def __init__(self, y, x, regimes, w=None, constant_regi='many',\ cols2regi='all', method='full', epsilon=0.0000001,\ regime_lag_sep=False, cores=None, spat_diag=False,\ vm=False, name_y=None, name_x=None,\ name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_spat_diag(spat_diag, w) name_y = USER.set_name_y(name_y) self.name_y = name_y self.name_x_r = USER.set_name_x(name_x, x) + [USER.set_name_yend_sp(name_y)] self.method = method self.epsilon = epsilon self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi=constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes self.regime_lag_sep = regime_lag_sep self._cache = {} self.name_ds = USER.set_name_ds(name_ds) self.name_w = USER.set_name_w(name_w, w) USER.check_regimes(self.regimes_set,self.n,x.shape[1]) if regime_lag_sep == True: if not (set(cols2regi) == set([True]) and constant_regi == 'many'): raise Exception, "All variables must vary by regimes if regime_lag_sep = True." cols2regi += [True] w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi)+1) set_warn(self,warn) else: cols2regi += [False] if set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y self.ML_Lag_Regimes_Multi(y, x, w_i, w, regi_ids,\ cores=cores, cols2regi=cols2regi, method=method, epsilon=epsilon,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_regimes=self.name_regimes,\ name_w=name_w, name_ds=name_ds) else: #if regime_lag_sep == True: # w = REGI.w_regimes_union(w, w_i, self.regimes_set) name_x = USER.set_name_x(name_x, x,constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, \ regimes, constant_regi, cols2regi=cols2regi[:-1], names=name_x) self.name_x.append("_Global_"+USER.set_name_yend_sp(name_y)) BaseML_Lag.__init__(self, y=y, x=x, w=w, method=method, epsilon=epsilon) self.kf += 1 #Adding a fixed k to account for spatial lag. self.chow = REGI.Chow(self) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) self.regime_lag_sep=regime_lag_sep self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES" + " (METHOD = " + method + ")" SUMMARY.ML_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, w, method='full', epsilon=0.0000001, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) method = method.upper() if method in ['FULL', 'ORD']: BaseML_Lag.__init__(self, y=y, x=x_constant, w=w, method=method, epsilon=epsilon) # increase by 1 to have correct aic and sc, include rho in count self.k += 1 self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG" + \ " (METHOD = " + method + ")" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) name_ylag = USER.set_name_yend_sp(self.name_y) self.name_x.append(name_ylag) # rho changed to last position self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.ML_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag) else: raise Exception, "{0} is an unsupported method".format(method)
def __init__(self, y, x, w, method='full', epsilon=0.0000001, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) x_constant = USER.check_constant(x) method = method.upper() if method in ['FULL', 'ORD']: BaseML_Lag.__init__( self, y=y, x=x_constant, w=w, method=method, epsilon=epsilon) # increase by 1 to have correct aic and sc, include rho in count self.k += 1 self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG" + \ " (METHOD = " + method + ")" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) name_ylag = USER.set_name_yend_sp(self.name_y) self.name_x.append(name_ylag) # rho changed to last position self.name_w = USER.set_name_w(name_w, w) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) SUMMARY.ML_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag) else: raise Exception, "{0} is an unsupported method".format(method)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Lag.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, robust=robust, gwk=gwk,\ lag_q=lag_q, sig2n_k=sig2n_k) self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self, warn) self.title = "SPATIAL TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Lag.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, robust=robust, gwk=gwk,\ lag_q=lag_q, sig2n_k=sig2n_k) self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self,warn) self.title = "SPATIAL TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_q = USER.set_name_q(name_q, q) self.name_q.extend(USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.robust = USER.set_robust(robust) self.name_w = USER.set_name_w(name_w, w) self.name_gwk = USER.set_name_w(name_gwk, gwk) SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Combo.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, lag_q=lag_q) self.predy_e, self.e_pred, warn = sp_att(w,self.y,\ self.predy,yend2[:,-1].reshape(self.n,1),self.betas[-2]) set_warn(self, warn) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') self.name_q = USER.set_name_q(name_q, q) self.name_q.extend( USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Combo(reg=self, w=w, vm=vm)
def __init__(self, y, x, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None,\ name_w=None, name_ds=None): n = USER.check_arrays(y, x, yend, q) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) x_constant = USER.check_constant(x) BaseGM_Combo.__init__(self, y=y, x=x_constant, w=w.sparse, yend=yend2, q=q2,\ w_lags=w_lags, lag_q=lag_q) self.rho = self.betas[-2] self.predy_e, self.e_pred, warn = sp_att(w,self.y,\ self.predy,yend2[:,-1].reshape(self.n,1),self.rho) set_warn(self, warn) self.title = "SPATIALLY WEIGHTED TWO STAGE LEAST SQUARES" self.name_ds = USER.set_name_ds(name_ds) self.name_y = USER.set_name_y(name_y) self.name_x = USER.set_name_x(name_x, x) self.name_yend = USER.set_name_yend(name_yend, yend) self.name_yend.append(USER.set_name_yend_sp(self.name_y)) self.name_z = self.name_x + self.name_yend self.name_z.append('lambda') self.name_q = USER.set_name_q(name_q, q) self.name_q.extend(USER.set_name_q_sp(self.name_x, w_lags, self.name_q, lag_q)) self.name_h = USER.set_name_h(self.name_x, self.name_q) self.name_w = USER.set_name_w(name_w, w) SUMMARY.GM_Combo(reg=self, w=w, vm=vm)
def GM_Lag_Regimes_Multi(self, y, x, w_i, regi_ids, cores=None,\ yend=None, q=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,cols2regi='all',\ spat_diag=False, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): pool = mp.Pool(cores) self.name_ds = USER.set_name_ds(name_ds) name_x = USER.set_name_x(name_x, x) name_yend.append(USER.set_name_yend_sp(name_y)) self.name_w = USER.set_name_w(name_w, w_i) self.name_gwk = USER.set_name_w(name_gwk, gwk) results_p = {} for r in self.regimes_set: w_r = w_i[r].sparse results_p[r] = pool.apply_async(_work,args=(y,x,regi_ids,r,yend,q,w_r,w_lags,lag_q,robust,sig2n_k,self.name_ds,name_y,name_x,name_yend,name_q,self.name_w,name_regimes, )) self.kryd = 0 self.kr = len(cols2regi) + 1 self.kf = 0 self.nr = len(self.regimes_set) self.name_x_r = name_x + name_yend self.name_regimes = name_regimes self.vm = np.zeros((self.nr*self.kr,self.nr*self.kr),float) self.betas = np.zeros((self.nr*self.kr,1),float) self.u = np.zeros((self.n,1),float) self.predy = np.zeros((self.n,1),float) self.predy_e = np.zeros((self.n,1),float) self.e_pred = np.zeros((self.n,1),float) pool.close() pool.join() results = {} self.name_y, self.name_x, self.name_yend, self.name_q, self.name_z, self.name_h = [],[],[],[],[],[] counter = 0 for r in self.regimes_set: results[r] = results_p[r].get() results[r].predy_e, results[r].e_pred = sp_att(w_i[r],results[r].y,results[r].predy, results[r].yend[:,-1].reshape(results[r].n,1),results[r].betas[-1]) results[r].w = w_i[r] self.vm[(counter*self.kr):((counter+1)*self.kr),(counter*self.kr):((counter+1)*self.kr)] = results[r].vm self.betas[(counter*self.kr):((counter+1)*self.kr),] = results[r].betas self.u[regi_ids[r],]=results[r].u self.predy[regi_ids[r],]=results[r].predy self.predy_e[regi_ids[r],]=results[r].predy_e self.e_pred[regi_ids[r],]=results[r].e_pred self.name_y += results[r].name_y self.name_x += results[r].name_x self.name_yend += results[r].name_yend self.name_q += results[r].name_q self.name_z += results[r].name_z self.name_h += results[r].name_h if r == self.regimes_set[0]: self.hac_var = np.zeros((self.n,results[r].h.shape[1]),float) self.hac_var[regi_ids[r],] = results[r].h counter += 1 self.multi = results if robust == 'hac': hac_multi(self,gwk,constant=True) self.chow = REGI.Chow(self) SUMMARY.GM_Lag_multi(reg=self, multireg=self.multi, vm=vm, spat_diag=spat_diag, regimes=True)
def ML_Lag_Regimes_Multi(self, y, x, w_i, w, regi_ids,\ cores, cols2regi, method, epsilon,\ spat_diag, vm, name_y, name_x,\ name_regimes, name_w, name_ds): pool = mp.Pool(cores) name_x = USER.set_name_x(name_x, x)+ [USER.set_name_yend_sp(name_y)] results_p = {} for r in self.regimes_set: if system() == 'Windows': is_win = True results_p[r] = _work(*(y,x,regi_ids,r,w_i[r],method,epsilon,name_ds,name_y,name_x,name_w,name_regimes)) else: results_p[r] = pool.apply_async(_work,args=(y,x,regi_ids,r,w_i[r],method,epsilon,name_ds,name_y,name_x,name_w,name_regimes, )) is_win = False self.kryd = 0 self.kr = len(cols2regi) + 1 self.kf = 0 self.nr = len(self.regimes_set) self.name_x_r = name_x self.name_regimes = name_regimes self.vm = np.zeros((self.nr*self.kr,self.nr*self.kr),float) self.betas = np.zeros((self.nr*self.kr,1),float) self.u = np.zeros((self.n,1),float) self.predy = np.zeros((self.n,1),float) self.predy_e = np.zeros((self.n,1),float) self.e_pred = np.zeros((self.n,1),float) if not is_win: pool.close() pool.join() results = {} self.name_y, self.name_x = [],[] counter = 0 for r in self.regimes_set: if is_win: results[r] = results_p[r] else: results[r] = results_p[r].get() self.vm[(counter*self.kr):((counter+1)*self.kr),(counter*self.kr):((counter+1)*self.kr)] = results[r].vm self.betas[(counter*self.kr):((counter+1)*self.kr),] = results[r].betas self.u[regi_ids[r],]=results[r].u self.predy[regi_ids[r],]=results[r].predy self.predy_e[regi_ids[r],]=results[r].predy_e self.e_pred[regi_ids[r],]=results[r].e_pred self.name_y += results[r].name_y self.name_x += results[r].name_x counter += 1 self.multi = results self.chow = REGI.Chow(self) SUMMARY.ML_Lag_multi(reg=self, multireg=self.multi, vm=vm, spat_diag=spat_diag, regimes=True, w=w)
def GM_Lag_Regimes_Multi( self, y, x, w_i, w, regi_ids, cores=False, yend=None, q=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, cols2regi="all", spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, ): # pool = mp.Pool(cores) self.name_ds = USER.set_name_ds(name_ds) name_x = USER.set_name_x(name_x, x) name_yend.append(USER.set_name_yend_sp(name_y)) self.name_w = USER.set_name_w(name_w, w_i) self.name_gwk = USER.set_name_w(name_gwk, gwk) results_p = {} """ for r in self.regimes_set: w_r = w_i[r].sparse if system() == 'Windows': is_win = True results_p[r] = _work(*(y,x,regi_ids,r,yend,q,w_r,w_lags,lag_q,robust,sig2n_k,self.name_ds,name_y,name_x,name_yend,name_q,self.name_w,name_regimes)) else: results_p[r] = pool.apply_async(_work,args=(y,x,regi_ids,r,yend,q,w_r,w_lags,lag_q,robust,sig2n_k,self.name_ds,name_y,name_x,name_yend,name_q,self.name_w,name_regimes, )) is_win = False """ for r in self.regimes_set: w_r = w_i[r].sparse if cores: pool = mp.Pool(None) results_p[r] = pool.apply_async( _work, args=( y, x, regi_ids, r, yend, q, w_r, w_lags, lag_q, robust, sig2n_k, self.name_ds, name_y, name_x, name_yend, name_q, self.name_w, name_regimes, ), ) else: results_p[r] = _work( *( y, x, regi_ids, r, yend, q, w_r, w_lags, lag_q, robust, sig2n_k, self.name_ds, name_y, name_x, name_yend, name_q, self.name_w, name_regimes, ) ) self.kryd = 0 self.kr = len(cols2regi) + 1 self.kf = 0 self.nr = len(self.regimes_set) self.name_x_r = name_x + name_yend self.name_regimes = name_regimes self.vm = np.zeros((self.nr * self.kr, self.nr * self.kr), float) self.betas = np.zeros((self.nr * self.kr, 1), float) self.u = np.zeros((self.n, 1), float) self.predy = np.zeros((self.n, 1), float) self.predy_e = np.zeros((self.n, 1), float) self.e_pred = np.zeros((self.n, 1), float) """ if not is_win: pool.close() pool.join() """ if cores: pool.close() pool.join() results = {} self.name_y, self.name_x, self.name_yend, self.name_q, self.name_z, self.name_h = [], [], [], [], [], [] counter = 0 for r in self.regimes_set: """ if is_win: results[r] = results_p[r] else: results[r] = results_p[r].get() """ if not cores: results[r] = results_p[r] else: results[r] = results_p[r].get() results[r].predy_e, results[r].e_pred, warn = sp_att( w_i[r], results[r].y, results[r].predy, results[r].yend[:, -1].reshape(results[r].n, 1), results[r].rho ) set_warn(results[r], warn) results[r].w = w_i[r] self.vm[ (counter * self.kr) : ((counter + 1) * self.kr), (counter * self.kr) : ((counter + 1) * self.kr) ] = results[r].vm self.betas[(counter * self.kr) : ((counter + 1) * self.kr),] = results[r].betas self.u[regi_ids[r],] = results[r].u self.predy[regi_ids[r],] = results[r].predy self.predy_e[regi_ids[r],] = results[r].predy_e self.e_pred[regi_ids[r],] = results[r].e_pred self.name_y += results[r].name_y self.name_x += results[r].name_x self.name_yend += results[r].name_yend self.name_q += results[r].name_q self.name_z += results[r].name_z self.name_h += results[r].name_h if r == self.regimes_set[0]: self.hac_var = np.zeros((self.n, results[r].h.shape[1]), float) self.hac_var[regi_ids[r],] = results[r].h counter += 1 self.multi = results if robust == "hac": hac_multi(self, gwk, constant=True) if robust == "ogmm": set_warn(self, "Residuals treated as homoskedastic for the purpose of diagnostics.") self.chow = REGI.Chow(self) if spat_diag: pass # self._get_spat_diag_props(y, x, w, yend, q, w_lags, lag_q) SUMMARY.GM_Lag_multi(reg=self, multireg=self.multi, vm=vm, spat_diag=spat_diag, regimes=True, w=w)
def __init__( self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi="many", cols2regi="all", regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None, ): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x, constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend(USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == "hac": set_warn( self, "Error by regimes is incompatible with HAC estimation for Spatial Lag models. Hence, error and lag by regimes have been disabled for this model.", ) regime_err_sep = False regime_lag_sep = False self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes( w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1 ) set_warn(self, warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == "many": self.y = y self.GM_Lag_Regimes_Multi( y, x, w_i, w, regi_ids, yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores, robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi, spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds, ) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__( self, y=y, x=x, yend=yend2, q=q2, regimes=regimes, w=w, robust=robust, gwk=gwk, sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm, constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds, summ=False, ) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:, -1].reshape(self.n, 1)) else: self.rho = self.betas[-1] self.predy_e, self.e_pred, warn = sp_att( w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho ) set_warn(self, warn) self.regime_lag_sep = regime_lag_sep self.title = "SPATIAL " + self.title SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False, constant_regi='many',\ cols2regi='all', regime_lag_sep=True, regime_err_sep=True,\ cores=None, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x,constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend(USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi=constant_regi self.n = n if cols2regi == 'all': if yend!=None: cols2regi = [True] * (x.shape[1]+yend.shape[1]) else: cols2regi = [True] * (x.shape[1]) if regime_lag_sep == True: cols2regi += [True] self.regimes_set = list(set(regimes)) self.regimes_set.sort() w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi)+1) set_warn(self,warn) if not regime_err_sep: w = REGI.w_regimes_union(w, w_i, self.regimes_set) else: cols2regi += [False] if regime_err_sep == True: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." self.cols2regi = cols2regi if regime_lag_sep == True and regime_err_sep == True: if set(cols2regi) == set([True]): self.GM_Lag_Regimes_Multi(y, x, w_i, regi_ids,\ yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores,\ robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes,\ name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: raise Exception, "All coefficients must vary accross regimes if regime_err_sep = True." else: yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2,\ regimes=regimes, w=w, robust=robust, gwk=gwk,\ sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm,\ constant_regi=constant_regi, cols2regi=cols2regi, name_y=name_y,\ name_x=name_x, name_yend=name_yend, name_q=name_q,\ name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk,\ name_ds=name_ds,summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:,-1].reshape(self.n,1)) else: self.predy_e, self.e_pred = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) self.regime_lag_sep=regime_lag_sep self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def GM_Lag_Regimes_Multi(self, y, x, w_i, w, regi_ids, cores=False, yend=None, q=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, cols2regi='all', spat_diag=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): # pool = mp.Pool(cores) self.name_ds = USER.set_name_ds(name_ds) name_x = USER.set_name_x(name_x, x) name_yend.append(USER.set_name_yend_sp(name_y)) self.name_w = USER.set_name_w(name_w, w_i) self.name_gwk = USER.set_name_w(name_gwk, gwk) results_p = {} """ for r in self.regimes_set: w_r = w_i[r].sparse if system() == 'Windows': is_win = True results_p[r] = _work(*(y,x,regi_ids,r,yend,q,w_r,w_lags,lag_q,robust,sig2n_k,self.name_ds,name_y,name_x,name_yend,name_q,self.name_w,name_regimes)) else: results_p[r] = pool.apply_async(_work,args=(y,x,regi_ids,r,yend,q,w_r,w_lags,lag_q,robust,sig2n_k,self.name_ds,name_y,name_x,name_yend,name_q,self.name_w,name_regimes, )) is_win = False """ for r in self.regimes_set: w_r = w_i[r].sparse if cores: pool = mp.Pool(None) results_p[r] = pool.apply_async(_work, args=( y, x, regi_ids, r, yend, q, w_r, w_lags, lag_q, robust, sig2n_k, self.name_ds, name_y, name_x, name_yend, name_q, self.name_w, name_regimes, )) else: results_p[r] = _work(*(y, x, regi_ids, r, yend, q, w_r, w_lags, lag_q, robust, sig2n_k, self.name_ds, name_y, name_x, name_yend, name_q, self.name_w, name_regimes)) self.kryd = 0 self.kr = len(cols2regi) + 1 self.kf = 0 self.nr = len(self.regimes_set) self.name_x_r = name_x + name_yend self.name_regimes = name_regimes self.vm = np.zeros((self.nr * self.kr, self.nr * self.kr), float) self.betas = np.zeros((self.nr * self.kr, 1), float) self.u = np.zeros((self.n, 1), float) self.predy = np.zeros((self.n, 1), float) self.predy_e = np.zeros((self.n, 1), float) self.e_pred = np.zeros((self.n, 1), float) """ if not is_win: pool.close() pool.join() """ if cores: pool.close() pool.join() results = {} self.name_y, self.name_x, self.name_yend, self.name_q, self.name_z, self.name_h = [ ], [], [], [], [], [] counter = 0 for r in self.regimes_set: """ if is_win: results[r] = results_p[r] else: results[r] = results_p[r].get() """ if not cores: results[r] = results_p[r] else: results[r] = results_p[r].get() results[r].predy_e, results[r].e_pred, warn = sp_att( w_i[r], results[r].y, results[r].predy, results[r].yend[:, -1].reshape(results[r].n, 1), results[r].rho) set_warn(results[r], warn) results[r].w = w_i[r] self.vm[(counter * self.kr):((counter + 1) * self.kr), (counter * self.kr):((counter + 1) * self.kr)] = results[r].vm self.betas[(counter * self.kr):((counter + 1) * self.kr), ] = results[r].betas self.u[regi_ids[r], ] = results[r].u self.predy[regi_ids[r], ] = results[r].predy self.predy_e[regi_ids[r], ] = results[r].predy_e self.e_pred[regi_ids[r], ] = results[r].e_pred self.name_y += results[r].name_y self.name_x += results[r].name_x self.name_yend += results[r].name_yend self.name_q += results[r].name_q self.name_z += results[r].name_z self.name_h += results[r].name_h if r == self.regimes_set[0]: self.hac_var = np.zeros((self.n, results[r].h.shape[1]), float) self.hac_var[regi_ids[r], ] = results[r].h counter += 1 self.multi = results if robust == 'hac': hac_multi(self, gwk, constant=True) if robust == 'ogmm': set_warn( self, "Residuals treated as homoskedastic for the purpose of diagnostics." ) self.chow = REGI.Chow(self) if spat_diag: pass #self._get_spat_diag_props(y, x, w, yend, q, w_lags, lag_q) SUMMARY.GM_Lag_multi(reg=self, multireg=self.multi, vm=vm, spat_diag=spat_diag, regimes=True, w=w)
def __init__(self, y, x, regimes, yend=None, q=None, w=None, w_lags=1, lag_q=True, robust=None, gwk=None, sig2n_k=False, spat_diag=False, constant_regi='many', cols2regi='all', regime_lag_sep=False, regime_err_sep=True, cores=False, vm=False, name_y=None, name_x=None, name_yend=None, name_q=None, name_regimes=None, name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x, constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend( USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set, self.n, x.shape[1]) if regime_err_sep == True and robust == 'hac': set_warn( self, "Error by regimes is incompatible with HAC estimation for Spatial Lag models. Hence, error and lag by regimes have been disabled for this model." ) regime_err_sep = False regime_lag_sep = False self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1) set_warn(self, warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set( [True]) and constant_regi == 'many': self.y = y self.GM_Lag_Regimes_Multi(y, x, w_i, w, regi_ids, yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores, robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi, spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2, regimes=regimes, w=w, robust=robust, gwk=gwk, sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm, constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep, name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q, name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk, name_ds=name_ds, summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:, -1].reshape(self.n, 1)) else: self.rho = self.betas[-1] self.predy_e, self.e_pred, warn = sp_att( w, self.y, self.predy, yend2[:, -1].reshape(self.n, 1), self.rho) set_warn(self, warn) self.regime_lag_sep = regime_lag_sep self.title = "SPATIAL " + self.title SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False, constant_regi='many',\ cols2regi='all', regime_lag_sep=False, regime_err_sep=True,\ cores=None, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x, constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend( USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set) self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1) set_warn(self, warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set( [True]) and constant_regi == 'many': self.y = y self.GM_Lag_Regimes_Multi(y, x, w_i, regi_ids,\ yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores,\ robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes,\ name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2,\ regimes=regimes, w=w, robust=robust, gwk=gwk,\ sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm,\ constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep,\ name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q,\ name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk,\ name_ds=name_ds,summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:, -1].reshape(self.n, 1)) else: self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self, warn) self.regime_lag_sep = regime_lag_sep if regime_err_sep == True: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" else: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def ML_Lag_Regimes_Multi(self, y, x, w_i, w, regi_ids, cores, cols2regi, method, epsilon, spat_diag, vm, name_y, name_x, name_regimes, name_w, name_ds): # pool = mp.Pool(cores) name_x = USER.set_name_x(name_x, x) + [USER.set_name_yend_sp(name_y)] results_p = {} """ for r in self.regimes_set: if system() == 'Windows': is_win = True results_p[r] = _work(*(y,x,regi_ids,r,w_i[r],method,epsilon,name_ds,name_y,name_x,name_w,name_regimes)) else: results_p[r] = pool.apply_async(_work,args=(y,x,regi_ids,r,w_i[r],method,epsilon,name_ds,name_y,name_x,name_w,name_regimes, )) is_win = False """ for r in self.regimes_set: if cores: pool = mp.Pool(None) results_p[r] = pool.apply_async(_work, args=(y, x, regi_ids, r, w_i[ r], method, epsilon, name_ds, name_y, name_x, name_w, name_regimes, )) else: results_p[r] = _work( *(y, x, regi_ids, r, w_i[r], method, epsilon, name_ds, name_y, name_x, name_w, name_regimes)) self.kryd = 0 self.kr = len(cols2regi) + 1 self.kf = 0 self.nr = len(self.regimes_set) self.name_x_r = name_x self.name_regimes = name_regimes self.vm = np.zeros((self.nr * self.kr, self.nr * self.kr), float) self.betas = np.zeros((self.nr * self.kr, 1), float) self.u = np.zeros((self.n, 1), float) self.predy = np.zeros((self.n, 1), float) self.predy_e = np.zeros((self.n, 1), float) self.e_pred = np.zeros((self.n, 1), float) """ if not is_win: pool.close() pool.join() """ if cores: pool.close() pool.join() results = {} self.name_y, self.name_x = [], [] counter = 0 for r in self.regimes_set: """ if is_win: results[r] = results_p[r] else: results[r] = results_p[r].get() """ if not cores: results[r] = results_p[r] else: results[r] = results_p[r].get() self.vm[(counter * self.kr):((counter + 1) * self.kr), (counter * self.kr):((counter + 1) * self.kr)] = results[r].vm self.betas[ (counter * self.kr):((counter + 1) * self.kr), ] = results[r].betas self.u[regi_ids[r], ] = results[r].u self.predy[regi_ids[r], ] = results[r].predy self.predy_e[regi_ids[r], ] = results[r].predy_e self.e_pred[regi_ids[r], ] = results[r].e_pred self.name_y += results[r].name_y self.name_x += results[r].name_x counter += 1 self.multi = results self.chow = REGI.Chow(self) SUMMARY.ML_Lag_multi( reg=self, multireg=self.multi, vm=vm, spat_diag=spat_diag, regimes=True, w=w)
def __init__(self, y, x, regimes, w=None, constant_regi='many', cols2regi='all', method='full', epsilon=0.0000001, regime_lag_sep=False, regime_err_sep=False, cores=False, spat_diag=False, vm=False, name_y=None, name_x=None, name_w=None, name_ds=None, name_regimes=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_spat_diag(spat_diag, w) name_y = USER.set_name_y(name_y) self.name_y = name_y self.name_x_r = USER.set_name_x( name_x, x) + [USER.set_name_yend_sp(name_y)] self.method = method self.epsilon = epsilon self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi = constant_regi self.n = n cols2regi = REGI.check_cols2regi( constant_regi, cols2regi, x, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes self.regime_lag_sep = regime_lag_sep self._cache = {} self.name_ds = USER.set_name_ds(name_ds) self.name_w = USER.set_name_w(name_w, w) USER.check_regimes(self.regimes_set, self.n, x.shape[1]) # regime_err_sep is ignored, always False if regime_lag_sep == True: if not (set(cols2regi) == set([True]) and constant_regi == 'many'): raise Exception, "All variables must vary by regimes if regime_lag_sep = True." cols2regi += [True] w_i, regi_ids, warn = REGI.w_regimes( w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi) + 1) set_warn(self, warn) else: cols2regi += [False] if set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y self.ML_Lag_Regimes_Multi(y, x, w_i, w, regi_ids, cores=cores, cols2regi=cols2regi, method=method, epsilon=epsilon, spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x, name_regimes=self.name_regimes, name_w=name_w, name_ds=name_ds) else: # if regime_lag_sep == True: # w = REGI.w_regimes_union(w, w_i, self.regimes_set) name_x = USER.set_name_x(name_x, x, constant=True) x, self.name_x = REGI.Regimes_Frame.__init__(self, x, regimes, constant_regi, cols2regi=cols2regi[:-1], names=name_x) self.name_x.append("_Global_" + USER.set_name_yend_sp(name_y)) BaseML_Lag.__init__( self, y=y, x=x, w=w, method=method, epsilon=epsilon) self.kf += 1 # Adding a fixed k to account for spatial lag in Chow # adding a fixed k to account for spatial lag in aic, sc self.k += 1 self.chow = REGI.Chow(self) self.aic = DIAG.akaike(reg=self) self.schwarz = DIAG.schwarz(reg=self) self.regime_lag_sep = regime_lag_sep self.title = "MAXIMUM LIKELIHOOD SPATIAL LAG - REGIMES" + \ " (METHOD = " + method + ")" SUMMARY.ML_Lag( reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)
def __init__(self, y, x, regimes, yend=None, q=None,\ w=None, w_lags=1, lag_q=True,\ robust=None, gwk=None, sig2n_k=False,\ spat_diag=False, constant_regi='many',\ cols2regi='all', regime_lag_sep=False, regime_err_sep=True,\ cores=None, vm=False, name_y=None, name_x=None,\ name_yend=None, name_q=None, name_regimes=None,\ name_w=None, name_gwk=None, name_ds=None): n = USER.check_arrays(y, x) USER.check_y(y, n) USER.check_weights(w, y, w_required=True) USER.check_robust(robust, gwk) USER.check_spat_diag(spat_diag, w) name_x = USER.set_name_x(name_x, x,constant=True) name_y = USER.set_name_y(name_y) name_yend = USER.set_name_yend(name_yend, yend) name_q = USER.set_name_q(name_q, q) name_q.extend(USER.set_name_q_sp(name_x, w_lags, name_q, lag_q, force_all=True)) self.name_regimes = USER.set_name_ds(name_regimes) self.constant_regi=constant_regi self.n = n cols2regi = REGI.check_cols2regi(constant_regi, cols2regi, x, yend=yend, add_cons=False) self.cols2regi = cols2regi self.regimes_set = REGI._get_regimes_set(regimes) self.regimes = regimes USER.check_regimes(self.regimes_set) self.regime_err_sep = regime_err_sep self.regime_lag_sep = regime_lag_sep if regime_lag_sep == True: if not regime_err_sep: raise Exception, "regime_err_sep must be True when regime_lag_sep=True." cols2regi += [True] w_i,regi_ids,warn = REGI.w_regimes(w, regimes, self.regimes_set, transform=True, get_ids=True, min_n=len(cols2regi)+1) set_warn(self,warn) else: cols2regi += [False] if regime_err_sep == True and set(cols2regi) == set([True]) and constant_regi == 'many': self.y = y self.GM_Lag_Regimes_Multi(y, x, w_i, regi_ids,\ yend=yend, q=q, w_lags=w_lags, lag_q=lag_q, cores=cores,\ robust=robust, gwk=gwk, sig2n_k=sig2n_k, cols2regi=cols2regi,\ spat_diag=spat_diag, vm=vm, name_y=name_y, name_x=name_x,\ name_yend=name_yend, name_q=name_q, name_regimes=self.name_regimes,\ name_w=name_w, name_gwk=name_gwk, name_ds=name_ds) else: if regime_lag_sep == True: w = REGI.w_regimes_union(w, w_i, self.regimes_set) yend2, q2 = set_endog(y, x, w, yend, q, w_lags, lag_q) name_yend.append(USER.set_name_yend_sp(name_y)) TSLS_Regimes.__init__(self, y=y, x=x, yend=yend2, q=q2,\ regimes=regimes, w=w, robust=robust, gwk=gwk,\ sig2n_k=sig2n_k, spat_diag=spat_diag, vm=vm,\ constant_regi=constant_regi, cols2regi=cols2regi, regime_err_sep=regime_err_sep,\ name_y=name_y, name_x=name_x, name_yend=name_yend, name_q=name_q,\ name_regimes=name_regimes, name_w=name_w, name_gwk=name_gwk,\ name_ds=name_ds,summ=False) if regime_lag_sep: self.sp_att_reg(w_i, regi_ids, yend2[:,-1].reshape(self.n,1)) else: self.predy_e, self.e_pred, warn = sp_att(w,self.y,self.predy,\ yend2[:,-1].reshape(self.n,1),self.betas[-1]) set_warn(self,warn) self.regime_lag_sep=regime_lag_sep if regime_err_sep == True: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES (Group-wise heteroskedasticity)" else: self.title = "SPATIAL TWO STAGE LEAST SQUARES - REGIMES" SUMMARY.GM_Lag(reg=self, w=w, vm=vm, spat_diag=spat_diag, regimes=True)