示例#1
0
    def write_grid(self, grid, path):
        # check for support
        if grid._class != "Grid" and grid._class != "FlagGrid" and grid._class != "LevelsetGrid" and grid._class != "MACGrid":
            assert False, "grid._class {} is not supported".format(grid._class)
            return
        # check if path exists
        make_dir(os.path.dirname(path))
        # find buffer handle
        handle = self._get_buffer_handle(grid)
        vec3content = False
        # copy grid to buffer
        if grid._class == "Grid":
            if grid._T == "Real":
                copyGridToArrayReal(grid, self._buffer_list[handle])
            elif grid._T == "Vec3":
                copyGridToArrayVec3(grid, self._buffer_list[handle])
                vec3content = True
        elif grid._class == "FlagGrid":
            copyGridToArrayFlag(grid, self._buffer_list[handle])
        elif grid._class == "LevelsetGrid":
            copyGridToArrayLevelset(grid, self._buffer_list[handle])
        elif grid._class == "MACGrid":
            copyGridToArrayMAC(grid, self._buffer_list[handle])
            vec3content = True
        else:
            print("Grid is not supported")
            self._print_grid_info(grid)
            assert False

        # store buffer in npz
        grid_desc = self._get_grid_description(grid)
        np_grid = self._buffer_list[handle]
        is2d = (np_grid.shape[0] == 1)
        if vec3content and is2d:
            np_grid = np_grid[..., 0:2]  # remove z component of vectors
        if is2d:
            np_grid = np.squeeze(np_grid, axis=0)  # remove z axis

        np.savez_compressed(path, data=np_grid, header=grid_desc)
示例#2
0
def on_sim_step(scene, t):
    if args.no_output:
        return
    # screenshot of the mantaflow gui
    if t == args.warmup and scene.show_gui:
        scene._gui.screenshot(output_path + "/screenshots/screen_{:06d}.jpg".format(scene.file_num))
    # save all steps for rendering
    if args.output_render_data:
        if t == 0:
            make_dir(output_path + "/scene_{:04d}/uni/".format(stored_scenes_num))
            scene.pressure.save(output_path + "/scene_{:04d}/uni/ref_flipParts_0000.uni".format(stored_scenes_num))
        scene.pp.save(output_path + "/scene_{:04d}/uni/flipParts_{:04d}.uni".format(stored_scenes_num, t))
        scene.phi_fluid.save(output_path + "/scene_{:04d}/uni/levelset_{:04d}.uni".format(stored_scenes_num, t))
    # some steps should not be written to file
    if t < args.warmup or t % args.skip_steps != 0:
        return

    # zoom
    if zoom_resolution:
        if args.dimension == 2:
            zoom_mask = [1.0, args.zoom, args.zoom, 1.0]
            np_real_temp = np.empty(shape=[1, args.resolution, args.resolution, 1], order='C')
            np_vec_temp = np.empty(shape=[1, args.resolution, args.resolution, 3], order='C')
        else:
            zoom_mask = [1.0, args.zoom, args.zoom, args.zoom, 1.0]
            np_real_temp = np.empty(shape=[1, args.resolution, args.resolution, args.resolution, 1], order='C')
            np_vec_temp = np.empty(shape=[1, args.resolution, args.resolution, args.resolution, 3], order='C')

    # write grids to a file
    scene.file_num = scene.file_num + 1
    output_name = "{}_{:07d}".format(scene.resolution, scene.file_num)

    for grid_name in grids:
        # it was already checked if the attribute is present in the scene
        grid = getattr(scene, grid_name)

        if zoom_resolution:
            grid_zoom = getattr(scene, grid_name+"_zoom")
            grid_type = MantaGridType(grid.getGridType())
            if grid_type == MantaGridType.TypeReal or grid_type == MantaGridType.TypeLevelset or grid_type == MantaGridType.TypeLevelsetReal:
                copyGridToArrayReal(grid, np_real_temp)

                # if grid_name == "pressure":
                #     fig, ax1 = plt.subplots(1, 1, figsize=(8, 8))
                #     fig.tight_layout(pad=0.1)
                #     im1 = ax1.imshow(np_real_temp[0,:,:,0], vmin=None, vmax=None, cmap='viridis', interpolation='nearest')
                #     divider = make_axes_locatable(ax1)
                #     cax = divider.append_axes('right', size='5%', pad = 0.05)
                #     fig.colorbar(im1, cax=cax, orientation='vertical')
                #     ax1.set_title("Reference", fontsize=20)
                #     ax1.set_xlim(0, np_real_temp.shape[2]-1)
                #     ax1.set_ylim(0, np_real_temp.shape[1]-1)
                #     ax1.get_xaxis().set_visible(True)
                #     ax1.get_yaxis().set_visible(True)
                #     plt.show(block=True)

                # force on area m^2 
                if "pressure" in grid_name:
                    scale_factor = args.zoom * args.zoom
                # mass on volume m^3
                elif "density" in grid_name:
                    scale_factor = args.zoom * args.zoom * args.zoom
                else:
                    scale_factor = args.zoom
                np_zoomed = ndimage.zoom(np_real_temp, zoom_mask) * scale_factor
                copyArrayToGridReal(np_zoomed, grid_zoom)
            elif grid_type == MantaGridType.TypeInt:
                assert False, "Not supported"
            elif grid_type == MantaGridType.TypeVec3 or grid_type == MantaGridType.TypeMAC or grid_type == MantaGridType.TypeMACVec3:
                copyGridToArrayVec3(grid, np_vec_temp)
                np_zoomed = ndimage.zoom(np_vec_temp, zoom_mask) * args.zoom
                copyArrayToGridVec3(np_zoomed, grid_zoom)

            # save the zoomed grid to a uni file (will later be converted to .npz)
            grid_zoom.save(output_path + "/" + grid_name + "/" + output_name + ".uni")
            grid.save(output_path + "/" + grid_name + "_orig/" + output_name + ".uni")
        else:
            # Save normally
            # save the grid to a uni file (will later be converted to .npz)
            grid.save(output_path + "/" + grid_name + "/" + output_name + ".uni")
                    nargs='+',
                    help="Custom legend colors to replace the default with.")

# Arguments
#----------------------------------------------------------------------------
args = parser.parse_args()
output_path = "."
if args.output:
    output_path = str(pathlib.Path(args.output).resolve())
else:
    output_path = find_dir("predictions", 2)
predictions_dir = output_path + "/"
output_path += "/" + args.comparison_dir + args.name + "/"
#output_path = get_uniqe_path(output_path) + "/"
output_path += "levelset/"
make_dir(output_path)
print("Output path: {}".format(output_path))

with open(output_path + "arguments.json", 'w') as f:
    json.dump(vars(args), f, indent=4)

graph_limits = args.y_limits
if graph_limits == None or len(graph_limits) != 4:
    graph_limits = [None] * 4
else:
    for i, l in enumerate(graph_limits):
        graph_limits[i] = float(l)

#----------------------------------------------------------------------------
#predictions_dir = find_dir("predictions", 2) + "/"
assert os.path.exists(predictions_dir), (
示例#4
0
#--------------------------------
if not args.no_output:
    # get the datasets directory, in all datasets should reside
    if not args.datasets_path:
        output_path = find_dir("datasets", 2)
    else:
        output_path = args.datasets_path
    assert os.path.exists(output_path), ("Datasets directory {} does not exist".format(output_path)) 
    # set output parent directory name
    output_path += "/" + args.name
    if debug:
        output_path += "_DEBUG"
    output_path = get_uniqe_path(output_path)
    # create the directories
    for grid_name in args.grids:
        make_dir(output_path + "/" + grid_name)
        if zoom_resolution:
            make_dir(output_path + "/" + grid_name + "_orig")
    if args.gui:
        make_dir(output_path + "/screenshots/")
    if args.output_render_data:
        make_dir(output_path + "/uni/")
    # keep track of stored scenes
    stored_scenes_num = 0
print("Output path: {}".format(output_path))
    
# Dataset description
#--------------------------------
description = {}
description["version"] = git_version
description["creation_date"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
示例#5
0
# Data Set
#--------------------------------
if not args.datasets_path:
    dataset_path = find_dir("datasets", 2)
else:
    dataset_path = args.datasets_path
assert os.path.exists(dataset_path), (
    "Datasets directory {} does not exist".format(dataset_path))
# set output parent directory name
dataset_path += "/" + args.dataset
dataset_path = dataset_path + "/"

if args.video:
    dataset_video_path = dataset_path + "dataset_display/"
    make_dir(dataset_video_path)

print("Reading data set from: {}".format(dataset_path))

# Description
#--------------------------------
dataset_desc = load_description(dataset_path)

# Grids
#--------------------------------
dataset_grids = []
for grid in args.grids:
    for grid2 in dataset_desc["grids"]:
        if grid == grid2:
            dataset_grids.append(grid)
            break
示例#6
0
args = parser.parse_args()

if args.benchmark != -1:
    if args.name == "":
        args.name = args.project + "_Bench{}".format(args.benchmark)
    else:
        args.name += "_Bench{}".format(args.benchmark)

output_path = "."
if args.output:
    output_path = str(pathlib.Path(args.output).resolve())
else:
    output_path = find_dir("predictions", 2)
output_path += "/" + args.name
output_path = get_uniqe_path(output_path) + "/"
make_dir(output_path)
print("Output path: {}".format(output_path))

if args.output_render_data or args.output_benchmark_data:
    make_dir(output_path + "uni/")

if args.output_sequence:
    output_seq_path = output_path + "sequence/"
    make_dir(output_seq_path)

description = {"args": vars(args)}

#----------------------------------------------------------------------------
project_dir = find_dir("projects", 2) + "/" + args.project
assert os.path.exists(project_dir), (
    "The specified project directory does not exist or could not be found")
def evaluate_scenes(bench):
    # Dataset Property File
    #----------------------------------------------------------------------------
    dataset_properties = None
    if args.property_file_path:
        dataset_properties = load_properties(args.property_file_path)

    # Handle input directories
    #----------------------------------------------------------------------------
    reference_dir = predictions_dir + args.reference + args.suffix.format(
        bench)
    assert os.path.exists(reference_dir), (
        "The specified reference directory ({}) does not exist or could not be found"
        .format(reference_dir))
    print(reference_dir)
    reference_desc = load_description(reference_dir)
    print(reference_desc)
    reference_dir += "/uni/"
    assert os.path.exists(reference_dir), (
        "The specified reference directory ({}) does not exist or could not be found"
        .format(reference_dir))

    comparison_dirs = []
    comparison_desc = []
    for comp in args.comparison:
        comp_dir = predictions_dir + args.comparison_dir + comp + args.suffix.format(
            bench)
        assert os.path.exists(comp_dir), (
            "The specified comparison directory ({}) does not exist or could not be found"
            .format(comp_dir))
        comparison_desc.append(load_description(comp_dir))
        print(comparison_desc[-1])
        comp_dir += "/uni/"
        print(comp_dir)
        comparison_dirs.append(comp_dir)

    # Scene
    #----------------------------------------------------------------------------
    warmup_steps = reference_desc["args"]["warmup_steps"]
    first_desc_warmup_step = comparison_desc[0]["args"]["warmup_steps"]
    for desc in comparison_desc:
        warmup_steps = desc["args"]["warmup_steps"]
        if desc["args"]["warmup_steps"] != first_desc_warmup_step:
            if (input("Warmup steps do not match. Continue? y/n") == "n"):
                return

    scene = PressureComparisonScene(reference_desc["scene"]["resolution"],
                                    reference_desc["scene"]["dimension"])

    np_comp = np.empty(shape=[
        1, reference_desc["scene"]["resolution"],
        reference_desc["scene"]["resolution"],
        reference_desc["scene"]["resolution"], 1
    ],
                       order='C')
    np_comp_grad = np.empty(shape=[
        1, reference_desc["scene"]["resolution"],
        reference_desc["scene"]["resolution"],
        reference_desc["scene"]["resolution"], 3
    ],
                            order='C')
    np_comp_grad_min = 9999999999999999
    np_comp_grad_max = -999999999999999

    # Main Loop
    #----------------------------------------------------------------------------
    # metrics store sequentially data for each comparison
    mae = [None] * len(comparison_dirs)
    mse = [None] * len(comparison_dirs)
    psnr_grad = [None] * len(comparison_dirs)
    psnr = [None] * len(comparison_dirs)

    # loop
    frame = warmup_steps
    endFrame = len(glob.glob(reference_dir + "*.uni"))
    endFrame_compdir = len(glob.glob(comp_dir + "*.uni"))
    endFrame = min(endFrame, endFrame_compdir)

    if args.max_frames > 0:
        endFrame = min(endFrame, frame + args.max_frames)
    while frame < endFrame:
        reference_path = reference_dir + args.reference_file_name.format(frame)
        if os.path.isfile(reference_path):
            # Store in ref grid
            scene.reference.load(reference_path)
            getGradientGrid(scene.reference, scene.pressure_gradient_ref)

            # comparison field
            for i, comp_dir in enumerate(comparison_dirs):
                comp_path = comp_dir + args.comparison_file_name.format(frame)
                if os.path.isfile(comp_path):
                    # Store in comp grid
                    scene.comparison.load(comp_path)
                    getGradientGrid(scene.comparison,
                                    scene.pressure_gradient_comp)

                    # Store Example Images of Predictions
                    if args.output_sequence:
                        pressure_example_dir = output_path + args.comparison[
                            i] + "/bench_{}/".format(bench)
                        if not os.path.exists(pressure_example_dir):
                            make_dir(pressure_example_dir)
                        # Pressure Storage
                        copyGridToArrayReal(scene.comparison, np_comp)
                        np_selected_slice = np.squeeze(
                            np_comp[0, reference_desc["scene"]["resolution"] //
                                    2])[::-1, ::-1]
                        #print("Comp Shape: {} -> {}".format(np_comp.shape, np_selected_slice.shape))
                        scipy.misc.toimage(
                            np_selected_slice, cmin=-0.5,
                            cmax=1.5).save(pressure_example_dir +
                                           "pressure_{}.png".format(frame))
                        # Gradient Storage
                        copyGridToArrayVec3_New(scene.pressure_gradient_comp,
                                                np_comp_grad)
                        np_selected_slice = np.squeeze(np_comp_grad[
                            0, reference_desc["scene"]["resolution"] //
                            2])[::-1, ::-1]
                        np_comp_grad_min = min(np_comp_grad_min,
                                               np_selected_slice.min())
                        np_comp_grad_max = max(np_comp_grad_max,
                                               np_selected_slice.max())
                        print("Comp Shape: {} -> {}; {} {}".format(
                            np_comp_grad.shape, np_selected_slice.shape,
                            np_comp_grad_min, np_comp_grad_max))
                        scipy.misc.toimage(
                            np_selected_slice, cmin=-0.2, cmax=0.15).save(
                                pressure_example_dir +
                                "pressure_grad_{}.png".format(frame))

                    # Calculate metrics

                    # mae
                    mean_abs = meanAbsoluteError(scene.reference,
                                                 scene.comparison)
                    if mae[i] == None:
                        mae[i] = [mean_abs]
                    else:
                        mae[i].append(mean_abs)

                    # mse
                    mean_squared = meanSquaredError(scene.reference,
                                                    scene.comparison)
                    if mse[i] == None:
                        mse[i] = [mean_squared]
                    else:
                        mse[i].append(mean_squared)

                    # psnr_grad
                    max_pressure_grad_ref = dataset_properties["pressure"][
                        "Max"]["Total"] - dataset_properties["pressure"][
                            "Min"]["Total"]
                    psnr_grad_temp = peakSignalToNoiseRatioVec3(
                        scene.pressure_gradient_ref,
                        scene.pressure_gradient_comp, 0.0,
                        max_pressure_grad_ref)
                    if psnr_grad[i] == None:
                        psnr_grad[i] = [psnr_grad_temp]
                    else:
                        psnr_grad[i].append(psnr_grad_temp)

                    # psnr
                    psnr_temp = peakSignalToNoiseRatio(
                        scene.reference, scene.comparison,
                        dataset_properties["pressure"]["Min"]["Total"],
                        dataset_properties["pressure"]["Max"]["Total"])
                    if psnr[i] == None:
                        psnr[i] = [psnr_temp]
                    else:
                        psnr[i].append(psnr_temp)
                #else:
                #    assert False, ("Comparison file ({}) not found".format(comp_path))
        frame += 1
    return mae, mse, psnr_grad, psnr
示例#8
0
        # it was already checked if the attribute is present in the scene
        grid = getattr(scene, grid_name)
        # save the grid to a npz file
        grid_io.write_grid(grid, output_path + "/" + grid_name + "_" + output_name)

# reset seed -> same starting condition for scene creation -> reproducibility
np.random.seed(seed=args.seed)
random.seed(args.seed)

for scene_num in range(args.num_scenes):
    # Output dirs, one per simulation
    #--------------------------------
    if not args.no_output:
        output_path = dataset_path + "/sim"
        output_path = get_unique_path(output_path)
        make_dir(output_path)
        if args.gui:
            make_dir(output_path + "/screenshots/")
        # keep track of stored scenes
        stored_scenes_num = 0

    # Dataset description
    #--------------------------------
    description = {}
    description["version"] = "v0.01"
    description["creation_date"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    description["grids"] = grids
    description["resolution_x"] = args.resolution_x
    description["resolution_y"] = args.resolution_y
    description["resolution_z"] = args.resolution_z
    description.update(vars(args)) # insert args