示例#1
0
def predict(ig,pred_loc, pred_confs, vbs,cfg):

    #priors = utils.get_prio_box(cfg=cfg)
    #priors = np_utils.get_prio_box_new(cfg=cfg)
    priors = gen_chors.gen_ssd_anchors()
    print(priors.shape)
    box = utils.decode_box(prios=priors, pred_loc=pred_loc[0])
    props = slim.nn.softmax(pred_confs[0])
    pp = props[:,1:]

    cls = tf.argmax(pp, axis=1)
    pp = tf.reduce_max(pp,axis=1)


    ix = tf.where(tf.greater(pp,0.1))[:,0]
    score = tf.gather(pp,ix)
    box = tf.gather(box,ix)
    cls = tf.gather(cls, ix)
    box = tf.clip_by_value(box,clip_value_min=0.0,clip_value_max=1.0)

    keep = tf.image.non_max_suppression(
        scores=score,
        boxes=box,
        iou_threshold=0.4,
        max_output_size=50
    )
    return tf.gather(box,keep),tf.gather(score,keep),tf.gather(cls,keep)
示例#2
0
def get_loc_conf(true_box, true_label, batch_size=4, cfg=config.voc_vgg_300):
    #pri = get_prio_box_new(cfg = cfg)
    pri = gen_chors.gen_ssd_anchors()

    num_priors = pri.shape[0]
    loc_t = np.zeros([batch_size, num_priors, 4])
    conf_t = np.zeros([batch_size, num_priors])
    for s in range(batch_size):
        true_box_tm = true_box[s]
        labels = true_label[s]
        ix = np.sum(true_box_tm, axis=1)
        true_box_tm = true_box_tm[np.where(ix > 0)]
        labels = labels[np.where(ix > 0)]
        ops = over_laps(true_box_tm, pt_from(pri))
        best_true = np.max(ops, axis=0)
        best_true_idx = np.argmax(ops, axis=0)
        best_prior = np.max(ops, axis=1)
        best_prior_idx = np.argmax(ops, axis=1)
        for j in range(best_prior_idx.shape[0]):
            best_true_idx[best_prior_idx[j]] = j
        matches = true_box_tm[best_true_idx]
        conf = labels[best_true_idx] + 1
        conf[best_true < 0.5] = 0
        loc = encode(matches, pri, variances=[0.1, 0.2])
        loc_t[s] = loc
        conf_t[s] = conf
    return loc_t, conf_t
示例#3
0
def predict(pred_loc, pred_confs, mask_fp, cfg):

    priors = gen_chors.gen_ssd_anchors()

    box = utils.decode_box(prios=priors, pred_loc=pred_loc[0])
    props = slim.nn.softmax(pred_confs[0])
    pp = props[:, 1:]

    cls = tf.argmax(pp, axis=1)
    pp = tf.reduce_max(pp, axis=1)

    ix = tf.where(tf.greater(pp, 0.1))[:, 0]
    score = tf.gather(pp, ix)
    box = tf.gather(box, ix)
    cls = tf.gather(cls, ix)
    cls = tf.cast(cls, tf.int32)
    box = tf.clip_by_value(box, clip_value_min=0.0, clip_value_max=1.0)

    x1, y1, x2, y2 = tf.split(box, 4, axis=1)

    crop_box = tf.concat([y1, x1, y2, x2], axis=1)

    keep = tf.image.non_max_suppression(scores=score,
                                        boxes=crop_box,
                                        iou_threshold=0.3,
                                        max_output_size=50)

    cls = tf.gather(cls, keep)
    box = tf.gather(crop_box, keep)
    masks = build_fpn_mask_graph(box, mask_fp, cfg)
    masks = tf.transpose(masks, [0, 3, 1, 2])

    ix = tf.concat([
        tf.reshape(tf.range(tf.shape(masks)[0]), [-1, 1]),
        tf.reshape(cls, [-1, 1]) + 1
    ],
                   axis=1)

    pred_masks = tf.gather_nd(masks, ix)
    y1, x1, y2, x2 = tf.split(box, 4, axis=1)

    crop_box = tf.concat([x1, y1, x2, y2], axis=1)

    return crop_box, tf.gather(score, keep), cls, pred_masks
示例#4
0
def get_loss(conf_t, loc_t, pred_loc, pred_confs, target_mask, mask_fp, cfg):

    anchor = gen_chors.gen_ssd_anchors()
    #anchor = tf.tile(anchor,multiples=[cfg.batch_size,1])

    # conf_t, loc_t = utils.batch_slice(inputs=[truth_box, gt_lables], graph_fn=loss_clc, batch_size=batch_size)
    crop_boxs = []
    target_class_ids = []
    for b in range(cfg.batch_size):
        tmp_conf_t = conf_t[b]
        #tmp_ped_loc = pred_loc[b]
        tmp_ped_loc = loc_t[b]
        tmp_conf_index = tf.where(tmp_conf_t > 0)[:, 0]
        tmp_conf_t = tf.gather(tmp_conf_t, tmp_conf_index)

        tmp_ped_loc = tf.gather(tmp_ped_loc, tmp_conf_index)
        live_anchor = tf.gather(anchor, tmp_conf_index)

        live_anchor = tf.cast(live_anchor, tf.float32)
        decode_box = utils.decode_box(live_anchor, tmp_ped_loc)
        x1, y1, x2, y2 = tf.split(decode_box, 4, axis=1)

        crop_box = tf.concat([y1, x1, y2, x2], axis=1)
        crop_box = tf.clip_by_value(crop_box, 0.0, 1.0)
        crop_boxs.append(crop_box)
        tmp_conf_t = tf.expand_dims(tmp_conf_t, 0)
        target_class_ids.append(tmp_conf_t)

    crop_boxs = tf.concat(crop_boxs, axis=0)
    target_class_ids = tf.squeeze(tf.concat(target_class_ids, axis=1), axis=0)
    sam_box = tf.random_shuffle(tf.range(
        tf.shape(crop_boxs)[0]))[:cfg.mask_train]

    crop_boxs = tf.gather(crop_boxs, sam_box)
    target_class_ids = tf.gather(target_class_ids, sam_box)
    target_mask = tf.gather(target_mask, sam_box)

    pred_mask = build_fpn_mask_graph(crop_boxs, mask_fp, cfg)
    mask_loss = mrcnn_mask_loss(target_mask, pred_mask, target_class_ids)
    mask_loss = mask_loss * cfg.mask_weight_loss

    conf_t = tf.reshape(conf_t, shape=(-1, ))
    loc_t = tf.reshape(loc_t, shape=(-1, 4))

    positive_roi_ix = tf.where(conf_t > 0)[:, 0]

    positive_roi_class_ids = tf.cast(tf.gather(conf_t, positive_roi_ix),
                                     tf.int64)

    indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1)
    pred_loc = tf.reshape(pred_loc, shape=(-1, 4))

    # Gather the deltas (predicted and true) that contribute to loss
    target_bbox = tf.gather(loc_t, positive_roi_ix)
    pred_bbox = tf.gather(pred_loc, positive_roi_ix)
    target_bbox = tf.cast(target_bbox, tf.float32)
    loss = tf.keras.backend.switch(
        tf.cast(tf.size(target_bbox) > 0, tf.bool),
        smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox),
        tf.constant(0.0, dtype=tf.float32))
    loss_l = tf.reduce_sum(loss)

    pred_conf = tf.reshape(pred_confs, shape=(-1, cfg.Config['num_classes']))

    conf_t_tm = tf.cast(conf_t, tf.int32)
    conf_t_tm = tf.reshape(conf_t_tm, shape=(-1, ))

    index = tf.stack([tf.range(tf.shape(conf_t_tm)[0]), conf_t_tm], axis=1)

    loss_c = log_sum(pred_conf) - tf.expand_dims(
        tf.gather_nd(pred_conf, index), -1)

    loss_c = tf.reshape(loss_c, shape=(cfg.batch_size, -1))
    conf_t = tf.reshape(conf_t, shape=(cfg.batch_size, -1))

    zeros = tf.zeros(shape=tf.shape(loss_c), dtype=tf.float32)
    loss_c = tf.where(tf.greater(conf_t, 0), zeros, loss_c)

    pos_num = tf.reduce_sum(tf.cast(tf.greater(conf_t, 0), dtype=tf.int32),
                            axis=1)

    ne_num = pos_num * 3

    los = []

    for s in range(cfg.batch_size):
        loss_tt = loss_c[s, :]
        value, ne_index = tf.nn.top_k(loss_tt, k=ne_num[s])
        pos_ix = tf.where(conf_t[s, :] > 0)[:, 0]

        pos_ix = tf.cast(pos_ix, tf.int32)

        ix = tf.concat([pos_ix, ne_index], axis=0)

        label = tf.gather(conf_t[s, :], ix)
        label = tf.cast(label, tf.int32)

        label = tf.one_hot(label, depth=cfg.Config['num_classes'])
        logits = tf.gather(pred_confs[s, :], ix)

        ls = tf.keras.backend.switch(
            tf.cast(tf.size(label) > 0, tf.bool),
            tf.nn.softmax_cross_entropy_with_logits(labels=label,
                                                    logits=logits),
            tf.constant(0.0))

        ls = tf.reduce_sum(ls)

        los.append(ls)

    num = tf.reduce_sum(pos_num)
    num = tf.cast(num, dtype=tf.float32)

    final_loss_c = tf.keras.backend.switch(num > 0,
                                           tf.reduce_sum(los) / num,
                                           tf.constant(0.0))

    final_loss_l = tf.keras.backend.switch(num > 0, loss_l / num,
                                           tf.constant(0.0))
    final_loss_c = final_loss_c

    tf.losses.add_loss(final_loss_c)
    tf.losses.add_loss(final_loss_l)
    tf.losses.add_loss(mask_loss)

    total_loss = tf.losses.get_losses()
    tf.summary.scalar(name='class_loss', tensor=final_loss_c)
    tf.summary.scalar(name='loc_loss', tensor=final_loss_l)
    tf.summary.scalar(name='mask_loss', tensor=mask_loss)
    train_tensors = tf.identity(total_loss, 'ss')

    return train_tensors