示例#1
0
 def __init__(self, hidden_size, stddev=None):
     '''
     hidden_size: int,
     '''
     self.stddev = stddev
     self.hidden_size = hidden_size
     self.W = tf.Variable(Randomer.random_normal(
         [self.hidden_size, self.hidden_size]),
                          trainable=True)
     self.U = tf.Variable(Randomer.random_normal(
         [self.hidden_size, self.hidden_size]),
                          trainable=True)
     self.b = tf.Variable(tf.zeros([1]), trainable=True)
示例#2
0
 def __init__(self, w_shape, stddev=None, params=None):
     '''
     :param w_shape: [input_dim, output_dim]
     :param stddev: 用于初始化
     :param params: 从外界制定参数
     '''
     if params is None:
         self.w = tf.Variable(Randomer.random_normal(w_shape),
                              trainable=True)
     else:
         self.w = params['w']
 def __init__(self, edim, class_num, stddev=None, params=None):
     '''
     class_num: class type num. 
     edim: the input embedding dim. 
     params = {'wline': wline, 'bline': bline}
     '''
     self.edim = edim
     self.class_num = class_num
     # the linear basic_layer for softmax.
     if params is None:
         self.wline_softmax = tf.Variable(Randomer.random_normal(
             [self.edim, self.class_num]),
                                          trainable=True)
         self.bline_softmax = tf.Variable(tf.zeros([1, 1]), trainable=True)
     else:
         self.wline_softmax = params['wline']
         self.bline_softmax = params['bline']
示例#4
0
 def __init__(self, w_shape=None, stddev=None, params=None, active='tanh'):
     '''
     the initialize function.
     w_shape is the shape of the w param. if params is None, need. 
     staddev is the stddev of the tf.random_normal. if params is None, need. 
     params = {'wline':wline}, is use to assign the params.
     active is the active function.  
     '''
     self.w_shape = w_shape
     self.stddev = stddev
     if params is None:
         self.wline = tf.Variable(
             Randomer.random_normal(self.w_shape),
             # tf.random_uniform(self.w_shape, -0.0015, 0.035),
             trainable=True)
     else:
         self.wline = params['wline']
     self.active = active