def main():
    # read the uid list
    uid_list = read_uid_list()
    # get user weibo 7day {user:[weibos]}
    user_weibo_dict = read_user_weibo(uid_list)
    uid_list = user_weibo_dict.keys()
    #print 'uid_list:', len(uid_list)
    #print 'user weibo dict:', len(user_weibo_dict)
    flow_result = get_flow_information(uid_list)
    register_result = get_profile_information(uid_list)
    # compute text attribute
    bulk_action = []
    for user in user_weibo_dict:
        weibo_list = user_weibo_dict[user]
        uname = weibo_list[0]['uname']
        results = compute_text_attribute(user, weibo_list)
        results['uid'] = str(user)
        flow_dict = flow_result[str(user)]
        results = dict(results, **flow_dict)
        # deal to the bulk action
        user_info = {'uid':str(user), 'domain':results['domain'], 'topic':results['topic'], 'activity_geo':results['activity_geo']}
        evaluation_index = get_evaluate_index(user_info, status='insert')
        results = dict(results, **evaluation_index)
        #print 'register_result:', register_result
        register_dict = register_result[str(user)]
        results = dict(results, **register_dict)
        action = {'index':{'_id': str(user)}}
        bulk_action.extend([action, results])
    status = save_user_results(bulk_action)
    return True # save by bulk
def compute_attribute(user_weibo_dict):
    # test
    uid_list = user_weibo_dict.keys()
    times = len(uid_list)/1000
    bulk_action = []
    count = 0
    count_list = set()
    for i in range(times+1):
        flow_result = get_flow_information(uid_list[1000*i:1000*(i+1)]) # 流数据更新
        register_result = get_profile_information(uid_list) # 背景信息数据更新
        for user in uid_list:
            weibo_list = user_weibo_dict[user]
            results = compute_text_attribute(user, weibo_list) # 文本属性计算
            results['uid'] = str(user)
            flow_dict = flow_result[str(user)]
            results.update(flow_dict)
            user_info = {'uid':str(user), 'domain':results['domain'], 'topic':results['topic'], 'activity_geo':results['geo_string']}
            evaluation_index = get_evaluate_index(user_info, status='insert')
            results.update(evaluation_index)
            register_dict = register_result[user]
            results.update(register_dict)
            action = {'index':{'_id':str(user)}}
            bulk_action.extend([action, results])
            count_list.add(user)
            count += 1
            if count % 200 == 0:
                es.bulk(bulk_action, index='sensitive_user_portrait_0103', doc_type="user", timeout=60)
                bulk_action = []
                print count
    if bulk_action:
        es.bulk(bulk_action, index='sensitive_user_portrait_0103', doc_type="user", timeout=60)
    return "1"
示例#3
0
def compute_attribute(uid_list=[]):
    # test
    user_weibo_dict = read_user_weibo(uid_list)
    uid_list = user_weibo_dict.keys()
    flow_result = get_flow_information(uid_list)
    register_result = get_profile_information(uid_list)
    bulk_action = []
    count = 0
    count_list = set()
    for user in uid_list:
        weibo_list = user_weibo_dict[user]
        uname = weibo_list[0]['uname']
        results = compute_text_attribute(user, weibo_list)
        results['uname'] = uname
        results['uid'] = str(user)
        flow_dict = flow_result[str(user)]
        results.update(flow_dict)
        user_info = {'uid':str(user), 'domain':results['domain'], 'topic':results['topic'], 'activity_geo':results['geo_string']}
        evaluation_index = get_evaluate_index(user_info, status='insert')
        results.update(evaluation_index)
        register_dict = register_result[user]
        results.update(register_dict)
        action = {'index':{'_id':str(user)}}
        bulk_action.extend([action, results])
        count_list.add(user)
        count += 1
        if count % 200 == 0:
            es.bulk(bulk_action, index=index_name, doc_type="user", timeout=60)
            bulk_action = []
            print count
    if bulk_action:
        status = save_user_results(bulk_action)
    return "1"
def week_update_portrait(user_weibo_dict):  # {uid: [weibo_text]}
    uid_list = user_weibo_dict.keys()
    register_result = get_profile_information(uid_list)  # 背景信息数据更新
    bulk_action = []
    count = 0
    for user in uid_list:
        result = dict()
        weibo_list = user_weibo_dict[user]
        register_dict = register_result[user]
        result.update(register_dict)
        # results['domain'] = attri_domain(weibo_list)
        result["domain"] = "test_domain"
        result["domain_string"] = "&".join(result["domain"])
        # psycho_status = attr_psycho_status(user, weibo_list)
        psycho_status = {"positive": 0.5, "negetive": 0.2, "neutral": 0.3}
        result["psycho_status_string"] = "&".join(psycho_status.keys())
        result["psycho_status"] = json.dumps(psycho_status)
        # topic = attr_topic(weibo_list)
        topic = {"政治": 0.3, "民生": 0.7}
        result["topic"] = json.dumps(topic)
        result["topic_string"] = "&".join(result["topic"].keys())
        # politics_trend = attri_politics(user, weibo_list)
        politics_trend = "left"
        result["politics_trend"] = politics_trend
        action = {"update": {"_id": str(user)}}
        results = {"doc": result}
        bulk_action.extend([action, results])
        if count % 1000 == 0:
            es.bulk(bulk_action, index="sensitive_user_portrait", doc_type="user", timeout=60)
            bulk_action = []
            print count
    if bulk_action:
        es.bulk(bulk_action, index="sensitive_user_portrait", doc_type="user", timeout=60)
    return "1"
示例#5
0
def compute2in(uid_list, user_weibo_dict):
    #get user flow information: hashtag, activity_geo, keywords
    flow_result = get_flow_information(uid_list)
    #get user topic information
    topic_results_dict, topic_results_label = topic_classfiy(user_weibo_list)
    #get user domain information
    domain_results = domain_classfiy(user_weibo_dict)
    domain_results_dict = domain_results[0]
    domain_results_label = domain_results[1]
    #get user psy information
    psy_results_dict = psychology_classfiy(user_weibo_dict)
    #get user profile information
    register_result = get_profile_information(uid_list)
    #get user fansnum max
    fansnum_max = get_fansnum_max()
    #get user activeness by bulk_action
    activeness_results = get_activity_time(uid_list)
    #get user inlfuence by bulk action
    influence_results = get_influence(uid_list)
    #deal bulk action
    for user in user_weibo_dict:
        weibo_list = user_weibo_dict[user]
        uname = weibo_list[0]['uname']
        #compute text attribute: online_pattern
        results = compute_text_attribute(user, weibo_list)
        results['uname'] = uname
        results['uid'] = str(user)
        #add flow information: hashtag, activity_geo, keywords
        flow_dict = flow_result[str(user)]
        results = dict(results, **flow_dict)
        #add topic attribute
        topic_dict = topic_results_dict[user]
        results['topic'] = json.dumps(topic_dic)                   #{topic1_en:pro1, topic2_en:pro, ...}
        topic_label = topic_results_label[user] 
        results['topic_string'] = topic_en2ch(topic_label)         #topic1_ch&topic2_ch&topic3_ch
        #add domain attribute
        user_domain_dict = domain_results_dict[user]
        user_domain_label = domain_results_label[user]
        results['domain_v3'] = json.dumps(user_domain_dict)        #[domain_en1, domain_en2, domain_en3]
        results['domain_string'] = domain_en2ch(user_domain_label) #domain_ch
        #add psy attribute
        user_psy_dict = psy_results_dict[user]
        results['psycho_status'] = json.dumps(user_psy_dict)
        #add user profile attribute
        register_dict = register_result[str(user)]
        results = dict(results, **register_dict)
        #add user_evaluate attribute---importance
        results['importance'] = get_importance(results['domain'], results['topic_string'], results['fansnum'], fansnum)
        #add user_evaluate attribute---activeness
        user_activeness_time = activeness_results[user]
        user_activeness_geo = json.loads(results['activity_geo_dict'])[-1]
        results['activeness'] = get_activeness(user_activeness_geo, user_activeness_time)
        #add user_evaluate attribute---influence
        results['influence'] = influence_results[user]
        #bulk_action
        action = {'index':{'_id':str(user)}}
        bulk_action.extend([action, results])
    status = save_user_results(bulk_action)
    return True
def week_update_portrait(user_weibo_dict):  # {uid: [weibo_text]}
    uid_list = user_weibo_dict.keys()
    register_result = get_profile_information(uid_list)  # 背景信息数据更新
    bulk_action = []
    count = 0
    for user in uid_list:
        result = dict()
        weibo_list = user_weibo_dict[user]
        register_dict = register_result[user]
        result.update(register_dict)
        # results['domain'] = attri_domain(weibo_list)
        result['domain'] = 'test_domain'
        result['domain_string'] = "&".join(result['domain'])
        # psycho_status = attr_psycho_status(user, weibo_list)
        psycho_status = {'positive': 0.5, 'negetive': 0.2, 'neutral': 0.3}
        result['psycho_status_string'] = '&'.join(psycho_status.keys())
        result['psycho_status'] = json.dumps(psycho_status)
        # topic = attr_topic(weibo_list)
        topic = {'政治': 0.3, '民生': 0.7}
        result['topic'] = json.dumps(topic)
        result['topic_string'] = '&'.join(result['topic'].keys())
        # politics_trend = attri_politics(user, weibo_list)
        politics_trend = 'left'
        result['politics_trend'] = politics_trend
        action = {'update': {'_id': str(user)}}
        results = {'doc': result}
        bulk_action.extend([action, results])
        if count % 1000 == 0:
            es.bulk(bulk_action,
                    index='sensitive_user_portrait',
                    doc_type='user',
                    timeout=60)
            bulk_action = []
            print count
    if bulk_action:
        es.bulk(bulk_action,
                index='sensitive_user_portrait',
                doc_type='user',
                timeout=60)
    return '1'
def compute2in(uid_list, user_weibo_dict, status='insert'):
    flow_result = get_flow_information(uid_list)
    register_result = get_profile_information(uid_list)
    for user in user_weibo_dict:
        weibo_list = user_weibo_dict[user]
        uname = weibo_list[0]['uname']
        results = compute_text_attribute(user, weibo_list)
        results['uname'] = uname
        results['uid'] = str(user)
        flow_dict = flow_result[str(user)]
        results = dict(results, **flow_dict)
        user_info = {'uid':str(user), 'domain':results['domain'], 'topic':results['topic'], 'activity_geo':results['activity_geo']}
        evaluation_index = get_evaluate_index(user_info, status='insert')
        results = dict(results, **evaluation_index)
        register_dict = register_result[user]
        results = dict(results, **register_dict)
        if status=='insert':
            action = {'index':{'_id':str(user)}}
        else:
            action = {'update':{'_id', str(user)}}
            results = {'doc': results}
        bulk_action.extend([action, results])
    status = save_user_results(bulk_action)
    return True
示例#8
0
def test_cron_text_attribute(user_weibo_dict):
    #get user weibo 7day {user:[weibos]}
    print 'start cron_text_attribute'
    uid_list = user_weibo_dict.keys()
    print 'user count:', len(uid_list)
    
    #get user flow information: hashtag, activity_geo, keywords
    print 'get flow result'
    flow_result = get_flow_information(uid_list)
    print 'flow result len:', len(flow_result)
    
    #get user profile information
    print 'get register result'
    register_result = get_profile_information(uid_list)
    print 'register result len:', len(register_result)
    #get topic and domain input data
    user_weibo_string_dict = get_user_weibo_string(user_weibo_dict) # use as the tendency input data
    user_keywords_dict = get_user_keywords_dict(user_weibo_string_dict)
    #get user event results by bulk action
    event_results_dict = event_classfiy(user_weibo_string_dict)
    print 'event_result len:', len(event_results_dict)
    
    #get user topic and domain by bulk action
    print 'get topic and domain'
    topic_results_dict, topic_results_label = topic_classfiy(user_keywords_dict)
    domain_results = domain_classfiy(user_keywords_dict)
    domain_results_dict = domain_results[0]
    domain_results_label = domain_results[1]
    print 'topic result len:', len(topic_results_dict)
    print 'domain result len:', len(domain_results_dict)
    
    #get user psy attribute
    #print 'get psy result'
    #psy_results_dict = psychology_classfiy(user_weibo_dict)
    #print 'psy result len:', len(psy_results_dict)
    
    #get user character attribute
    print 'get character result'
    #type_mark = 0/1 for identify the task input status---just sentiment or text
    now_ts = time.time()
    #test
    now_ts = datetime2ts('2013-09-08')
    character_end_time = ts2datetime(now_ts - DAY)
    character_start_time = ts2datetime(now_ts - DAY * CHARACTER_TIME_GAP)
    character_type_mark = 1
    character_sentiment_result_dict = classify_sentiment(uid_list, character_start_time, character_end_time, character_type_mark)
    character_type_mark = 1
    character_text_result_dict = classify_topic(uid_list, character_start_time, character_end_time, character_type_mark)
    print 'character result len:', len(character_sentiment_result_dict), len(character_text_result_dict)
    print 'character_sentiment_result:', character_sentiment_result_dict
    print 'character_text_result:', character_text_result_dict
    
    #get user fansnum max
    fansnum_max = get_fansnum_max()
    #get user activeness by bulk_action
    print 'get activeness results'
    activeness_results = get_activity_time(uid_list)
    print 'activeness result len:', len(activeness_results)
    #get user inlfuence by bulk action
    print 'get influence'
    influence_results = get_influence(uid_list)
    print 'influence results len:', len(influence_results)
    
    # compute text attribute
    user_set = set()
    bulk_action = []
    count = 0
    for user in user_weibo_dict:
        count += 1
        results = {}       
        user_set.add(user)
        weibo_list = user_weibo_dict[user]
        uname = weibo_list[0]['uname']
        #get user text attribute: online_pattern
        results = compute_text_attribute(user, weibo_list)
        results['uid'] = str(user)
        #add user flow information: hashtag, activity_geo, keywords
        flow_dict = flow_result[str(user)]
        results = dict(results, **flow_dict)
        
        #add user topic attribute
        user_topic_dict = topic_results_dict[user]
        user_label_dict = topic_results_label[user]
        results['topic'] = json.dumps(user_topic_dict)         # {'topic1_en':pro1, 'topic2_en':pro2...}
        results['topic_string'] = topic_en2ch(user_label_dict) # 'topic1_ch&topic2_ch&topic3_ch'
        #add user event attribute
        results['tendency'] = event_results_dict[user]
        
        #add user domain attribute
        user_domain_dict = domain_results_dict[user]
        user_label_dict = domain_results_label[user]
        results['domain_v3'] = json.dumps(user_domain_dict) # [label1_en, label2_en, label3_en]
        results['domain'] = domain_en2ch(user_label_dict)      # label_ch
        
        #add user character_sentiment attribute
        character_sentiment = character_sentiment_result_dict[user]
        results['character_sentiment'] = character_sentiment
        #add user character_text attribtue
        character_text = character_text_result_dict[user]
        results['character_text'] = character_text
        
        #add user psy attribute
        user_psy_dict = [psy_results_dict[user]]
        results['psycho_status'] = json.dumps(user_psy_dict)
        
        #add user profile attribute
        register_dict = register_result[str(user)]
        results = dict(results, **register_dict)
        #add user_evaluate attribute---importance
        results['importance'] = get_importance(results['domain'], results['topic_string'], results['fansnum'], fansnum_max)
        #add user_evaluate attribute---activeness
        user_activeness_time = activeness_results[user]
        user_activeness_geo = json.loads(results['activity_geo_dict'])[-1]
        results['activeness'] = get_activeness(user_activeness_geo, user_activeness_time)
        #add user_evaluate attribute---influence
        results['influence'] = influence_results[user]
        
        #bulk_action
        action = {'index':{'_id': str(user)}}
        bulk_action.extend([action, results])
        if count >= 20:
            mark = save_user_results(bulk_action)
            print 'bulk_action:', bulk_action
            bulk_action = []
            count = 0
    
    end_ts = time.time()
    
    print 'user_set len:', len(user_set)
    print 'count:', count
    print 'bulk_action count:', len(bulk_action)
    
    print 'bulk_action:', bulk_action
    
    if bulk_action:
        status = save_user_results(bulk_action)
    
    #status = False
    return status # save by bulk
示例#9
0
def test_cron_text_attribute_v2(user_keywords_dict, user_weibo_dict, online_pattern_dict, character_start_ts,filter_keywords_dict):
    status = False
    print 'start cron_text_attribute'
    uid_list = user_keywords_dict.keys()
    
    #get user flow information: hashtag, activity_geo, keywords
    print 'get flow result'
    flow_result = get_flow_information_v2(uid_list, user_keywords_dict)
    print 'flow result len:', len(flow_result)
    
    #get user profile information
    print 'get register result'
    register_result = get_profile_information(uid_list)
    print 'register result len:', len(register_result)
    #print user_keywords_dict
    
    #get user topic and domain by bulk action
    print 'get topic and domain'
    topic_results_dict, topic_results_label = topic_classfiy(uid_list, user_keywords_dict)
    print topic_results_dict,topic_results_label

    domain_results = domain_classfiy(uid_list, user_keywords_dict)
    domain_results_dict = domain_results[0]
    domain_results_label = domain_results[1]
    print 'topic result len:', len(topic_results_dict)
    print 'domain result len:', len(domain_results_dict)
    
    #get user character attribute
    print 'get character result'
    #type_mark = 0/1 for identify the task input status---just sentiment or text
    character_start_time = ts2datetime(character_start_ts)
    character_end_time = ts2datetime(character_start_ts + DAY * CHARACTER_TIME_GAP - DAY)
    print 'character_start_time:', character_start_time
    print 'character_end_time:', character_end_time
    character_sentiment_result_dict = classify_sentiment(uid_list, user_weibo_dict, character_start_time, character_end_time, WEIBO_API_INPUT_TYPE)
    character_text_result_dict = classify_topic(uid_list, user_keywords_dict)
    print 'character result len:', len(character_sentiment_result_dict), len(character_text_result_dict)
    
    #get user fansnum max
    fansnum_max = get_fansnum_max()
    #get user activeness by bulk_action
    print 'get activeness results'
    activeness_results = get_activity_time(uid_list)
    print 'activeness result len:', len(activeness_results)
    #get user inlfuence by bulk action
    print 'get influence'
    influence_results = get_influence(uid_list)
    print 'influence results len:', len(influence_results)
    #get user sensitive by bulk action
    print 'get sensitive'
    sensitive_results, sensitive_string_results, sensitive_dict_results = get_sensitive(uid_list)
    print 'sensitive results len:', len(sensitive_results)
    # compute text attribute
    bulk_action = []
    count = 0
    for user in uid_list:
        count += 1
        results = {}       
        #get user text attribute: online_pattern
        results['online_pattern'] = json.dumps(online_pattern_dict[user])
        try:
            results['online_pattern_aggs'] = '&'.join(online_pattern_dict[user].keys())
        except:
            results['online_pattern_aggs'] = ''
        results['uid'] = str(user)
        #add user flow information: hashtag, activity_geo, keywords
        flow_dict = flow_result[str(user)]
        results = dict(results, **flow_dict)
        #jln filter keyword
        results['filter_keywords'] = json.dumps(filter_keywords_dict[user])

        #add user topic attribute
        user_topic_dict = topic_results_dict[user]
        user_label_dict = topic_results_label[user]
        results['topic'] = json.dumps(user_topic_dict)         # {'topic1_en':pro1, 'topic2_en':pro2...}
        results['topic_string'] = topic_en2ch(user_label_dict) # 'topic1_ch&topic2_ch&topic3_ch'
        
        #add user domain attribute
        user_domain_dict = domain_results_dict[user]
        user_label_dict = domain_results_label[user]
        results['domain_v3'] = json.dumps(user_domain_dict) # [label1_en, label2_en, label3_en]
        results['domain'] = domain_en2ch(user_label_dict)      # label_ch
        
        #add user character_sentiment attribute
        character_sentiment = character_sentiment_result_dict[user]
        results['character_sentiment'] = character_sentiment
        #add user character_text attribtue
        character_text = character_text_result_dict[user]
        results['character_text'] = character_text
        
        #add user profile attribute
        register_dict = register_result[str(user)]
        results = dict(results, **register_dict)
        #add user_evaluate attribute---importance
        results['importance'] = get_importance(results['domain'], results['topic_string'], results['fansnum'], fansnum_max)
        #add user_evaluate attribute---activeness
        user_activeness_time = activeness_results[user]
        user_activeness_geo = json.loads(results['activity_geo_dict'])[-1]
        results['activeness'] = get_activeness(user_activeness_geo, user_activeness_time)
        #add user_evaluate attribute---influence
        results['influence'] = influence_results[user]
        #add user sensitive attribute
        results['sensitive'] = sensitive_results[user]
        results['sensitive_dict'] = sensitive_dict_results[user]
        results['sensitive_string'] = sensitive_string_results[user]
        #bulk_action
        action = {'index':{'_id': str(user)}}
        bulk_action.extend([action, results])
        
    status = save_user_results(bulk_action)
    
    return status
示例#10
0
def test_cron_text_attribute_v2(user_keywords_dict, user_weibo_dict,
                                online_pattern_dict, character_start_ts,
                                relation_mark_dict, task_mark,
                                submit_user_dict, submit_ts_dict):
    #mark index or update
    if submit_user_dict and submit_ts_dict:
        save_type = 'index'
    else:
        save_type = 'update'
    status = False
    print 'start cron_text_attribute'
    uid_list = user_keywords_dict.keys()

    #get user flow information: hashtag, activity_geo, keywords, ip
    print 'get flow result'
    flow_result = get_flow_information_v2(uid_list, user_keywords_dict)
    print 'flow result len:', len(flow_result)

    #get user profile information
    print 'get register result'
    register_result = get_profile_information(uid_list)
    print 'register result len:', len(register_result)

    #get user topic and domain by bulk action
    print 'get topic and domain'
    topic_results_dict, topic_results_label = topic_classfiy(
        uid_list, user_keywords_dict)
    domain_results = domain_classfiy(uid_list, user_keywords_dict)
    domain_results_dict = domain_results[0]
    domain_results_label = domain_results[1]
    print 'topic result len:', len(topic_results_dict)
    print 'domain result len:', len(domain_results_dict)

    #get user fansnum max
    fansnum_max, user_fansnum_dict = get_fansnum_max(uid_list)
    print 'fansnum len:', len(user_fansnum_dict)
    #get user activeness by bulk_action
    print 'get activeness results'
    activeness_results = get_activity_time(uid_list)
    print 'activeness result len:', len(activeness_results)
    #get user inlfuence by bulk action
    print 'get influence'
    influence_results = get_influence(uid_list)
    print 'influence results len:', len(influence_results)

    # compute text attribute
    bulk_action = []
    count = 0
    for user in uid_list:
        count += 1
        results = {}
        #add submit_user and submit_ts
        if save_type == 'index':
            results['submit_user'] = submit_user_dict[user]
            results['submit_ts'] = submit_ts_dict[user]
        #get user text attribute: online_pattern
        results['online_pattern'] = json.dumps(online_pattern_dict[user])
        try:
            results['online_pattern_aggs'] = '&'.join(
                online_pattern_dict[user].keys())
        except:
            results['online_pattern_aggs'] = ''
        results['uid'] = str(user)
        #add user flow information: hashtag, activity_geo, keywords, ip
        flow_dict = flow_result[str(user)]
        results = dict(results, **flow_dict)

        #add user topic attribute
        user_topic_dict = topic_results_dict[user]
        user_label_dict = topic_results_label[user]
        results['topic'] = json.dumps(
            user_topic_dict)  # {'topic1_en':pro1, 'topic2_en':pro2...}
        results['topic_string'] = topic_en2ch(
            user_label_dict)  # 'topic1_ch&topic2_ch&topic3_ch'

        #add user domain attribute
        user_domain_dict = domain_results_dict[user]
        user_label_dict = domain_results_label[user]
        results['domain_v3'] = json.dumps(
            user_domain_dict)  # [label1_en, label2_en, label3_en]
        results['domain'] = domain_en2ch(user_label_dict)  # label_ch

        #add user profile attribute
        register_dict = register_result[str(user)]
        results = dict(results, **register_dict)
        #add user_evaluate attribute---importance
        results['importance'] = get_importance(results['domain'],
                                               results['topic_string'],
                                               user_fansnum_dict[user],
                                               fansnum_max)
        #add user_evaluate attribute---activeness
        user_activeness_time = activeness_results[user]
        user_activeness_geo = json.loads(results['activity_geo_dict'])[-1]
        results['activeness'] = get_activeness(user_activeness_geo,
                                               user_activeness_time)
        #add user_evaluate attribute---influence
        results['influence'] = influence_results[user]

        #bulk_action
        if save_type == 'index':
            action = {'index': {'_id': str(user)}}
            bulk_action.extend([action, results])
        else:
            action = {'update': {'_id': str(user)}}
            bulk_action.extend([action, {'doc': results}])

    status = save_user_results(bulk_action)
    print 'save es_user_portrait:', status
    #compute relation

    if task_mark == 'user':
        save_status = person_organization(uid_list, relation_mark_dict)
        print 'save_status:', save_status
        if status and save_status:
            status = True
        else:
            status = False
    #print 'save neo4j:', save_status

    return status