def plot_temperature_biases(): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) cru_var_name = "tmp" cru_data_store, crcm4_data_store = _get_comparison_data(cru_var_name= cru_var_name, season_to_months=season_to_months) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) basemap = polar_stereographic.basemap assert isinstance(basemap, Basemap) gs = gridspec.GridSpec(3,2) color_map = my_cm.get_red_blue_colormap(ncolors = 14, reversed=True) clevels = xrange(-8, 9, 2) all_plot_axes = [] for i, season in enumerate(seasons): if not i: ax = fig.add_subplot(gs[0,:]) else: row, col = (i - 1) // 2 + 1, (i - 1) % 2 ax = fig.add_subplot(gs[row, col]) all_plot_axes.append(ax) assert isinstance(ax, Axes) delta = crcm4_data_store[season] - cru_data_store[season] if cru_var_name == "tmp": delta -= 273.15 #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta[:, :] = np.ma.masked delta[i_array, j_array] = save img = basemap.pcolormesh(x, y, delta, cmap = color_map, vmin = -7, vmax = 7) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") int_ticker = LinearLocator(numticks = color_map.N + 1) fig.colorbar(img, cax = cax, ticks = MultipleLocator(base = 2)) ax.set_title(season) for the_ax in all_plot_axes: the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) put_selected_stations(the_ax, basemap, i_array, j_array) #gs.tight_layout(fig) fig.suptitle("T(2m), degrees, CRCM4 - CRU") fig.savefig("seasonal_{0}_ccc.png".format(cru_var_name))
def plot_data(data, i_array, j_array, name='AEX', title = None, digits = 1, color_map = mpl.cm.get_cmap('RdBu'), minmax = (None, None), units = '%', colorbar_orientation = 'vertical' ): if name != None: plt.figure() to_plot = np.ma.masked_all(xs.shape) for index, i, j in zip( range(len(data)), i_array, j_array): to_plot[i, j] = data[index] print np.ma.min(data), np.ma.max(data) # m.pcolor(xs, ys, to_plot, cmap = mpl.cm.get_cmap('RdBu_r')) extent = [np.min(xs), np.max(xs), np.min(ys), np.max(ys)] plt.imshow(to_plot.transpose().copy(), interpolation = 'nearest' , extent = extent, origin = 'lower', cmap = color_map, vmin = minmax[0], vmax = minmax[1] ) plot_basin_boundaries_from_shape(m, linewidth = 1) m.drawrivers() m.drawcoastlines() draw_meridians_and_parallels(m, step_degrees = 30) int_ticker = LinearLocator() cb = plt.colorbar(ticks = int_ticker, orientation = colorbar_orientation) cb.ax.set_ylabel(units) override = {'fontsize': 20, 'verticalalignment': 'baseline', 'horizontalalignment': 'center'} plt.title(title if title != None else name, override) ymin, ymax = plt.ylim() plt.ylim(ymin + 0.12 * (ymax - ymin), ymax * 0.32) xmin, xmax = plt.xlim() plt.xlim(xmin + (xmax - xmin) * 0.65, 0.85*xmax) if name != None: plt.savefig(name + '.png', bbox_inches = 'tight')
def plot_forcing_error(errors_map, i_list, j_list): pylab.rcParams.update(params) to_plot = ma.masked_all(xs.shape) err = None for id, error in errors_map.iteritems(): if err == None: err = np.zeros(error.shape) err += error err = err / len(errors_map) for i, j, er in zip(i_list, j_list, err): to_plot[i,j] = er n_levels = 20 plt.imshow(to_plot.transpose().copy(), extent = [np.min(xs), np.max(xs), ys.min(), ys.max()], origin = 'lower', interpolation = 'bilinear' , cmap = mpl.cm.get_cmap('RdBu_r', n_levels), vmin = -30, vmax = 30) int_ticker = MaxNLocator(nbins=n_levels, integer=True) cb = plt.colorbar(ticks = int_ticker) cb.ax.set_ylabel('%') basemap.drawcoastlines() print np.min(lons), np.max(lons), lats.min(), lats.max() plot_basin_boundaries_from_shape(basemap, linewidth = 0.5) ymin, ymax = plt.ylim() plt.ylim(ymin + 0.12 * (ymax - ymin), ymax * 0.32) xmin, xmax = plt.xlim() plt.xlim(xmin + (xmax - xmin) * 0.65, 0.85*xmax) draw_meridians_and_parallels(basemap, 10) plt.savefig("forcing_errors.png")
def test_interpolation(): lons, lats, interpolated = get_topography_interpolated_to_graham_grid( grid_lower_left = GeoPoint(-85.0, 40.0), grid_shape = (380, 280) ) print lons.shape print lats.shape print interpolated.shape print 'done interpolating' m = Basemap(llcrnrlon=-85, llcrnrlat=40, urcrnrlon=-53, urcrnrlat=65) lons, lats = m(lons, lats) m.contourf(lons, lats, interpolated) m.drawcoastlines() draw_meridians_and_parallels(m) plt.colorbar() plt.savefig('interpolated_topo.png') pass
def default_basemap_scatter(): # m = Basemap() # m.drawcoastlines(linewidth = 0.5) # longitudes_array = np.arange(-85, -55, 5.0 / MINUTES_PER_DEGREE) # latitudes_array = np.arange(70, 40, - 5.0 / MINUTES_PER_DEGREE) # X, Y = pylab.meshgrid(longitudes_array, latitudes_array) # longitudes_array, latitudes_array = m(X, Y) # m.contourf(longitudes_array, latitudes_array, longitudes_array) # plt.figure() # m = Basemap(boundinglat = 40, projection = 'npstere', lat_0=60, lon_0=0) # m.drawcoastlines() # draw_meridians_and_parallels(m, 25) plt.figure() m = Basemap(projection = 'npstere', lat_ts = 60, lat_0 = 60, lon_0 = -115, boundinglat = 40, resolution='i') m.drawcoastlines() m.drawrivers(color = 'blue', linewidth = 1) dx = 45000.0 [px, py] = m(-61.5*dx, -179.8*dx) m.scatter(px, py , c="red") draw_meridians_and_parallels(m, 25) [ymin, ymax] = plt.ylim() plt.ylim(ymin + 0.12 * (ymax - ymin), ymax * 0.32) [xmin, xmax] = plt.xlim() plt.xlim(xmin + (xmax - xmin) * 0.65, 0.85*xmax) plt.show()
def plot_temp(): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) #take out annual seasons.pop(0) #put new numbering for the subplots new_numbering = ["a", "b", "c", "d"] var_name = "st" year_range_c = xrange(1970,2000) year_range_f = xrange(2041,2071) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) basemap = polar_stereographic.basemap assert isinstance(basemap, Basemap) gs = gridspec.GridSpec(3,2) #color_map = mpl.cm.get_cmap(name="jet", lut=10) clevels = xrange(-8, 9, 2) all_plot_axes = [] #determine min an max for color scales min_val = np.inf max_val = -np.inf for season in seasons: current = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.current_ids, year_range=year_range_c) future = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.future_ids, year_range=year_range_f) current_m = np.mean(current, axis=0) future_m = np.mean(future, axis= 0) delta = future_m[i_array, j_array] - current_m[i_array, j_array] the_min = delta.min() the_max = delta.max() min_val = min(min_val, the_min) max_val = max(max_val, the_max) min_val = np.floor(min_val) max_val = np.ceil(max_val) color_map = my_cm.get_red_blue_colormap(ncolors = 10, reversed=True) if min_val >= 0: color_map = my_cm.get_red_colormap(ncolors=10) for i, season in enumerate(seasons): row, col = i // 2, i % 2 ax = fig.add_subplot(gs[row, col ]) all_plot_axes.append(ax) current = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.current_ids, year_range=year_range_c) future = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.future_ids, year_range=year_range_f) # t, p = stats.ttest_ind(current, future, axis=0) # significant = np.array(p <= 0.05) significant = calculate_significance_using_bootstrap(current, future) assert not np.all(~significant) assert not np.all(significant) current_m = np.mean(current, axis=0) future_m = np.mean(future, axis= 0) delta = (future_m - current_m) assert isinstance(ax, Axes) #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta = np.ma.masked_all(delta.shape) delta[i_array, j_array] = save d_min = np.floor( np.min(save) ) d_max = np.ceil( np.max(save) ) img = basemap.pcolormesh(x, y, delta, cmap = color_map, vmin = min_val, vmax = max_val) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") assert isinstance(cax, Axes) int_ticker = LinearLocator(numticks = color_map.N + 1) cb = fig.colorbar(img, cax = cax, ticks = int_ticker) cax.set_title("$^{\\circ}{\\rm C}$") where_significant = significant significant = np.ma.masked_all(significant.shape) significant[~where_significant] = 0 basemap.pcolormesh( x, y, significant , cmap = mpl.cm.get_cmap(name = "gray", lut = 3), vmin = -1, vmax = 1, ax = ax) ax.set_title( season.replace( re.findall( "([a-z])", season)[0], new_numbering[i]) ) for the_ax in all_plot_axes: the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) #gs.update(wspace=0.5) fig.tight_layout() #fig.suptitle("Projected changes, T(2m), degrees, CRCM4") fig.savefig("proj_change_{0}_ccc.png".format(var_name))
def plot_swe(): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) var_name = "sno" year_range_c = xrange(1970,2000) year_range_f = xrange(2041,2071) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) _generate_mask_of_domain_of_interest(i_array, j_array) if True: return plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) basemap = polar_stereographic.basemap assert isinstance(basemap, Basemap) gs = gridspec.GridSpec(3,4, height_ratios=[1,1,1], width_ratios=[1,1,1,1]) #color_map = my_cm.get_ color_map = my_cm.get_red_blue_colormap(ncolors = 10, reversed=True) #color_map = mpl.cm.get_cmap(name="jet_r", lut=10) clevels = xrange(-8, 9, 2) all_plot_axes = [] for i, season in enumerate(seasons): if not i: ax = fig.add_subplot(gs[0,1:3]) else: row, col = (i - 1) // 2 + 1, (i - 1) % 2 ax = fig.add_subplot(gs[row, col * 2 : col * 2 + 2 ]) all_plot_axes.append(ax) current = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.current_ids, year_range=year_range_c) future = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.future_ids, year_range=year_range_f) t, p = stats.ttest_ind(current, future, axis=0) #TODO: change it back to p <= 0.05 wheen doing real sign test significant = np.array(p <= 1) assert not np.all(~significant) assert not np.all(significant) current_m = np.mean(current, axis=0) future_m = np.mean(future, axis= 0) delta = (future_m - current_m) delta = np.array(delta) assert isinstance(ax, Axes) #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta = np.ma.masked_all(delta.shape) delta[i_array, j_array] = save d_min = np.floor( np.min(save) ) d_max = np.ceil( np.max(save) ) bounds = plot_utils.get_boundaries_for_colobar(d_min, d_max, color_map.N, lambda x: np.round(x, decimals=10)) print bounds bn = BoundaryNorm(bounds, color_map.N) d = np.max( np.abs([d_min, d_max]) ) print season, np.min(delta), np.max(delta) #delta = np.ma.masked_where(delta < 0, delta ) img = basemap.pcolormesh(x, y, delta, cmap = color_map, norm = bn, vmin = bounds[0], vmax = bounds[-1]) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") assert isinstance(cax, Axes) int_ticker = LinearLocator(numticks = color_map.N + 1) cb = fig.colorbar(img, cax = cax, ticks = bounds, boundaries = bounds) where_significant = significant significant = np.ma.masked_all(significant.shape) significant[(~where_significant)] = 0 save = significant[i_array, j_array] significant = np.ma.masked_all(significant.shape) significant[i_array, j_array] = save basemap.pcolormesh( x, y, significant , cmap = mpl.cm.get_cmap(name = "gray", lut = 3), vmin = -1, vmax = 1, ax = ax) ax.set_title(season) for the_ax in all_plot_axes: the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) gs.update(wspace=0.5) #gs.tight_layout(fig) fig.suptitle("Projected changes, SWE, mm, CRCM4") fig.savefig("proj_change_{0}_ccc.png".format(var_name)) pass
def plot_precip(data_path = "/home/huziy/skynet1_rech3/crcm4_data"): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) #remove annual seasons.pop(0) #put new numbering for the subplots new_numbering = ["a", "b", "c", "d"] var_name = "pcp" year_range_c = xrange(1970,2000) year_range_f = xrange(2041,2071) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) basemap = polar_stereographic.basemap assert isinstance(basemap, Basemap) gs = gridspec.GridSpec(3,2, height_ratios=[1,1,1], width_ratios=[1,1]) #determine min an max for color scales min_val = np.inf max_val = -np.inf for season in seasons: current = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.current_ids, year_range=year_range_c) future = _get_data(v_name=var_name, months = season_to_months[season], member_list=members.future_ids, year_range=year_range_f) current_m = np.mean(current, axis=0) future_m = np.mean(future, axis= 0) delta = future_m[i_array, j_array] - current_m[i_array, j_array] the_min = delta.min() the_max = delta.max() min_val = min(min_val, the_min) max_val = max(max_val, the_max) min_val = np.floor(min_val) max_val = np.ceil(max_val) color_map = my_cm.get_red_blue_colormap(ncolors = 10, reversed=False) #color_map = mpl.cm.get_cmap(name="jet_r", lut=10) clevels = xrange(-8, 9, 2) all_plot_axes = [] for i, season in enumerate(seasons): row, col = i // 2, i % 2 ax = fig.add_subplot(gs[row, col ]) all_plot_axes.append(ax) current = _get_data(data_folder=data_path, v_name=var_name, months = season_to_months[season], member_list=members.current_ids, year_range=year_range_c) future = _get_data(data_folder=data_path, v_name=var_name, months = season_to_months[season], member_list=members.future_ids, year_range=year_range_f) #t, p = stats.ttest_ind(current, future, axis=0) #significant = np.array(p <= 0.05) significant = calculate_significance_using_bootstrap(current, future) assert not np.all(~significant) assert not np.all(significant) current_m = np.mean(current, axis=0) future_m = np.mean(future, axis= 0) seconds_per_day = 24 * 60 * 60 delta = (future_m - current_m) * seconds_per_day delta = np.array(delta) assert isinstance(ax, Axes) #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta = np.ma.masked_all(delta.shape) delta[i_array, j_array] = save d_min = np.floor( min_val * 10 ) / 10.0 d_max = np.ceil( max_val *10 ) / 10.0 if d_min > 0: color_map = my_cm.get_blue_colormap(ncolors=10) img = basemap.pcolormesh(x, y, delta, cmap = color_map, vmin = d_min, vmax = d_max) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") assert isinstance(cax, Axes) int_ticker = LinearLocator(numticks = color_map.N + 1) cb = fig.colorbar(img, cax = cax, ticks = int_ticker) cax.set_title("mm/d") where_significant = significant significant = np.ma.masked_all(significant.shape) significant[(~where_significant)] = 0 save = significant[i_array, j_array] significant = np.ma.masked_all(significant.shape) significant[i_array, j_array] = save basemap.pcolormesh( x, y, significant , cmap = mpl.cm.get_cmap(name = "gray", lut = 3), vmin = -1, vmax = 1, ax = ax) ax.set_title( season.replace( re.findall( "([a-z])", season)[0], new_numbering[i]) ) #plot djf swe change season = " (b) Winter (DJF)" ax = fig.add_subplot(gs[2, : ]) all_plot_axes.append(ax) var_name = "sno" current = _get_data(data_folder=data_path, v_name=var_name, months = season_to_months[season], member_list=members.current_ids, year_range=year_range_c) future = _get_data(data_folder=data_path, v_name=var_name, months = season_to_months[season], member_list=members.future_ids, year_range=year_range_f) #t, p = stats.ttest_ind(current, future, axis=0) #significant = np.array(p <= 0.05) significant = calculate_significance_using_bootstrap(current, future) assert not np.all(~significant) assert not np.all(significant) current_m = np.mean(current, axis=0) future_m = np.mean(future, axis= 0) delta = future_m - current_m delta = np.array(delta) assert isinstance(ax, Axes) #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta = np.ma.masked_all(delta.shape) delta[i_array, j_array] = save d_min = np.floor( np.min(save) * 10 ) / 10.0 d_max = np.ceil( np.max(save) *10 ) / 10.0 if d_min >= 0: color_map = my_cm.get_blue_colormap(ncolors=10) bounds = plot_utils.get_boundaries_for_colobar(d_min, d_max, color_map.N, lambda x: np.round(x, decimals=0)) bn = BoundaryNorm(bounds, color_map.N) img = basemap.pcolormesh(x, y, delta, cmap = color_map, vmin = bounds[0], vmax = bounds[-1], norm = bn) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") assert isinstance(cax, Axes) int_ticker = LinearLocator(numticks = color_map.N + 1) cb = fig.colorbar(img, cax = cax, ticks = bounds) cax.set_title("mm") where_significant = significant significant = np.ma.masked_all(significant.shape) significant[(~where_significant)] = 0 save = significant[i_array, j_array] significant = np.ma.masked_all(significant.shape) significant[i_array, j_array] = save basemap.pcolormesh( x, y, significant , cmap = mpl.cm.get_cmap(name = "gray", lut = 3), vmin = -1, vmax = 1, ax = ax) ax.set_title( season.replace( re.findall( "([a-z])", season)[0], "e")) #finish swe djf for the_ax in all_plot_axes: the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) #gs.update(wspace=0.5) #gs.tight_layout(fig) #fig.suptitle("Projected changes, total precip (mm/day), CRCM4") fig.tight_layout() fig.savefig("proj_change_{0}_ccc.png".format(var_name)) pass
def plot_swe_biases(): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) swe_obs_name = "swe" cru_data_store, crcm4_data_store = _get_comparison_data_swe(swe_var_name= swe_obs_name, season_to_months=season_to_months, start_date=datetime(1980,1,1), end_date=datetime(1996, 12, 31)) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) basemap = polar_stereographic.basemap assert isinstance(basemap, Basemap) gs = gridspec.GridSpec(3,2) color_map = my_cm.get_red_blue_colormap(ncolors = 14, reversed=True) clevels = xrange(-8, 9, 2) all_plot_axes = [] for i, season in enumerate(seasons): if not i: ax = fig.add_subplot(gs[0,:]) else: row, col = (i - 1) // 2 + 1, (i -1) % 2 ax = fig.add_subplot(gs[row, col]) all_plot_axes.append(ax) assert isinstance(ax, Axes) delta = crcm4_data_store[season] - cru_data_store[season] #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta = np.ma.masked_all(delta.shape) delta[i_array, j_array] = save vmax = np.ceil( np.max(save) / 10.0) * 10 vmin = np.floor( np.min(save) / 10.0) * 10 bounds = plot_utils.get_boundaries_for_colobar(vmin, vmax, color_map.N, lambda x: np.round(x, decimals = 1)) bn = BoundaryNorm(bounds, color_map.N) img = basemap.pcolormesh(x, y, delta, cmap = color_map, vmin = vmin, vmax = vmax, norm = bn) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") int_ticker = LinearLocator(numticks = color_map.N + 1) fig.colorbar(img, cax = cax, ticks = bounds, boundaries = bounds) ax.set_title(season) for the_ax in all_plot_axes: the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) # put_selected_stations(the_ax, basemap, i_array, j_array) #gs.tight_layout(fig) fig.suptitle("SWE (mm), CRCM4 - Ross Brown dataset (1981-1997)") fig.savefig("seasonal_{0}_ccc.png".format(swe_obs_name))
def plot_precip_biases(): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) cru_var_name = "pre" cru_data_store, crcm4_data_store = _get_comparison_data( crcm4_data_folder="/home/huziy/skynet1_rech3/crcm4_data/aex_p1pcp", cru_data_path = "data/cru_data/CRUTS3.1/cru_ts_3_10.1901.2009.pre.dat.nc", cru_var_name=cru_var_name, season_to_months=season_to_months ) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) basemap = polar_stereographic.basemap assert isinstance(basemap, Basemap) gs = gridspec.GridSpec(3,2, width_ratios=[1,1], height_ratios=[1, 1, 1]) color_map = my_cm.get_red_blue_colormap(ncolors = 16, reversed=False) color_map.set_over("k") color_map.set_under("k") all_plot_axes = [] img = None for i, season in enumerate(seasons): if not i: ax = fig.add_subplot(gs[0,:]) else: row, col = (i - 1) // 2 + 1, (i - 1) % 2 ax = fig.add_subplot(gs[row, col]) all_plot_axes.append(ax) assert isinstance(ax, Axes) delta = crcm4_data_store[season] - cru_data_store[season] save = delta[i_array, j_array] delta[:, :] = np.ma.masked delta[i_array, j_array] = save img = basemap.pcolormesh(x, y, delta, cmap = color_map, vmin = -2, vmax = 2) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") int_ticker = LinearLocator(numticks = color_map.N + 1) fig.colorbar(img, cax = cax, ticks = MultipleLocator(base = 0.5)) ax.set_title(season) for the_ax in all_plot_axes: assert isinstance(the_ax, Axes) the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) the_ax.set_xmargin(0) the_ax.set_ymargin(0) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) # put_selected_stations(the_ax, basemap, i_array, j_array) # ax = fig.add_subplot(gs[3,:]) # assert isinstance(ax, Axes) # fig.colorbar(img, cax = ax, orientation = "horizontal", ticks = MultipleLocator(base = 0.5)) #gs.tight_layout(fig) fig.suptitle("Total precip, mm/day, CRCM4 - CRU") fig.savefig("seasonal_{0}_ccc.png".format(cru_var_name))
def plot_swe_and_temp_on_one_plot(): seasons = ["(a) Annual", " (b) Winter (DJF)", "(c) Spring (MAM)", "(d) Summer (JJA)", "(e) Fall (SON)"] months = [range(1, 13), [12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11] ] season_to_months = dict(zip(seasons, months)) cru_var_name = "tmp" temp_obs_data_store, temp_crcm4_data_store = _get_comparison_data(cru_var_name= cru_var_name, season_to_months=season_to_months) x, y = polar_stereographic.xs, polar_stereographic.ys i_array, j_array = _get_routing_indices() x_min, x_max, y_min, y_max = plot_utils.get_ranges(x[i_array, j_array], y[i_array, j_array]) #get swe data swe_obs_name = "swe" swe_obs_data_store, swe_crcm4_data_store = _get_comparison_data_swe(swe_var_name= swe_obs_name, season_to_months=season_to_months, start_date=datetime(1980,1,1), end_date=datetime(1997, 1, 1)) plot_utils.apply_plot_params(width_pt= None, font_size=9, aspect_ratio=2.5) fig = plt.figure() assert isinstance(fig, Figure) gs = gridspec.GridSpec(2, 1) basemap = polar_stereographic.basemap swe_season = seasons[1] temp_season = seasons[2] var_names = [ "swe", cru_var_name] the_seasons = [ swe_season, temp_season ] labels = [ "(a) Winter (DJF)", "(b) Sping (MAM)"] units = [ "mm", "$^{\\circ}{\\rm C}$" ] data_stores = [ [swe_obs_data_store, swe_crcm4_data_store], [temp_obs_data_store, temp_crcm4_data_store] ] all_plot_axes = [] for i, season, var_name, store, label, unit in zip(xrange(len(seasons)), the_seasons, var_names, data_stores, labels, units): ax = fig.add_subplot(gs[i, 0]) all_plot_axes.append(ax) assert isinstance(ax, Axes) crcm4 = store[1][season] obs = store[0][season] delta = crcm4 - obs if var_name == "tmp": delta -= 273.15 if var_name == "swe": ax.annotate("(1979-1997)", (0.1, 0.1), xycoords = "axes fraction", font_properties = FontProperties(weight = "bold")) elif var_name == "tmp": ax.annotate("(1970-1999)", (0.1, 0.1), xycoords = "axes fraction", font_properties = FontProperties(weight = "bold")) color_map = my_cm.get_red_blue_colormap(ncolors = 16, reversed=(var_name == "tmp")) color_map.set_over("k") color_map.set_under("k") #delta = maskoceans(polar_stereographic.lons, polar_stereographic.lats, delta) save = delta[i_array, j_array] delta = np.ma.masked_all(delta.shape) delta[i_array, j_array] = save vmin = np.floor( np.min(save) ) vmax = np.ceil( np.max(save) ) decimals = 0 if var_name == "swe" else 1 round_func = lambda x: np.round(x, decimals= decimals) bounds = plot_utils.get_boundaries_for_colobar(vmin, vmax, color_map.N, round_func= round_func) bn = BoundaryNorm( bounds, color_map.N ) img = basemap.pcolormesh(x, y, delta, cmap = color_map, norm = bn) divider = make_axes_locatable(ax) cax = divider.append_axes("right", "8%", pad="3%") fig.colorbar(img, cax = cax, boundaries = bounds, ticks = bounds) ax.set_title(label) cax.set_title(unit) for the_ax in all_plot_axes: the_ax.set_xlim(x_min, x_max) the_ax.set_ylim(y_min, y_max) basemap.drawcoastlines(ax = the_ax, linewidth = 0.1) plot_utils.draw_meridians_and_parallels(basemap, step_degrees=30.0, ax = the_ax) plot_basin_boundaries_from_shape(basemap, axes = the_ax, linewidth=0.4) put_selected_stations(the_ax, basemap, i_array, j_array) fig.tight_layout() fig.savefig("swe_temp_biases.png")
def plot_data(data, i_array, j_array, name='AEX', title = None, digits = 1, color_map = mpl.cm.get_cmap('RdBu_r'), minmax = (None, None), units = '%', colorbar_orientation = 'vertical', draw_colorbar = True, basemap = None, axes = None, impose_lower_limit = None, upper_limited = False ): if name is not None: plt.figure() to_plot = np.ma.masked_all((n_cols, n_rows)) for index, i, j in zip( range(len(data)), i_array, j_array): to_plot[i, j] = data[index] print np.ma.min(data), np.ma.max(data) # m.pcolor(xs, ys, to_plot, cmap = mpl.cm.get_cmap('RdBu_r')) if basemap is None: the_basemap = m else: the_basemap = basemap image = the_basemap.pcolormesh(xs, ys, to_plot.copy(), cmap = color_map, vmin = minmax[0], vmax = minmax[1], ax = axes) #ads to m fields basins and basins_info which contain shapes and information # m.readshapefile('data/shape/contour_bv_MRCC/Bassins_MRCC_utm18', 'basins') # m.scatter(xs, ys, c=to_plot) plot_basin_boundaries_from_shape(m, axes=axes, linewidth = 2.1) #the_basemap.drawrivers(linewidth = 0.5, ax = axes) the_basemap.drawcoastlines(linewidth = 0.5, ax = axes) plot_utils.draw_meridians_and_parallels(the_basemap, step_degrees = 30) axes.set_title(title if title is not None else name) #zoom_to_qc() x_min, x_max, y_min, y_max = plot_utils.get_ranges(xs[i_array, j_array], ys[i_array, j_array]) axes.set_xlim(x_min, x_max) axes.set_ylim(y_min, y_max) if draw_colorbar: from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(axes) cax = divider.append_axes("right", "8%", pad="3%") int_ticker = LinearLocator(numticks = color_map.N + 1) cb = axes.figure.colorbar(image, ticks = int_ticker, orientation = colorbar_orientation, format = '%d', cax = cax, ax=axes, drawedges = True) cb.ax.set_title(units) #cb.outline.remove() bottom, top = cb.ax.get_ylim() left, right = cb.ax.get_xlim() print bottom, top, left, right if impose_lower_limit is None: new_bottom = min( np.min(data), 0 ) else: new_bottom = impose_lower_limit #new_bottom = np.floor( new_bottom / 10.0 ) * 10.0 new_bottom = np.abs((new_bottom - minmax[0]) / (float(minmax[1] - minmax[0]))) new_bottom = plot_utils.get_closest_tick_value(color_map.N + 1, new_bottom) - 1.0e-4 print new_bottom cb.ax.set_ylim(bottom = new_bottom) left, right = cb.ax.get_xlim() bottom, top = cb.ax.get_ylim() #cb.ax.set_xlim(left = 0, right = 0.8) cb.outline.set_visible( False ) if upper_limited: cl = cb.ax.get_yticklabels() labels = [] for text in cl: labels.append(text.get_text()) labels[-1] = '$\\geq$' + labels[-1] cb.ax.set_yticklabels(labels)