def get_incoming_tick_data(self, ticker):
		"""
		Stores the midpoint of incoming price data to a pandas DataFrame `df_hist`.

		:param ticker: The incoming tick data as a Ticker object.
		"""
		symbol = self.get_symbol(ticker.contract)

		dt_obj = dt_util.convert_utc_datetime(ticker.time)
		bid = ticker.open
		ask = ticker.high
示例#2
0
    def get_incoming_tick_data(self, ticker):
        """
        Stores the midpoint of incoming price data to a pandas DataFrame `df_hist`.

        :param ticker: The incoming tick data as a Ticker object.
        """
        symbol = self.get_symbol(ticker.contract)
        dt_obj = dt_util.convert_utc_datetime(ticker.time)
        bid = ticker.bid
        ask = ticker.ask
        mid = (bid + ask) / 2
        self.df_hist.loc[dt_obj, symbol] = mid
        if len(self.df_hist) > 1:
            print(self.df_hist.iloc[-1])
	def get_incoming_tick_data(self, ticker):
		"""
		Stores the midpoint of incoming price data to a pandas DataFrame `df_hist`.

		:param ticker: The incoming tick data as a Ticker object.
		"""
		symbol = self.get_symbol(ticker.contract)
		dt_obj = dt_util.convert_utc_datetime(ticker.time)

		self.lastTime = dt_obj

		bid = ticker.bid
		ask = ticker.ask
		mid = (bid + ask) / 2
		try:
			self.df_hist.loc[(dt_obj, symbol)] = mid
		except Exception as e:
			print(e)
	def get_historical_data_backend(self):
		data = pickle.load(open(self.dataDirectory, "rb" ) )
		close = data.xs('CLOSE', axis = 1, level = 1)
		toTrade = [x for x in self.symbols]

		if self.exchange == 'ASX':
			toTrade_ = [x+ '.AX' for x in self.symbols]
		elif self.exchange == 'SEHK':
			toTrade_ = [x+ '.HK' for x in self.symbols]
			for index, tick in enumerate(toTrade_):
				if len(tick)==6:
					toTrade_[index] = '0'+toTrade_[index]
		else:
			toTrade_ = toTrade

		#Fill missing (recent) data with yahoo data
		price = pdr.get_data_yahoo(toTrade_)
		df = price['Adj Close'].dropna()
		df.columns = [self.assetA, self.assetB]
		df = df[[not x for x in  df.index.duplicated()]]
		missingDates = df[[dx not in close.index and dx > close.index[-1] for dx in df.index ]]
		#Don't include the price for today
		missingDates = missingDates[missingDates.index<pd.Timestamp.today().normalize()]

		# Simply to ensure that the column order is conistent
		if  all([x in df.columns for x in close.columns]):
				close = close[toTrade_]
				close.columns = toTrade
				close = pd.concat([close,missingDates], sort=True).dropna()
				close = close[[self.assetA, self.assetB]]
		else:
			close=missingDates
			close = close[[self.assetA, self.assetB]]
		if close is not None:
			self.df_hist = close
			del data
			del close
			self.df_hist.index = [dt_util.convert_utc_datetime(x) for x in self.df_hist.index]
		else:
			print('No Histocial Data.')