import tikzplotlib from tqdm import tqdm, trange import torch.utils.data as data_utils parser = argparse.ArgumentParser() parser.add_argument('--randseed', type=int, default=123) args = parser.parse_args() train_loader = dl.CIFAR10(train=True, augm_flag=False) val_loader, test_loader = dl.CIFAR10(train=False, val_size=2000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_SVHN = dl.SVHN(train=False) test_loader_LSUN = dl.LSUN_CR(train=False) tab_ood = { 'CIFAR10 - CIFAR10': [], 'CIFAR10 - SVHN': [], 'CIFAR10 - LSUN': [], 'CIFAR10 - FarAway': [], 'CIFAR10 - Adversarial': [], 'CIFAR10 - FarAwayAdv': [] } tab_cal = {'DKL': ([], [])} delta = 2000 np.random.seed(args.randseed)
val_loader, test_loader = dl.binary_CIFAR10(class1, class2, train=False, augm_flag=False, val_size=1000) targets = torch.cat([y for x, y in test_loader], dim=0).numpy() targets_val = torch.cat([y for x, y in val_loader], dim=0).numpy() print(len(train_loader.dataset), len(val_loader.dataset), len(test_loader.dataset)) test_loader_SVHN, _ = dl.binary_SVHN(3, 9, train=False, augm_flag=False, val_size=1000) test_loader_LSUN = dl.LSUN_CR(train=False, augm_flag=False) ood_loader = dl.UniformNoise('CIFAR10', size=1000) noise_loader = dl.UniformNoise('CIFAR10', size=2000) def load_model(): model = resnet.ResNet18(num_classes=2).cuda() model.load_state_dict(torch.load(f'./pretrained_models/binary_CIFAR10.pt')) model.eval() return model tab_ood = { 'CIFAR10 - CIFAR10': [], 'CIFAR10 - SVHN': [],