示例#1
0
def find_experiment_ids_by_assets(assets):
    assets_str = pg.array2pgarray(assets)
    query = '''
        SELECT * FROM experiments
        WHERE asset_columns = \'{0}\'
        '''.format(assets_str)
    return pd.read_sql(query, conn)
示例#2
0
        
        experiment = db.load_experiment(experiment_id)
        backtest_params = db.load_backtests([backtest_id])
        returns = db.load_returns(experiment)
        excess_returns = returns.values
        train, test = backtest.split_returns(
            excess_returns, 
            backtest_params['update_periods'], 
            backtest_params['trailing_periods'])
        portfolios = pg.decimallistseries2nparray(results.portfolio_weights)
        portfolio_returns = pg.decimallistseries2nparray(results.test_returns)
        train_mean = ps.mean(portfolios[0,:], train[0])
        train_variance = ps.variance(portfolios[0,:], train[0])
        eta = results.eta.iloc[0]
        backtest_statistics = ps.rkw_statistics(
            portfolios, portfolio_returns, eta=eta)
        test_statistics = backtest_statistics['statistics']
        agg_returns = backtest_statistics['aggregate_returns']
        
        output = test_statistics
        output['aggregate_returns'] = pg.array2pgarray(agg_returns)
        output['train_mean_return'] = train_mean
        output['train_variance'] = train_variance
        output['parameters_id'] = parameters_id
        output['experiment_id'] = experiment_id
        output['backtest_id'] = backtest_id
        outputs.append(output)
       
    output_table = pd.DataFrame(outputs)
    output_table.to_csv('dcc_backtest_statistics.csv', index=False)