = float(btu) pce_vector = common.pce_bridge_vector( year, "Food and beverages purchased for off-premises consumption") #pce_vector = common.pce_bridge_vector( # year, "Clothing and footwear") total_expenditure = 0 meat_expenditure = 0 energy_data = {} for row in pce_vector.get_rows(): expenditure = pce_vector.get_element(row) if expenditure != 0: intensity = data[row] if row in combined_meat_codes: sector = io_codes[row] print(row, sector, intensity)
for sector in bea.scrap_used_codes[year]: imp_to_cons.set_element(sector, colname, 0) # create matrix to collapse split petroleum sectors when multiplying # by the import ratio rows = iogen_standard.get_sectors() cols = iogen.get_sectors() pa_collapser = NamedMatrix(False, None, rows, cols) for col in cols: if col in rows: pa_collapser.set_element(col, col, 1) elif col == eia.source_naics_map["PA-trans"][year] or \ col == eia.source_naics_map["PA-nontrans"][year]: pa_collapser.set_element(eia.source_naics_map["PA"][year], col, 1) conven_pce = common.pce_bridge_vector(year) # all in dollars conversions = {} # get btu per dollar which we will use to convert subvectors for code in energy_codes: conversions[code] = hybrid_pce.get_element(code) / \ conven_pce.get_element(code) for group in bea.nipa_groups: Y = common.pce_bridge_vector(year, group) deflator = deflators.get_pce_deflator(year) pce = Y.sum() * deflator if group not in pce_imports: pce_imports[group] = {} # pce gets /1000 and /1000 again in "is_intensity" version