示例#1
0
    def train(self,
              lr=0.0002,
              epoch=100,
              schedule=10,
              resume=True,
              freeze_encoder=False,
              sample_steps=50,
              checkpoint_steps=50):
        g_vars, d_vars = self.retrieve_trainable_vars(
            freeze_encoder=freeze_encoder)
        input_handle, loss_handle, _, summary_handle = self.retrieve_handles()

        if not self.sess:
            raise Exception("no session registered")

        tf.set_random_seed(1234)

        learning_rate = tf.placeholder(tf.float32, name="learning_rate")
        d_optimizer = tf.train.AdamOptimizer(
            learning_rate, beta1=0.5).minimize(loss_handle.d_loss,
                                               var_list=d_vars)
        g_optimizer = tf.train.AdamOptimizer(
            learning_rate, beta1=0.5).minimize(loss_handle.g_loss,
                                               var_list=g_vars)

        tf.global_variables_initializer().run()
        real_data = input_handle.real_data
        no_target_data = input_handle.no_target_data

        # filter by one type of labels
        data_provider = TrainDataProvider(self.data_dir)
        total_batches = data_provider.compute_total_batch_num(self.batch_size)
        val_batch_iter = data_provider.get_val(size=self.batch_size)

        saver = tf.train.Saver(max_to_keep=3)
        summary_writer = tf.summary.FileWriter(self.log_dir, self.sess.graph)

        if resume:
            _, model_dir = self.get_model_id_and_dir()
            self.restore_model(saver, model_dir)

        current_lr = lr
        counter = 0
        start_time = time.time()

        for ei in range(epoch):
            train_batch_iter = data_provider.get_train_iter(self.batch_size)

            if (ei + 1) % schedule == 0:
                update_lr = current_lr / 2.0
                # minimum learning rate guarantee
                update_lr = max(update_lr, 0.0002)
                print("decay learning rate from %.5f to %.5f" %
                      (current_lr, update_lr))
                current_lr = update_lr

            for bid, batch in enumerate(train_batch_iter):
                counter += 1
                batch_images = batch
                # Optimize D

                _, batch_d_loss, d_summary = self.sess.run(
                    [d_optimizer, loss_handle.d_loss, summary_handle.d_merged],
                    feed_dict={
                        real_data: batch_images,
                        learning_rate: current_lr,
                        no_target_data: batch_images
                    })
                # Optimize G
                _, batch_g_loss = self.sess.run(
                    [g_optimizer, loss_handle.g_loss],
                    feed_dict={
                        real_data: batch_images,
                        learning_rate: current_lr,
                        no_target_data: batch_images
                    })
                # magic move to Optimize G again
                # according to https://github.com/carpedm20/DCGAN-tensorflow
                # collect all the losses along the way
                _, batch_g_loss,  \
                const_loss, cheat_loss, l1_loss, tv_loss, g_summary = self.sess.run([g_optimizer,
                                                                         loss_handle.g_loss,
                                                                         loss_handle.const_loss,
                                                                         loss_handle.cheat_loss,
                                                                         loss_handle.l1_loss,
                                                                         loss_handle.tv_loss,
                                                                         summary_handle.g_merged],
                                                                        feed_dict={ real_data: batch_images,
                                                                                    learning_rate: current_lr,
                                                                                    no_target_data: batch_images
                                                                        })
                passed = time.time() - start_time
                log_format = "Epoch: [%2d], [%4d/%4d] time: %4.4f, d_loss: %.5f, g_loss: %.5f, " + \
                             "const_loss: %.5f, cheat_loss: %.5f, l1_loss: %.5f, tv_loss: %.5f"
                print(log_format %
                      (ei, bid, total_batches, passed, batch_d_loss,
                       batch_g_loss, const_loss, cheat_loss, l1_loss, tv_loss))
                summary_writer.add_summary(d_summary, counter)
                summary_writer.add_summary(g_summary, counter)

                if ei % sample_steps == 0:
                    # sample the current model states with val data
                    self.validate_model(val_batch_iter, ei, counter)

                if ei % checkpoint_steps == 0:
                    print("Checkpoint: save checkpoint step %d" % ei)
                    self.checkpoint(saver, ei)

        # save the last checkpoint
        print("Checkpoint: last checkpoint step %d" % ei)
        self.checkpoint(saver, ei)
示例#2
0
    def train(self, lr=0.0002, epoch=100, schedule=10, resume=True, freeze_encoder=False, sample_steps=50,
              checkpoint_steps=500, clamp=0.001, d_iters=3):
        g_vars, d_vars = self.retrieve_trainable_vars(freeze_encoder=freeze_encoder)
        input_handle, loss_handle, _, summary_handle = self.retrieve_handles()

        if not self.sess:
            raise Exception("no session registered")

        learning_rate = tf.placeholder(tf.float32, name="learning_rate")

        d_optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss_handle.d_loss, var_list=d_vars)
        g_optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss_handle.g_loss, var_list=g_vars)

        cap_d_vars_ops = [val.assign(tf.clip_by_value(val, -clamp, clamp)) for val in d_vars]

        tf.global_variables_initializer().run()

        real_data = input_handle.real_data

        # filter by one type of labels
        data_provider = TrainDataProvider(self.data_dir)
        total_batches = data_provider.compute_total_batch_num(self.batch_size)
        val_batch_iter = data_provider.get_val(size=self.batch_size)

        saver = tf.train.Saver(max_to_keep=3)
        summary_writer = tf.summary.FileWriter(self.log_dir, self.sess.graph)

        if resume:
            _, model_dir = self.get_model_id_and_dir()
            self.restore_model(saver, model_dir)

        current_lr = lr
        counter = 0
        start_time = time.time()

        for ei in range(epoch):
            train_batch_iter = data_provider.get_train_iter(self.batch_size)

            if (ei + 1) % schedule == 0:
                update_lr = current_lr / 2.0
                # minimum learning rate guarantee
                update_lr = max(update_lr, 0.0002)
                print("decay learning rate from %.5f to %.5f" % (current_lr, update_lr))
                current_lr = update_lr

            for bid, batch in enumerate(train_batch_iter):
                counter += 1
                batch_images = batch
                # Optimize D
                self.sess.run(cap_d_vars_ops)

                _, batch_d_loss, d_loss_real, d_loss_fake, d_summary = self.sess.run([d_optimizer, loss_handle.d_loss,
                                                                                      loss_handle.d_loss_real,
                                                                                      loss_handle.d_loss_fake,
                                                            summary_handle.d_merged],
                                                           feed_dict={real_data: batch_images,
                                                                      learning_rate: current_lr
                                                                      })
                # Optimize G
                _, batch_g_loss = self.sess.run([g_optimizer, loss_handle.g_loss],
                                                feed_dict={
                                                    real_data: batch_images,
                                                    learning_rate: current_lr
                                                })
                # magic move to Optimize G again
                # according to https://github.com/carpedm20/DCGAN-tensorflow
                # collect all the losses along the way
                _, batch_g_loss, \
                const_loss, l1_loss, tv_loss, g_summary = self.sess.run([g_optimizer,
                                                                         loss_handle.g_loss,
                                                                         loss_handle.const_loss,
                                                                         loss_handle.l1_loss,
                                                                         loss_handle.tv_loss,
                                                                         summary_handle.g_merged],
                                                                        feed_dict={
                                                                            real_data: batch_images,
                                                                            learning_rate: current_lr
                                                                        })
                passed = time.time() - start_time
                log_format = "Epoch: [%2d], [%4d/%4d] time: %4.4f, d_loss: %.5f, g_loss: %.5f, " + \
                             "const_loss: %.5f, l1_loss: %.5f, tv_loss: %.5f, d_loss_real: %.7f, d_loss_fake: %.7f"
                print(log_format % (ei, bid, total_batches, passed, batch_d_loss, batch_g_loss,
                                     const_loss, l1_loss, tv_loss, d_loss_real, d_loss_fake))
                summary_writer.add_summary(d_summary, counter)
                summary_writer.add_summary(g_summary, counter)

                if counter % sample_steps == 0:
                    # sample the current model states with val data
                    self.validate_model(val_batch_iter, ei, counter)

                if counter % checkpoint_steps == 0:
                    print("Checkpoint: save checkpoint step %d" % counter)
                    self.checkpoint(saver, counter)

        # valiation the models
        # print("val.examples len:{}".format(len(data_provider.val.examples)))
        # accuracy = 0.0
        # iters = int(len(data_provider.val.examples) / self.batch_size)
        # for it in range(iters):
        #     val_batch_iter = data_provider.get_val(size=self.batch_size)
        #     accuracy += self.validate_last_model(val_batch_iter)
        #     break
        # accuracy /= iters
        # print("Avg accuracy: %.5f" % accuracy)

        # save the last checkpoint
        print("Checkpoint: last checkpoint step %d" % counter)
        self.checkpoint(saver, counter)