示例#1
0
class HCFF2(tr.HasStrictTraits):
    '''High-Cycle Fatigue Filter
    '''

    hcf = tr.Instance(HCFFRoot)

    def _hcf_default(self):
        return HCFFRoot(import_manager=FileImportManager())

    figure = tr.Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(True)
        return figure

    traits_view = ui.View(
        ui.HSplit(
            ui.Item(name='hcf',
                    editor=tree_editor,
                    show_label=False,
                    width=0.3
                    ),
            ui.UItem('figure', editor=MPLFigureEditor(),
                     resizable=True,
                     springy=True,
                     label='2d plots')
        ),
        title='HCF Filter',
        resizable=True,
        width=0.6,
        height=0.6
    )
示例#2
0
class NSolver(HasTraits):
    d_t = Float(0.01)
    t_max = Float(1.)
    k_max = Float(50)
    tolerance = Float(1e-5)
    disps = Str('0.0,10.0')

    d_array = Property(depends_on='disps')
    ''' convert the disps string to float array
    '''
    @cached_property
    def _get_d_array(self):
        return np.array([float(x) for x in self.disps.split(',')])

    time_func = Property(depends_on='disps, t_max')

    @cached_property
    def _get_time_func(self):
        dd_arr = np.abs(np.diff(self.d_array))
        x = np.hstack((0, self.t_max * np.cumsum(dd_arr) / sum(dd_arr)))
        return interp1d(x, self.d_array)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        return figure

    update = Button()

    def _update_fired(self):
        self.figure.clear()
        ax = self.figure.add_subplot(111)
        x = np.arange(0, self.t_max, self.d_t)
        ax.plot(x, self.time_func(x))
        ax.set_xlabel('time')
        ax.set_ylabel('displacement')
        self.figure.canvas.draw()

    view = View(HSplit(Group(Item('d_t'),
                             Item('k_max')),
                       Group(Item('t_max'),
                             Item('tolerance'))),
                Group(Item('disps'),
                      Item('update', show_label=False)),
                Item('figure', editor=MPLFigureEditor(),
                     dock='horizontal', show_label=False),
                kind='modal')
示例#3
0
class MainWindow(HasTraits):
    """ The main window, here go the instructions to create and destroy the application. """
    figure = Instance(Figure)

    panel = Instance(ControlPanel)

    def _figure_default(self):
        figure = Figure()
        figure.add_axes([0.05, 0.04, 0.9, 0.92])
        return figure

    def _panel_default(self):
        return ControlPanel(figure=self.figure)

    view = View(HSplit(Item('figure', editor=MPLFigureEditor(),
                            dock='vertical'),
                       Item('panel', style="custom"),
                       show_labels=False,
                      ),
                resizable=True,
                height=0.75, width=0.75,
                handler=MainWindowHandler(),
                buttons=NoButtons)
示例#4
0
class LoadingScenario(BMCSLeafNode):

    node_name = Str('Loading Scenario')
    number_of_cycles = Float(1.0)
    maximum_loading = Float(0.8)
    unloading_ratio = Range(0., 1., value=0.5)

    loading_type = Enum("Monotonic", "Cyclic")
    amplitude_type = Enum("Constant_Amplitude", "Variable_Amplitude")
    loading_levels = Enum("Increased_blocks(LS2)",
                          "Flexible_loading_levels(LS3,LS4)")

    cycles_n_1 = Float(10.0)
    cycles_n_2 = Float(10.0)
    cycles_n_3 = Float(10.0)
    cycles_n_4 = Float(10.0)
    cycles_n_5 = Float(10.0)

    S_max_1 = Float(1.0)
    S_max_2 = Float(1.0)
    S_max_3 = Float(1.0)
    S_max_4 = Float(1.0)
    S_max_5 = Float(1.0)

    S_min_1 = Range(0., 1., value=0.1)
    S_min_2 = Range(0., 1., value=0.1)
    S_min_3 = Range(0., 1., value=0.1)
    S_min_4 = Range(0., 1., value=0.1)
    S_min_5 = Range(0., 1., value=0.1)

    max_monotonic = Float(10.0)
    number_of_levels = Int(10)
    number_of_cycles_each_level = Int(10)
    s_max_first = Float(0.1)
    s_min_all = Float(0.05)
    s_max_last = Float(0.7)

    number_of_repeted_blocks = Int(2)

    time = Range(0.00, 1.00, value=1.00)

    d_t = Float(0.005)
    t_max = Float(1.)

    d_array = Property(
        depends_on=' d_t, t_max, maximum_loading , number_of_cycles ,\
        loading_type ,amplitude_type, loading_levels , unloading_ratio,\
        cycles_n_1, cycles_n_2,cycles_n_3,cycles_n_4,cycles_n_5,\
        S_max_1,S_max_2,S_max_3,S_max_4,S_max_5,\
        S_min_1,S_min_2,S_min_3,S_min_4,S_min_5,\
        max_monotonic, number_of_levels,s_max_first ,s_min_all ,s_max_last , number_of_cycles_each_level, number_of_repeted_blocks'
    )

    @cached_property
    def _get_d_array(self):
        number_of_increments = self.t_max / self.d_t
        if self.loading_type == "Monotonic":
            self.number_of_cycles = 1
            d_levels = np.linspace(0, self.maximum_loading,
                                   self.number_of_cycles * 2)
            d_levels[0] = 0
            d_levels.reshape(-1, 2)[:, 0] *= 0
            d_history = d_levels.flatten()
            d_arr = np.hstack([
                np.linspace(d_history[i], d_history[i + 1],
                            number_of_increments)
                for i in range(len(d_levels) - 1)
            ])

            return d_arr

        if self.loading_type == "Cyclic" and self.amplitude_type == "Constant_Amplitude":
            d_1 = np.zeros(1)
            d_2 = np.linspace(0, self.maximum_loading,
                              self.number_of_cycles * 2)
            d_2.reshape(-1, 2)[:, 0] = self.maximum_loading
            d_2.reshape(-1, 2)[:, 1] = self.maximum_loading * \
                self.unloading_ratio
            d_history = d_2.flatten()
            d_arr = np.hstack((d_1, d_history))
            d_arr = np.hstack([
                np.linspace(d_arr[i], d_arr[i + 1], number_of_increments)
                for i in range(len(d_arr) - 1)
            ])

            return d_arr

        if self.loading_type == "Cyclic" and self.amplitude_type == "Variable_Amplitude" and self.loading_levels == "Flexible_loading_levels(LS3,LS4)":

            d_0 = np.zeros(1)

            d_1 = np.linspace(0, self.max_monotonic * self.S_max_1,
                              self.cycles_n_1 * 2)
            d_1.reshape(-1, 2)[:, 0] = self.max_monotonic * self.S_max_1
            d_1.reshape(-1, 2)[:, 1] = self.max_monotonic * \
                self.S_min_1
            d_history_1 = d_1.flatten()

            d_2 = np.linspace(0, self.max_monotonic * self.S_max_2,
                              self.cycles_n_2 * 2)
            d_2.reshape(-1, 2)[:, 0] = self.max_monotonic * self.S_max_2
            d_2.reshape(-1, 2)[:, 1] = self.max_monotonic *  \
                self.S_min_2
            d_history_2 = d_2.flatten()

            d_3 = np.linspace(0, self.max_monotonic * self.S_max_3,
                              self.cycles_n_3 * 2)
            d_3.reshape(-1, 2)[:, 0] = self.max_monotonic * self.S_max_3
            d_3.reshape(-1, 2)[:, 1] = self.max_monotonic *  \
                self.S_min_3
            d_history_3 = d_3.flatten()

            d_4 = np.linspace(0, self.max_monotonic * self.S_max_4,
                              self.cycles_n_4 * 2)
            d_4.reshape(-1, 2)[:, 0] = self.max_monotonic * self.S_max_4
            d_4.reshape(-1, 2)[:, 1] = self.max_monotonic *  \
                self.S_min_4
            d_history_4 = d_4.flatten()

            d_5 = np.linspace(0, self.max_monotonic * self.S_max_5,
                              self.cycles_n_5 * 2)
            d_5.reshape(-1, 2)[:, 0] = self.max_monotonic * self.S_max_5
            d_5.reshape(-1, 2)[:, 1] = self.max_monotonic *  \
                self.S_min_5
            d_history_5 = d_5.flatten()

            d_arr_1 = np.hstack((d_0, d_history_1, d_history_2, d_history_3,
                                 d_history_4, d_history_5))

            d_arr = d_arr_1

            n = self.number_of_repeted_blocks

            if n > 1:
                for i in range(1, n):
                    d_arr = np.hstack((d_arr, d_history_1, d_history_2,
                                       d_history_3, d_history_4, d_history_5))

            d_arr = np.hstack([
                np.linspace(d_arr[i], d_arr[i + 1], number_of_increments)
                for i in range(len(d_arr) - 1)
            ])

            self.number_of_cycles = n * \
                (self.cycles_n_1 + self.cycles_n_2 +
                 self.cycles_n_3 + self.cycles_n_4 + self.cycles_n_5)

            return d_arr

        if self.loading_type == "Cyclic" and self.amplitude_type == "Variable_Amplitude" and self.loading_levels == "Increased_blocks(LS2)":

            d_arr_1 = np.zeros(1)

            for i in range(1, self.number_of_levels + 1, 1):

                d_i = np.linspace(
                    0,
                    self.max_monotonic *
                    (self.s_max_first + (i - 1.0) *
                     (self.s_max_last - self.s_max_first) /
                     (self.number_of_levels - 1.0)),
                    self.number_of_cycles_each_level * 2)
                d_i.reshape(-1, 2)[:, 0] = self.max_monotonic * (
                    self.s_max_first + (i - 1.0) *
                    (self.s_max_last - self.s_max_first) /
                    (self.number_of_levels - 1.0))
                d_i.reshape(-1, 2)[:, 1] = self.max_monotonic * self.s_min_all

                d_history_i = d_i.flatten()

                d_arr_1 = np.hstack((d_arr_1, d_history_i))

            d_arr = d_arr_1

            n = self.number_of_repeted_blocks
            for i in range(1, n):
                d_arr = np.hstack((d_arr, d_arr_1[1:]))
            d_arr = np.hstack([
                np.linspace(d_arr[i], d_arr[i + 1], number_of_increments)
                for i in range(len(d_arr) - 1)
            ])

            self.number_of_cycles = n * \
                (self.number_of_levels * self.number_of_cycles_each_level)

            return d_arr

    time_func = Property(
        depends_on=
        'loading_type ,amplitude_type, loading_levels ,maximum_loading,\
        S_max_1,  S_max_2, S_max_3, S_max_4,\
        S_max_5, t_max ,d_t, d_array,max_monotonic, number_of_levels,\
        s_max_first ,s_min_all ,s_max_last , number_of_cycles_each_level, number_of_repeted_blocks'
    )

    @cached_property
    def _get_time_func(self):
        t_arr = np.linspace(0, self.t_max, len(self.d_array))
        return interp1d(t_arr, self.d_array)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        return figure

    update = Button()

    def _update_fired(self):
        self.figure.clear()
        ax = self.figure.add_subplot(111)
        x = np.arange(0, self.t_max, self.d_t)
        ax.plot(x, self.time_func(x), 'k')
        ax.set_xlabel('time')
        ax.set_ylabel('displacement')
        self.figure.canvas.draw()

    view = View(
        VGroup(
            Group(Item('loading_type'),
                  Item('maximum_loading'),
                  Item('number_of_cycles'),
                  Item('amplitude_type'),
                  Item('loading_levels'),
                  Item('unloading_ratio'),
                  show_border=True,
                  label='Cyclic load inputs'),
            Group(Item('d_t'),
                  Item('t_max'),
                  show_border=True,
                  label='Solver Settings'),
            Group(Item('max_monotonic'),
                  HGroup(Item('number_of_levels'),
                         Item('number_of_cycles_each_level')),
                  HGroup(Item('s_max_first'), Item('s_max_last')),
                  Item('s_min_all'),
                  show_border=True,
                  label='Increased Loading (LS2)'),
            Group(HGroup(Item('cycles_n_1'), Item('S_max_1')),
                  Item('S_min_1'),
                  HGroup(Item('cycles_n_2'), Item('S_max_2')),
                  Item('S_min_2'),
                  HGroup(Item('cycles_n_3'), Item('S_max_3')),
                  Item('S_min_3'),
                  HGroup(Item('cycles_n_4'), Item('S_max_4')),
                  Item('S_min_4'),
                  HGroup(Item('cycles_n_5'), Item('S_max_5')),
                  Item('S_min_5'),
                  Item('number_of_repeted_blocks'),
                  show_border=True,
                  label='flexible Loading Blocks (LS3,LS4)')),
        Group(Item('update', label='Plot Loading scenario')),
        Item('figure',
             editor=MPLFigureEditor(),
             dock='horizontal',
             show_label=False), Item('time', label='t/T_max'))
示例#5
0
class BMCSVizSheet(ROutputSection):
    '''Vieualization sheet
    - controls the time displayed
    - contains several vizualization adapters.
    This class could be called BMCSTV - for watching the time
    dependent response. It can have several channels - in 2D and 3D
    '''
    def __init__(self, *args, **kw):
        super(BMCSVizSheet, self).__init__(*args, **kw)
        self.on_trait_change(self.viz2d_list_items_changed, 'viz2d_list_items')

    name = Str

    hist = Instance(IHist)

    min = Float(0.0)
    '''Simulation start is always 0.0
    '''
    max = Float(1.0)
    '''Upper range limit of the current simulator.
    This range is determined by the the time-loop range
    of the model. 
    '''
    vot = Float

    def _vot_default(self):
        return self.min

    def _vot_changed(self):
        if self.hist:
            self.hist.vot = self.vot

    vot_slider = Range(low='min',
                       high='max',
                       step=0.01,
                       enter_set=True,
                       auto_set=False)
    '''Time line controlling the current state of the simulation.
    this value is synchronized with the control time of the
    time loop setting the tline. The vot_max = tline.max.
    The value of vot follows the value of tline.val in monitoring mode.
    By default, the monitoring mode is active with vot = tline.value.
    When sliding to a value vot < tline.value, the browser mode is activated.
    When sliding into the range vot > tline.value the monitoring mode
    is reactivated. 
    '''

    def _vot_slider_default(self):
        return 0.0

    mode = Enum('monitor', 'browse')

    def _mode_changed(self):
        if self.mode == 'browse':
            self.offline = False

    time = Float(0.0)

    def time_range_changed(self, max_):
        self.max = max_

    def time_changed(self, time):
        self.time = time
        if self.mode == 'monitor':
            self.vot = time
            self.vot_slider = time

    def _vot_slider_changed(self):
        if self.mode == 'browse':
            if self.vot_slider >= self.time:
                self.mode = 'monitor'
                self.vot_slider = self.time
                self.vot = self.time
            else:
                self.vot = self.vot_slider
        elif self.mode == 'monitor':
            if self.vot_slider < self.time:
                self.mode = 'browse'
                self.vot = self.vot_slider
            else:
                self.vot_slider = self.time
                self.vot = self.time

    offline = Bool(True)
    '''If the sheet is offline, the plot refresh is inactive.
    The sheet starts in offline mode and is activated once the signal
    run_started has been received. Upon run_finished the 
    the sheet goes directly into the offline mode again.
    
    If the user switches to browser mode, the vizsheet gets online 
    and reploting is activated.
    '''

    running = Bool(False)

    def run_started(self):
        self.running = True
        self.offline = False
        for pp in self.pp_list:
            pp.clear()
        self.mode = 'monitor'
        if self.reference_viz2d:
            ax = self.reference_axes
            ax.clear()
            self.reference_viz2d.reset(ax)

    def run_finished(self):
        self.skipped_steps = self.monitor_chunk_size
        # self.update_pipeline(1.0)
        self.replot()
        self.running = False
        self.offline = True

    monitor_chunk_size = Int(10, label='Monitor each # steps')

    skipped_steps = Int(1)

    @on_trait_change('vot,n_cols')
    def replot(self):
        if self.offline:
            return
        if self.running and self.mode == 'monitor' and \
                self.skipped_steps < (self.monitor_chunk_size - 1):
            self.skipped_steps += 1
            return
        for pp in self.pp_list:
            pp.replot(self.vot)


#         for viz2d, ax in self.axes.items():
#             ax.clear()
#             viz2d.clear()
#             viz2d.plot(ax, self.vot)
#         if self.selected_pp:
#             self.selected_pp.align_xaxis()
        if self.reference_viz2d:
            ax = self.reference_axes
            ax.clear()
            self.reference_viz2d.clear()
            self.reference_viz2d.plot(ax, self.vot)
        self.data_changed = True
        self.skipped_steps = 0
        if self.mode == 'browse':
            self.update_pipeline(self.vot)
        else:
            up = RunThread(self, self.vot)
            up.start()

    viz2d_list = List(Viz2D)
    '''List of visualization adaptors for 2D.
    '''
    viz2d_dict = Property

    def _get_viz2d_dict(self):
        return {viz2d.name: viz2d for viz2d in self.viz2d_list}

    viz2d_names = Property
    '''Names to be supplied to the selector of the
    reference graph.
    '''

    def _get_viz2d_names(self):
        return list(self.viz2d_dict.keys())

    viz2d_list_editor_clicked = Tuple
    viz2d_list_changed = Event

    def _viz2d_list_editor_clicked_changed(self, *args, **kw):
        _, column = self.viz2d_list_editor_clicked
        self.offline = False
        self.viz2d_list_changed = True
        if self.plot_mode == 'single':
            if column.name == 'visible':
                self.selected_viz2d.visible = True
                self.plot_mode = 'multiple'
            else:
                self.replot()
        elif self.plot_mode == 'multiple':
            if column.name != 'visible':
                self.plot_mode = 'single'
            else:
                self.replot()

    plot_mode = Enum('multiple', 'single')

    def _plot_mode_changed(self):
        if self.plot_mode == 'single':
            self.replot_selected_viz2d()
        elif self.plot_mode == 'multiple':
            self.replot()

    def replot_selected_viz2d(self):
        for viz2d in self.viz2d_list:
            viz2d.visible = False
        self.selected_viz2d.visible = True
        self.n_cols = 1
        self.viz2d_list_changed = True
        self.replot()

    def viz2d_list_items_changed(self):
        self.replot()

    def get_subrecords(self):
        '''What is this good for?
        '''
        return self.viz2d_list

    export_button = Button(label='Export selected diagram')

    def plot_in_window(self):
        fig = plt.figure(figsize=(self.fig_width, self.fig_height))
        ax = fig.add_subplot(111)
        self.selected_viz2d.plot(ax, self.vot)
        fig.show()

    def _export_button_fired(self, vot=0):
        print('in export button fired')
        Thread(target=self.plot_in_window).start()
        print('thread started')

    fig_width = Float(8.0, auto_set=False, enter_set=True)
    fig_height = Float(5.0, auto_set=False, enter_set=True)

    save_button = Button(label='Save selected diagram')

    animate_button = Button(label='Animate selected diagram')

    def _animate_button_fired(self):
        ad = AnimationDialog(sheet=self)
        ad.edit_traits()
        return

    #=========================================================================
    # Reference figure serving for orientation.
    #=========================================================================
    reference_viz2d_name = Enum('', values="viz2d_names")
    '''Current name of the reference graphs.
    '''

    def _reference_viz2d_name_changed(self):
        self.replot()

    reference_viz2d_cumulate = Bool(False, label='cumulate')
    reference_viz2d = Property(Instance(Viz2D),
                               depends_on='reference_viz2d_name')
    '''Visualization of a graph showing the time context of the
    current visualization state. 
    '''

    def _get_reference_viz2d(self):
        if self.reference_viz2d_name == None:
            if len(self.viz2d_dict):
                return self.viz2d_list[0]
            else:
                return None
        return self.viz2d_dict[self.reference_viz2d_name]

    reference_figure = Instance(Figure)

    def _reference_figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(True)
        return figure

    reference_axes = Property(List, depends_on='reference_viz2d_name')
    '''Derived axes objects reflecting the layout of plot pane
    and the individual. 
    '''

    @cached_property
    def _get_reference_axes(self):
        return self.reference_figure.add_subplot(1, 1, 1)

    selected_viz2d = Instance(Viz2D)

    def _selected_viz2d_changed(self):
        if self.plot_mode == 'single':
            self.replot_selected_viz2d()

    n_cols = Range(low=1,
                   high=3,
                   value=2,
                   label='Number of columns',
                   tooltip='Defines a number of columns within the plot pane',
                   enter_set=True,
                   auto_set=False)

    figure = Instance(Figure)

    tight_layout = Bool(True)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(self.tight_layout)
        return figure

    visible_viz2d_list = Property(
        List,
        depends_on='viz2d_list,viz2d_list_items,n_cols,viz2d_list_changed')
    '''Derived axes objects reflecting the layout of plot pane
    and the individual. 
    '''

    @cached_property
    def _get_visible_viz2d_list(self):
        viz_list = []
        for viz2d in self.viz2d_list:
            if viz2d.visible:
                viz_list.append(viz2d)
        return viz_list

    pp_list = List(PlotPerspective)

    selected_pp = Instance(PlotPerspective)

    xaxes = Property(List, depends_on='selected_pp')
    '''Derived axes objects reflecting the layout of plot pane
    and the individual. 
    '''

    @cached_property
    def _get_xaxes(self):
        self.figure.clear()
        if self.selected_pp:
            self.selected_pp.figure = self.figure
            ad = self.selected_pp.axes
        else:
            n_fig = len(self.visible_viz2d_list)
            n_cols = self.n_cols
            n_rows = (n_fig + n_cols - 1) / self.n_cols
            ad = {
                viz2d: self.figure.add_subplot(n_rows, self.n_cols, i + 1)
                for i, viz2d in enumerate(self.visible_viz2d_list)
            }
        return ad

    data_changed = Event

    bgcolor = tr.Tuple(1.0, 1.0, 1.0)
    fgcolor = tr.Tuple(0.0, 0.0, 0.0)

    scene = Instance(MlabSceneModel)

    def _scene_default(self):
        return MlabSceneModel()

    mlab = Property(depends_on='input_change')
    '''Get the mlab handle'''

    def _get_mlab(self):
        return self.scene.mlab

    fig = Property()
    '''Figure for 3D visualization.
    '''

    @cached_property
    def _get_fig(self):
        fig = self.mlab.gcf()
        bgcolor = tuple(self.bgcolor)
        fgcolor = tuple(self.fgcolor)
        self.mlab.figure(fig, fgcolor=fgcolor, bgcolor=bgcolor)
        return fig

    def show(self, *args, **kw):
        '''Render the visualization.
        '''
        self.mlab.show(*args, **kw)

    def add_viz3d(self, viz3d, order=1):
        '''Add a new visualization objectk.'''
        viz3d.ftv = self
        vis3d = viz3d.vis3d
        name = viz3d.name
        label = '%s[%s:%s]-%s' % (name, str(
            vis3d.__class__), str(viz3d.__class__), vis3d)
        if label in self.viz3d_dict:
            raise KeyError('viz3d object named %s already registered' % label)
        viz3d.order = order
        self.viz3d_dict[label] = viz3d

    viz3d_dict = tr.Dict(tr.Str, tr.Instance(Viz3D))
    '''Dictionary of visualization objects.
    '''

    viz3d_list = tr.Property

    def _get_viz3d_list(self):
        map_order_viz3d = {}
        for idx, (viz3d) in enumerate(self.viz3d_dict.values()):
            order = viz3d.order
            map_order_viz3d['%5g%5g' % (order, idx)] = viz3d
        return [map_order_viz3d[key] for key in sorted(map_order_viz3d.keys())]

    pipeline_ready = Bool(False)

    def setup_pipeline(self):
        if self.pipeline_ready:
            return
        self.fig
        fig = self.mlab.gcf()
        fig.scene.disable_render = True
        for viz3d in self.viz3d_list:
            viz3d.setup()
        fig.scene.disable_render = False
        self.pipeline_ready = True

    def update_pipeline(self, vot):
        self.setup_pipeline()
        # get the current constrain information
        self.vot = vot
        fig = self.mlab.gcf()
        fig.scene.disable_render = True
        for viz3d in self.viz3d_list:
            viz3d.plot(vot)
        fig.scene.disable_render = False

    selected_viz3d = Instance(Viz3D)

    def _selected_viz3d_changed(self):
        print('selection done')

    # Traits view definition:
    traits_view = View(
        VSplit(
            HSplit(
                Tabbed(
                    UItem(
                        'pp_list',
                        id='notebook',
                        style='custom',
                        resizable=True,
                        editor=ListEditor(
                            use_notebook=True,
                            deletable=False,
                            # selected='selected_pp',
                            export='DockWindowShell',
                            page_name='.name')),
                    UItem('scene',
                          label='3d scene',
                          editor=SceneEditor(scene_class=MayaviScene)),
                    scrollable=True,
                    label='Plot panel'),
                VGroup(
                    Item('n_cols', width=250),
                    Item('plot_mode@', width=250),
                    VSplit(
                        UItem('viz2d_list@',
                              editor=viz2d_list_editor,
                              width=100),
                        UItem('selected_viz2d@', width=200),
                        UItem('pp_list@', editor=pp_list_editor, width=100),
                        #                         UItem('selected_pp@',
                        #                               width=200),
                        UItem('viz3d_list@',
                              editor=viz3d_list_editor,
                              width=100),
                        UItem('selected_viz3d@', width=200),
                        VGroup(
                            #                             UItem('export_button',
                            #                                   springy=False, resizable=True),
                            #                             VGroup(
                            #                                 HGroup(
                            #                                     UItem('fig_width', springy=True,
                            #                                           resizable=False),
                            #                                     UItem('fig_height', springy=True),
                            #                                 ),
                            #                                 label='Figure size'
                            #                             ),
                            UItem('animate_button',
                                  springy=False,
                                  resizable=True), ),
                        VGroup(
                            UItem('reference_viz2d_name', resizable=True),
                            UItem(
                                'reference_figure',
                                editor=MPLFigureEditor(),
                                width=200,
                                # springy=True
                            ),
                            label='Reference graph',
                        )),
                    label='Plot configure',
                    scrollable=True),
            ),
            VGroup(
                HGroup(
                    Item('mode', resizable=False, springy=False),
                    Item('monitor_chunk_size', resizable=False, springy=False),
                ),
                Item('vot_slider', height=40),
            )),
        resizable=True,
        width=0.8,
        height=0.8,
        buttons=['OK', 'Cancel'])
示例#6
0
class PlotPerspective(HasStrictTraits):
    name = Str('<unnamed>')
    viz2d_list = List(Viz2D, input=True)
    positions = List([], input=True)
    twinx = List([], input=True)
    twiny = List([], input=True)
    data_changed = Event

    figure = Instance(Figure)

    tight_layout = Bool(True)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(self.tight_layout)
        return figure

    viz2d_axes = Property

    @cached_property
    def _get_viz2d_axes(self):
        return {
            viz2d: self.figure.add_subplot(loc)
            for viz2d, loc in zip(self.viz2d_list, self.positions)
        }

    twinx_axes = Property

    @cached_property
    def _get_twinx_axes(self):
        return {
            viz_2: self.viz2d_axes[viz_1].twinx()
            for viz_1, viz_2, _ in self.twinx
        }

    twiny_axes = Property

    @cached_property
    def _get_twiny_axes(self):
        return {
            viz_2: self.viz2d_axes[viz_1].twiny()
            for viz_1, viz_2, _ in self.twiny
        }

    axes = Property

    @cached_property
    def _get_axes(self):
        ad = {}
        ad.update(self.viz2d_axes)
        ad.update(self.twinx_axes)
        ad.update(self.twiny_axes)
        return ad

    def clear(self):
        for viz2d, ax in self.viz2d_axes.items():
            ax.clear()
            viz2d.reset(ax)
        for viz2d, ax in self.twinx_axes.items():
            ax.clear()
            viz2d.reset(ax)
        for viz2d, ax in self.twiny_axes.items():
            ax.clear()
            viz2d.reset(ax)

    def replot(self, vot):
        for viz2d, ax in self.axes.items():
            ax.clear()
            viz2d.clear()
            viz2d.plot(ax, vot)
        self.data_changed = True

    def align_xaxis(self):
        for v1, v2, alignx in self.twiny:
            if alignx:
                ax1 = self.viz2d_axes[v1]
                ax2 = self.twiny_axes[v2]
                self._align_xaxis(ax1, ax2)

    def _align_xaxis(self, ax1, ax2):
        """Align zeros of the two axes, zooming them out by same ratio"""
        axes = (ax1, ax2)
        extrema = [ax.get_xlim() for ax in axes]
        tops = [extr[1] / (extr[1] - extr[0]) for extr in extrema]
        # Ensure that plots (intervals) are ordered bottom to top:
        if tops[0] > tops[1]:
            axes, extrema, tops = [
                list(reversed(l)) for l in (axes, extrema, tops)
            ]

        # How much would the plot overflow if we kept current zoom levels?
        tot_span = tops[1] + 1 - tops[0]

        b_new_t = extrema[0][0] + tot_span * (extrema[0][1] - extrema[0][0])
        t_new_b = extrema[1][1] - tot_span * (extrema[1][1] - extrema[1][0])
        axes[0].set_xlim(extrema[0][0], b_new_t)
        axes[1].set_xlim(t_new_b, extrema[1][1])

    trait_view = View(
        UItem(
            'figure',
            editor=MPLFigureEditor(),
            resizable=True,
            springy=True,
        ), )
示例#7
0
class MainWindow(HasTraits):

    mats_eval = Instance(MATSEval)

    fets_eval = Instance(FETS1D52ULRH)

    time_stepper = Instance(TStepper)

    time_loop = Instance(TLoop)

    tree = Instance(TreeStructure)

    t_record = Array
    U_record = Array
    F_record = Array
    sf_record = Array
    eps_record = List
    sig_record = List

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        return figure

    plot = Button()

    def _plot_fired(self):
        # assign the material parameters
        self.mats_eval.sigma_y = self.tree.material[0].sigma_y
        self.mats_eval.E_b = self.tree.material[0].E_b
        self.mats_eval.K_bar = self.tree.material[0].K_bar
        self.mats_eval.alpha = self.tree.material[0].alpha
        self.mats_eval.beta = self.tree.material[0].beta
        self.mats_eval.H_bar = self.tree.material[0].H_bar

        # assign the geometry parameters
        self.fets_eval.A_m = self.tree.geometry[0].A_m
        self.fets_eval.P_b = self.tree.geometry[0].P_b
        self.fets_eval.A_f = self.tree.geometry[0].A_f
        self.time_stepper.L_x = self.tree.geometry[0].L_x

        # assign the parameters for solver
        self.time_loop.t_max = self.tree.n_solver[0].t_max
        self.time_loop.d_t = self.tree.n_solver[0].d_t
        self.time_loop.k_max = self.tree.n_solver[0].k_max
        self.time_loop.tolerance = self.tree.n_solver[0].tolerance

        # assign the bc
        self.time_stepper.bc_list[1].value = 1.0
        self.time_stepper.bc_list[
            1].time_function = self.tree.n_solver[0].time_func

        self.draw()
        self.time = 1.00
#         self.figure.canvas.draw()

    ax1 = Property()

    @cached_property
    def _get_ax1(self):
        return self.figure.add_subplot(231)

    ax2 = Property()

    @cached_property
    def _get_ax2(self):
        return self.figure.add_subplot(232)

    ax3 = Property()

    @cached_property
    def _get_ax3(self):
        return self.figure.add_subplot(234)

    ax4 = Property()

    @cached_property
    def _get_ax4(self):
        return self.figure.add_subplot(235)

    ax5 = Property()

    @cached_property
    def _get_ax5(self):
        return self.figure.add_subplot(233)

    ax6 = Property()

    @cached_property
    def _get_ax6(self):
        return self.figure.add_subplot(236)

    def draw(self):
        self.U_record, self.F_record, self.sf_record, self.t_record, self.eps_record, self.sig_record = self.time_loop.eval()
        n_dof = 2 * self.time_stepper.domain.n_active_elems + 1

        slip, sig_n_arr, sig_e_arr, w_arr = self.time_stepper.mats_eval.get_bond_slip()
        self.ax1.cla()
        l_bs, = self.ax1.plot(slip, sig_n_arr)
        self.ax1.plot(slip, sig_e_arr, '--')
        self.ax1.plot(slip, w_arr, '--')
        self.ax1.set_title('bond-slip law')

        self.ax2.cla()
        l_po, = self.ax2.plot(self.U_record[:, n_dof], self.F_record[:, n_dof])
        marker_po, = self.ax2.plot(
            self.U_record[-1, n_dof], self.F_record[-1, n_dof], 'ro')
        self.ax2.set_title('pull-out force-displacement curve')

        self.ax3.cla()
        X = np.linspace(
            0, self.time_stepper.L_x, self.time_stepper.n_e_x + 1)
        X_ip = np.repeat(X, 2)[1:-1]
        l_sf, = self.ax3.plot(X_ip, self.sf_record[-1, :])
        self.ax3.set_title('shear flow in the bond interface')

        self.ax4.cla()
        U = np.reshape(self.U_record[-1, :], (-1, 2)).T
        l_u0, = self.ax4.plot(X, U[0])
        l_u1, = self.ax4.plot(X, U[1])
        l_us, = self.ax4.plot(X, U[1] - U[0])
        self.ax4.set_title('displacement and slip')

        self.ax5.cla()
        l_eps0, = self.ax5.plot(X_ip, self.eps_record[-1][:, :, 0].flatten())
        l_eps1, = self.ax5.plot(X_ip, self.eps_record[-1][:, :, 2].flatten())
        self.ax5.set_title('strain')

        self.ax6.cla()
        l_sig0, = self.ax6.plot(X_ip, self.sig_record[-1][:, :, 0].flatten())
        l_sig1, = self.ax6.plot(X_ip, self.sig_record[-1][:, :, 2].flatten())
        self.ax6.set_title('stress')

        self.ax3.set_ylim(np.amin(self.sf_record), np.amax(self.sf_record))
        self.ax4.set_ylim(np.amin(self.U_record), np.amax(self.U_record))
        self.ax6.set_ylim(np.amin(self.sig_record), np.amax(self.sig_record))

        self.figure.canvas.draw()

    time = Range(0.00, 1.00, value=1.00)

    @on_trait_change('time')
    def draw_t(self):
        idx = (np.abs(self.time * max(self.t_record) - self.t_record)).argmin()
        n_dof = 2 * self.time_stepper.domain.n_active_elems + 1

        self.ax2.cla()
        l_po, = self.ax2.plot(self.U_record[:, n_dof], self.F_record[:, n_dof])
        marker_po, = self.ax2.plot(
            self.U_record[idx, n_dof], self.F_record[idx, n_dof], 'ro')
        self.ax2.set_title('pull-out force-displacement curve')

        self.ax3.cla()
        X = np.linspace(
            0, self.time_stepper.L_x, self.time_stepper.n_e_x + 1)
        X_ip = np.repeat(X, 2)[1:-1]
        l_sf, = self.ax3.plot(X_ip, self.sf_record[idx, :])
        self.ax3.set_title('shear flow in the bond interface')

        self.ax4.cla()
        U = np.reshape(self.U_record[idx, :], (-1, 2)).T
        l_u0, = self.ax4.plot(X, U[0])
        l_u1, = self.ax4.plot(X, U[1])
        l_us, = self.ax4.plot(X, U[1] - U[0])
        self.ax4.set_title('displacement and slip')

        self.ax5.cla()
        l_eps0, = self.ax5.plot(X_ip, self.eps_record[idx][:, :, 0].flatten())
        l_eps1, = self.ax5.plot(X_ip, self.eps_record[idx][:, :, 2].flatten())
        self.ax5.set_title('strain')

        self.ax6.cla()
        l_sig0, = self.ax6.plot(X_ip, self.sig_record[idx][:, :, 0].flatten())
        l_sig1, = self.ax6.plot(X_ip, self.sig_record[idx][:, :, 2].flatten())
        self.ax6.set_title('stress')

        self.ax3.set_ylim(np.amin(self.sf_record), np.amax(self.sf_record))
        self.ax4.set_ylim(np.amin(self.U_record), np.amax(self.U_record))
        self.ax6.set_ylim(np.amin(self.sig_record), np.amax(self.sig_record))

        self.figure.canvas.draw()

    tree_editor = TreeEditor(nodes=[TreeNode(node_for=[TreeStructure],
                                             children='',
                                             label='name',
                                             view=View()),
                                    TreeNode(node_for=[TreeStructure],
                                             children='material',
                                             label='=Material',
                                             auto_open=True,
                                             view=View()),
                                    TreeNode(node_for=[TreeStructure],
                                             children='geometry',
                                             label='=Geometry',
                                             auto_open=True,
                                             view=View()),
                                    TreeNode(node_for=[TreeStructure],
                                             children='n_solver',
                                             label='=Nonlinear Solver',
                                             auto_open=True,
                                             view=View()),
                                    TreeNode(node_for=[Material],
                                             children='',
                                             label='=Material parameters'),
                                    TreeNode(node_for=[Geometry],
                                             children='',
                                             label='=Geometry parameters'),
                                    TreeNode(node_for=[NSolver],
                                             children='',
                                             label='=settings')
                                    ],
                             orientation='vertical')

    view = View(HSplit(Group(VGroup(Item('tree',
                                         editor=tree_editor,
                                         show_label=False),
                                    Item('plot', show_label=False)),
                             Item('time', label='t/T_max')),
                       Item('figure', editor=MPLFigureEditor(),
                            dock='vertical', width=0.7, height=0.9),
                       show_labels=False),
                resizable=True,
                height=0.9, width=1.0
                )
示例#8
0
class LoadingScenario(BMCSLeafNode):

    node_name = Str('Loading Scenario')
    number_of_cycles = Float(1.0)
    maximum_loading = Float(0.5)
    unloading_ratio = Range(0., 1., value=0.5)
    number_of_increments = Float(10)
    loading_type = Enum("Monotonic", "Cyclic")
    amplitude_type = Enum("Increased_Amplitude", "Constant_Amplitude")
    loading_range = Enum("Non_symmetric", "Symmetric")

    time = Range(0.00, 1.00, value=1.00)

    d_t = Float(0.005)
    t_max = Float(1.)
    k_max = Float(200)
    tolerance = Float(1e-4)

    d_array = Property(
        depends_on=
        ' maximum_loading , number_of_cycles , loading_type , loading_range , amplitude_type, unloading_ratio'
    )

    @cached_property
    def _get_d_array(self):

        if self.loading_type == "Monotonic":
            self.number_of_cycles = 1
            d_levels = np.linspace(0, self.maximum_loading,
                                   self.number_of_cycles * 2)
            d_levels[0] = 0
            d_levels.reshape(-1, 2)[:, 0] *= 0
            d_history = d_levels.flatten()
            d_arr = np.hstack([
                np.linspace(d_history[i], d_history[i + 1],
                            self.number_of_increments)
                for i in range(len(d_levels) - 1)
            ])

            return d_arr

        if self.amplitude_type == "Increased_Amplitude" and self.loading_range == "Symmetric":
            d_levels = np.linspace(0, self.maximum_loading,
                                   self.number_of_cycles * 2)
            d_levels.reshape(-1, 2)[:, 0] *= -1
            d_history = d_levels.flatten()
            d_arr = np.hstack([
                np.linspace(d_history[i], d_history[i + 1],
                            self.number_of_increments)
                for i in range(len(d_levels) - 1)
            ])

            return d_arr

        if self.amplitude_type == "Increased_Amplitude" and self.loading_range == "Non_symmetric":
            d_levels = np.linspace(0, self.maximum_loading,
                                   self.number_of_cycles * 2)
            d_levels.reshape(-1, 2)[:, 0] *= 0
            d_history = d_levels.flatten()
            d_arr = np.hstack([
                np.linspace(d_history[i], d_history[i + 1],
                            self.number_of_increments)
                for i in range(len(d_levels) - 1)
            ])

            return d_arr

        if self.amplitude_type == "Constant_Amplitude" and self.loading_range == "Symmetric":
            d_levels = np.linspace(0, self.maximum_loading,
                                   self.number_of_cycles * 2)
            d_levels.reshape(-1, 2)[:, 0] = -self.maximum_loading
            d_levels[0] = 0
            d_levels.reshape(-1, 2)[:, 1] = self.maximum_loading
            d_history = d_levels.flatten()
            d_arr = np.hstack([
                np.linspace(d_history[i], d_history[i + 1],
                            self.number_of_increments)
                for i in range(len(d_levels) - 1)
            ])

            return d_arr

        if self.amplitude_type == "Constant_Amplitude" and self.loading_range == "Non_symmetric":
            # d_1 = np.zeros(self.number_of_cycles*2 + 1)
            d_1 = np.zeros(1)
            d_2 = np.linspace(0, self.maximum_loading,
                              self.number_of_cycles * 2)
            d_2.reshape(-1, 2)[:, 0] = self.maximum_loading
            d_2.reshape(-1, 2)[:, 1] = self.maximum_loading * \
                self.unloading_ratio
            d_history = d_2.flatten()
            d_arr = np.hstack((d_1, d_history))

            return d_arr

    time_func = Property(depends_on='maximum_loading, t_max , d_array')

    @cached_property
    def _get_time_func(self):
        t_arr = np.linspace(0, self.t_max, len(self.d_array))
        return interp1d(t_arr, self.d_array)

    figure = Instance(Figure)

    def _figure_default(self):
        figure = Figure()
        return figure

    update = Button()

    def _update_fired(self):
        self.figure.clear()
        ax = self.figure.add_subplot(111)
        x = np.arange(0, self.t_max, self.d_t)
        ax.plot(x, self.time_func(x))
        ax.set_xlabel('time')
        ax.set_ylabel('displacement')
        self.figure.canvas.draw()

    view = View(
        VGroup(
            Group(Item('loading_type')), Group(Item('maximum_loading')),
            Group(Item('number_of_cycles'),
                  Item('amplitude_type'),
                  Item('loading_range'),
                  Item('unloading_ratio'),
                  show_border=True,
                  label='Cyclic load inputs'),
            Group(Item('d_t'),
                  Item('t_max'),
                  Item('k_max'),
                  show_border=True,
                  label='Solver Settings')),
        Group(Item('update', label='Plot Loading scenario')),
        Item('figure',
             editor=MPLFigureEditor(),
             dock='horizontal',
             show_label=False), Item('time', label='t/T_max'))
示例#9
0
class HCFF(tr.HasStrictTraits):
    '''High-Cycle Fatigue Filter
    '''

    #=========================================================================
    # Traits definitions
    #=========================================================================
    decimal = tr.Enum(',', '.')
    delimiter = tr.Str(';')
    file_csv = tr.File
    open_file_csv = tr.Button('Input file')
    skip_rows = tr.Int(4, auto_set=False, enter_set=True)
    columns_headers_list = tr.List([])
    x_axis = tr.Enum(values='columns_headers_list')
    y_axis = tr.Enum(values='columns_headers_list')
    x_axis_multiplier = tr.Enum(1, -1)
    y_axis_multiplier = tr.Enum(-1, 1)
    npy_folder_path = tr.Str
    file_name = tr.Str
    apply_filters = tr.Bool
    force_name = tr.Str('Kraft')
    peak_force_before_cycles = tr.Float(30)
    plots_num = tr.Enum(1, 2, 3, 4, 6, 9)
    plot_list = tr.List()
    plot = tr.Button
    add_plot = tr.Button
    add_creep_plot = tr.Button
    parse_csv_to_npy = tr.Button
    generate_filtered_npy = tr.Button
    add_columns_average = tr.Button
    force_max = tr.Float(100)
    force_min = tr.Float(40)

    figure = tr.Instance(Figure)

#     plots_list = tr.List(editor=ui.SetEditor(
#         values=['kumquats', 'pomegranates', 'kiwi'],
#         can_move_all=False,
#         left_column_title='List'))

    #=========================================================================
    # File management
    #=========================================================================

    def _open_file_csv_fired(self):
        """ Handles the user clicking the 'Open...' button.
        """
        extns = ['*.csv', ]  # seems to handle only one extension...
        wildcard = '|'.join(extns)

        dialog = FileDialog(title='Select text file',
                            action='open', wildcard=wildcard,
                            default_path=self.file_csv)
        dialog.open()
        self.file_csv = dialog.path

        """ Filling x_axis and y_axis with values """
        headers_array = np.array(
            pd.read_csv(
                self.file_csv, delimiter=self.delimiter, decimal=self.decimal,
                nrows=1, header=None
            )
        )[0]
        for i in range(len(headers_array)):
            headers_array[i] = self.get_valid_file_name(headers_array[i])
        self.columns_headers_list = list(headers_array)

        """ Saving file name and path and creating NPY folder """
        dir_path = os.path.dirname(self.file_csv)
        self.npy_folder_path = os.path.join(dir_path, 'NPY')
        if os.path.exists(self.npy_folder_path) == False:
            os.makedirs(self.npy_folder_path)

        self.file_name = os.path.splitext(os.path.basename(self.file_csv))[0]

    #=========================================================================
    # Parameters of the filter algorithm
    #=========================================================================

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(True)
        return figure

    def _parse_csv_to_npy_fired(self):
        print('Parsing csv into npy files...')

        for i in range(len(self.columns_headers_list)):
            column_array = np.array(pd.read_csv(
                self.file_csv, delimiter=self.delimiter, decimal=self.decimal, skiprows=self.skip_rows, usecols=[i]))
            np.save(os.path.join(self.npy_folder_path, self.file_name +
                                 '_' + self.columns_headers_list[i] + '.npy'), column_array)

        print('Finsihed parsing csv into npy files.')

    def get_valid_file_name(self, original_file_name):
        valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits)
        new_valid_file_name = ''.join(
            c for c in original_file_name if c in valid_chars)
        return new_valid_file_name

#     def _add_columns_average_fired(self):
#         columns_average = ColumnsAverage(
#             columns_names=self.columns_headers_list)
#         # columns_average.set_columns_headers_list(self.columns_headers_list)
#         columns_average.configure_traits()

    def _generate_filtered_npy_fired(self):

        # 1- Export filtered force
        force = np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.force_name + '.npy')).flatten()
        peak_force_before_cycles_index = np.where(
            abs((force)) > abs(self.peak_force_before_cycles))[0][0]
        force_ascending = force[0:peak_force_before_cycles_index]
        force_rest = force[peak_force_before_cycles_index:]

        force_max_indices, force_min_indices = self.get_array_max_and_min_indices(
            force_rest)

        force_max_min_indices = np.concatenate(
            (force_min_indices, force_max_indices))
        force_max_min_indices.sort()

        force_rest_filtered = force_rest[force_max_min_indices]
        force_filtered = np.concatenate((force_ascending, force_rest_filtered))
        np.save(os.path.join(self.npy_folder_path, self.file_name +
                             '_' + self.force_name + '_filtered.npy'), force_filtered)

        # 2- Export filtered displacements
        # TODO I skipped time with presuming it's the first column
        for i in range(1, len(self.columns_headers_list)):
            if self.columns_headers_list[i] != str(self.force_name):

                disp = np.load(os.path.join(self.npy_folder_path, self.file_name +
                                            '_' + self.columns_headers_list[i] + '.npy')).flatten()
                disp_ascending = disp[0:peak_force_before_cycles_index]
                disp_rest = disp[peak_force_before_cycles_index:]
                disp_ascending = savgol_filter(
                    disp_ascending, window_length=51, polyorder=2)
                disp_rest = disp_rest[force_max_min_indices]
                filtered_disp = np.concatenate((disp_ascending, disp_rest))
                np.save(os.path.join(self.npy_folder_path, self.file_name + '_' +
                                     self.columns_headers_list[i] + '_filtered.npy'), filtered_disp)

        # 3- Export creep for displacements
        # Cutting unwanted max min values to get correct full cycles and remove
        # false min/max values caused by noise
        force_max_indices_cutted, force_min_indices_cutted = self.cut_indices_in_range(force_rest,
                                                                                       force_max_indices,
                                                                                       force_min_indices,
                                                                                       self.force_max,
                                                                                       self.force_min)

        print("Cycles number= ", len(force_min_indices))
        print("Cycles number after cutting unwanted max-min range= ",
              len(force_min_indices_cutted))

        # TODO I skipped time with presuming it's the first column
        for i in range(1, len(self.columns_headers_list)):
            if self.columns_headers_list[i] != str(self.force_name):
                disp_rest_maxima = disp_rest[force_max_indices_cutted]
                disp_rest_minima = disp_rest[force_min_indices_cutted]
                np.save(os.path.join(self.npy_folder_path, self.file_name + '_' +
                                     self.columns_headers_list[i] + '_max.npy'), disp_rest_maxima)
                np.save(os.path.join(self.npy_folder_path, self.file_name + '_' +
                                     self.columns_headers_list[i] + '_min.npy'), disp_rest_minima)

        print('Filtered npy files are generated.')

    def cut_indices_in_range(self, array, max_indices, min_indices, range_upper_value, range_lower_value):
        cutted_max_indices = []
        cutted_min_indices = []

        for max_index in max_indices:
            if abs(array[max_index]) > abs(range_upper_value):
                cutted_max_indices.append(max_index)
        for min_index in min_indices:
            if abs(array[min_index]) < abs(range_lower_value):
                cutted_min_indices.append(min_index)
        return cutted_max_indices, cutted_min_indices

    def get_array_max_and_min_indices(self, input_array):

        # Checking dominant sign
        positive_values_count = np.sum(np.array(input_array) >= 0)
        negative_values_count = input_array.size - positive_values_count

        # Getting max and min indices
        if (positive_values_count > negative_values_count):
            force_max_indices = argrelextrema(input_array, np.greater_equal)[0]
            force_min_indices = argrelextrema(input_array, np.less_equal)[0]
        else:
            force_max_indices = argrelextrema(input_array, np.less_equal)[0]
            force_min_indices = argrelextrema(input_array, np.greater_equal)[0]

        # Remove subsequent max/min indices (np.greater_equal will give 1,2 for
        # [4, 8, 8, 1])
        force_max_indices = self.remove_subsequent_max_values(
            force_max_indices)
        force_min_indices = self.remove_subsequent_min_values(
            force_min_indices)

        # If size is not equal remove the last element from the big one
        if force_max_indices.size > force_min_indices.size:
            force_max_indices = force_max_indices[:-1]
        elif force_max_indices.size < force_min_indices.size:
            force_min_indices = force_min_indices[:-1]

        return force_max_indices, force_min_indices

    def remove_subsequent_max_values(self, force_max_indices):
        to_delete_from_maxima = []
        for i in range(force_max_indices.size - 1):
            if force_max_indices[i + 1] - force_max_indices[i] == 1:
                to_delete_from_maxima.append(i)

        force_max_indices = np.delete(force_max_indices, to_delete_from_maxima)
        return force_max_indices

    def remove_subsequent_min_values(self, force_min_indices):
        to_delete_from_minima = []
        for i in range(force_min_indices.size - 1):
            if force_min_indices[i + 1] - force_min_indices[i] == 1:
                to_delete_from_minima.append(i)
        force_min_indices = np.delete(force_min_indices, to_delete_from_minima)
        return force_min_indices

    #=========================================================================
    # Plotting
    #=========================================================================
    plot_figure_num = tr.Int(0)

    def _plot_fired(self):
        ax = self.figure.add_subplot()

    def x_plot_fired(self):
        self.plot_figure_num += 1
        plt.draw()
        plt.show()

    data_changed = tr.Event

    def _add_plot_fired(self):

        if False:  # (len(self.plot_list) >= self.plots_num):
            dialog = MessageDialog(
                title='Attention!', message='Max plots number is {}'.format(self.plots_num))
            dialog.open()
            return

        print('Loading npy files...')

        if self.apply_filters:
            x_axis_name = self.x_axis + '_filtered'
            y_axis_name = self.y_axis + '_filtered'
            x_axis_array = self.x_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.x_axis + '_filtered.npy'))
            y_axis_array = self.y_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.y_axis + '_filtered.npy'))
        else:
            x_axis_name = self.x_axis
            y_axis_name = self.y_axis
            x_axis_array = self.x_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.x_axis + '.npy'))
            y_axis_array = self.y_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.y_axis + '.npy'))

        print('Adding Plot...')
        mpl.rcParams['agg.path.chunksize'] = 50000

#        plt.figure(self.plot_figure_num)
        ax = self.figure.add_subplot(1, 1, 1)

        ax.set_xlabel('Displacement [mm]')
        ax.set_ylabel('kN')
        ax.set_title('Original data', fontsize=20)
        ax.plot(x_axis_array, y_axis_array, 'k', linewidth=0.8)

        self.plot_list.append('{}, {}'.format(x_axis_name, y_axis_name))
        self.data_changed = True
        print('Finished adding plot!')

    def apply_new_subplot(self):
        plt = self.figure
        if (self.plots_num == 1):
            plt.add_subplot(1, 1, 1)
        elif (self.plots_num == 2):
            plot_location = int('12' + str(len(self.plot_list) + 1))
            plt.add_subplot(plot_location)
        elif (self.plots_num == 3):
            plot_location = int('13' + str(len(self.plot_list) + 1))
            plt.add_subplot(plot_location)
        elif (self.plots_num == 4):
            plot_location = int('22' + str(len(self.plot_list) + 1))
            plt.add_subplot(plot_location)
        elif (self.plots_num == 6):
            plot_location = int('23' + str(len(self.plot_list) + 1))
            plt.add_subplot(plot_location)
        elif (self.plots_num == 9):
            plot_location = int('33' + str(len(self.plot_list) + 1))
            plt.add_subplot(plot_location)

    def _add_creep_plot_fired(self):

        plt = self.figure
        if (len(self.plot_list) >= self.plots_num):
            dialog = MessageDialog(
                title='Attention!', message='Max plots number is {}'.format(self.plots_num))
            dialog.open()
            return

        disp_max = self.x_axis_multiplier * \
            np.load(os.path.join(self.npy_folder_path,
                                 self.file_name + '_' + self.x_axis + '_max.npy'))
        disp_min = self.x_axis_multiplier * \
            np.load(os.path.join(self.npy_folder_path,
                                 self.file_name + '_' + self.x_axis + '_min.npy'))

        print('Adding creep plot...')
        mpl.rcParams['agg.path.chunksize'] = 50000

        self.apply_new_subplot()
        plt.xlabel('Cycles number')
        plt.ylabel('mm')
        plt.title('Fatigue creep curve', fontsize=20)
        plt.plot(np.arange(0, disp_max.size), disp_max,
                 'k', linewidth=0.8, color='red')
        plt.plot(np.arange(0, disp_min.size), disp_min,
                 'k', linewidth=0.8, color='green')

        self.plot_list.append('Plot {}'.format(len(self.plot_list) + 1))

        print('Finished adding creep plot!')

    #=========================================================================
    # Configuration of the view
    #=========================================================================

    traits_view = ui.View(
        ui.HSplit(
            ui.VSplit(
                ui.HGroup(
                    ui.UItem('open_file_csv'),
                    ui.UItem('file_csv', style='readonly'),
                    label='Input data'
                ),
                ui.Item('add_columns_average', show_label=False),
                ui.VGroup(
                    ui.Item('skip_rows'),
                    ui.Item('decimal'),
                    ui.Item('delimiter'),
                    ui.Item('parse_csv_to_npy', show_label=False),
                    label='Filter parameters'
                ),
                ui.VGroup(
                    ui.Item('plots_num'),
                    ui.HGroup(ui.Item('x_axis'), ui.Item('x_axis_multiplier')),
                    ui.HGroup(ui.Item('y_axis'), ui.Item('y_axis_multiplier')),
                    ui.HGroup(ui.Item('add_plot', show_label=False),
                              ui.Item('apply_filters')),
                    ui.HGroup(ui.Item('add_creep_plot', show_label=False)),
                    ui.Item('plot_list'),
                    ui.Item('plot', show_label=False),
                    show_border=True,
                    label='Plotting settings'),
            ),
            ui.VGroup(
                ui.Item('force_name'),
                ui.HGroup(ui.Item('peak_force_before_cycles'),
                          show_border=True, label='Skip noise of ascending branch:'),
                #                     ui.Item('plots_list'),
                ui.VGroup(ui.Item('force_max'),
                          ui.Item('force_min'),
                          show_border=True,
                          label='Cut fake cycles for creep:'),
                ui.Item('generate_filtered_npy', show_label=False),
                show_border=True,
                label='Filters'
            ),
            ui.UItem('figure', editor=MPLFigureEditor(),
                     resizable=True,
                     springy=True,
                     width=0.3,
                     label='2d plots'),
        ),
        title='HCFF Filter',
        resizable=True,
        width=0.6,
        height=0.6

    )
class HCFF(tr.HasStrictTraits):
    '''High-Cycle Fatigue Filter
    '''

    #=========================================================================
    # Traits definitions
    #=========================================================================
    decimal = tr.Enum(',', '.')
    delimiter = tr.Str(';')
    records_per_second = tr.Float(100)
    take_time_from_first_column = tr.Bool
    file_csv = tr.File
    open_file_csv = tr.Button('Input file')
    skip_first_rows = tr.Int(3, auto_set=False, enter_set=True)
    columns_headers_list = tr.List([])
    x_axis = tr.Enum(values='columns_headers_list')
    y_axis = tr.Enum(values='columns_headers_list')
    x_axis_multiplier = tr.Enum(1, -1)
    y_axis_multiplier = tr.Enum(-1, 1)
    npy_folder_path = tr.Str
    file_name = tr.Str
    apply_filters = tr.Bool
    normalize_cycles = tr.Bool
    smooth = tr.Bool
    plot_every_nth_point = tr.Range(low=1, high=1000000, mode='spinner')
    force_name = tr.Str('Kraft')
    old_peak_force_before_cycles = tr.Float
    peak_force_before_cycles = tr.Float
    window_length = tr.Int(31)
    polynomial_order = tr.Int(2)
    activate = tr.Bool(False)
    plots_num = tr.Enum(1, 2, 3, 4, 6, 9)
    plot_list = tr.List()
    add_plot = tr.Button
    add_creep_plot = tr.Button(desc='Creep plot of X axis array')
    clear_plot = tr.Button
    parse_csv_to_npy = tr.Button
    generate_filtered_and_creep_npy = tr.Button
    add_columns_average = tr.Button
    force_max = tr.Float(100)
    force_min = tr.Float(40)
    min_cycle_force_range = tr.Float(50)
    cutting_method = tr.Enum('Define min cycle range(force difference)',
                             'Define Max, Min')
    columns_to_be_averaged = tr.List

    figure = tr.Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(True)
        return figure

    #=========================================================================
    # File management
    #=========================================================================

    def _open_file_csv_fired(self):

        self.reset()
        """ Handles the user clicking the 'Open...' button.
        """
        extns = [
            '*.csv',
        ]  # seems to handle only one extension...
        wildcard = '|'.join(extns)

        dialog = FileDialog(title='Select text file',
                            action='open',
                            wildcard=wildcard,
                            default_path=self.file_csv)

        result = dialog.open()
        """ Test if the user opened a file to avoid throwing an exception if he 
        doesn't """
        if result == OK:
            self.file_csv = dialog.path
        else:
            return
        """ Filling x_axis and y_axis with values """
        headers_array = np.array(
            pd.read_csv(self.file_csv,
                        delimiter=self.delimiter,
                        decimal=self.decimal,
                        nrows=1,
                        header=None))[0]
        for i in range(len(headers_array)):
            headers_array[i] = self.get_valid_file_name(headers_array[i])
        self.columns_headers_list = list(headers_array)
        """ Saving file name and path and creating NPY folder """
        dir_path = os.path.dirname(self.file_csv)
        self.npy_folder_path = os.path.join(dir_path, 'NPY')
        if os.path.exists(self.npy_folder_path) == False:
            os.makedirs(self.npy_folder_path)

        self.file_name = os.path.splitext(os.path.basename(self.file_csv))[0]

    def _parse_csv_to_npy_fired(self):
        print('Parsing csv into npy files...')

        for i in range(
                len(self.columns_headers_list) -
                len(self.columns_to_be_averaged)):
            column_array = np.array(
                pd.read_csv(self.file_csv,
                            delimiter=self.delimiter,
                            decimal=self.decimal,
                            skiprows=self.skip_first_rows,
                            usecols=[i]))
            """ TODO! Create time array supposing it's column is the
            first one in the file and that we have 100 reads in 1 second """
            if i == 0 and self.take_time_from_first_column == False:
                column_array = np.arange(start=0.0,
                                         stop=len(column_array) /
                                         self.records_per_second,
                                         step=1.0 / self.records_per_second)

            np.save(
                os.path.join(
                    self.npy_folder_path, self.file_name + '_' +
                    self.columns_headers_list[i] + '.npy'), column_array)
        """ Exporting npy arrays of averaged columns """
        for columns_names in self.columns_to_be_averaged:
            temp = np.zeros((1))
            for column_name in columns_names:
                temp = temp + np.load(
                    os.path.join(self.npy_folder_path, self.file_name + '_' +
                                 column_name + '.npy')).flatten()
            avg = temp / len(columns_names)

            avg_file_suffex = self.get_suffex_for_columns_to_be_averaged(
                columns_names)
            np.save(
                os.path.join(self.npy_folder_path,
                             self.file_name + '_' + avg_file_suffex + '.npy'),
                avg)

        print('Finsihed parsing csv into npy files.')

    def get_suffex_for_columns_to_be_averaged(self, columns_names):
        suffex_for_saved_file_name = 'avg_' + '_'.join(columns_names)
        return suffex_for_saved_file_name

    def get_valid_file_name(self, original_file_name):
        valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits)
        new_valid_file_name = ''.join(c for c in original_file_name
                                      if c in valid_chars)
        return new_valid_file_name

    def _clear_plot_fired(self):
        self.figure.clear()
        self.plot_list = []
        self.data_changed = True

    def _add_columns_average_fired(self):
        columns_average = ColumnsAverage()
        for name in self.columns_headers_list:
            columns_average.columns.append(Column(column_name=name))

        # kind='modal' pauses the implementation until the window is closed
        columns_average.configure_traits(kind='modal')

        columns_to_be_averaged_temp = []
        for i in columns_average.columns:
            if i.selected:
                columns_to_be_averaged_temp.append(i.column_name)

        if columns_to_be_averaged_temp:  # If it's not empty
            self.columns_to_be_averaged.append(columns_to_be_averaged_temp)

            avg_file_suffex = self.get_suffex_for_columns_to_be_averaged(
                columns_to_be_averaged_temp)
            self.columns_headers_list.append(avg_file_suffex)

    def _generate_filtered_and_creep_npy_fired(self):

        if self.npy_files_exist(
                os.path.join(self.npy_folder_path, self.file_name + '_' +
                             self.force_name + '.npy')) == False:
            return

        # 1- Export filtered force
        force = np.load(
            os.path.join(self.npy_folder_path, self.file_name + '_' +
                         self.force_name + '.npy')).flatten()
        peak_force_before_cycles_index = np.where(
            abs((force)) > abs(self.peak_force_before_cycles))[0][0]
        force_ascending = force[0:peak_force_before_cycles_index]
        force_rest = force[peak_force_before_cycles_index:]

        force_max_indices, force_min_indices = self.get_array_max_and_min_indices(
            force_rest)

        force_max_min_indices = np.concatenate(
            (force_min_indices, force_max_indices))
        force_max_min_indices.sort()

        force_rest_filtered = force_rest[force_max_min_indices]
        force_filtered = np.concatenate((force_ascending, force_rest_filtered))
        np.save(
            os.path.join(
                self.npy_folder_path,
                self.file_name + '_' + self.force_name + '_filtered.npy'),
            force_filtered)

        # 2- Export filtered displacements
        # TODO I skipped time presuming it's the first column
        for i in range(1, len(self.columns_headers_list)):
            if self.columns_headers_list[i] != str(self.force_name):

                disp = np.load(
                    os.path.join(
                        self.npy_folder_path, self.file_name + '_' +
                        self.columns_headers_list[i] + '.npy')).flatten()
                disp_ascending = disp[0:peak_force_before_cycles_index]
                disp_rest = disp[peak_force_before_cycles_index:]

                if self.activate == True:
                    disp_ascending = savgol_filter(
                        disp_ascending,
                        window_length=self.window_length,
                        polyorder=self.polynomial_order)

                disp_rest_filtered = disp_rest[force_max_min_indices]
                filtered_disp = np.concatenate(
                    (disp_ascending, disp_rest_filtered))
                np.save(
                    os.path.join(
                        self.npy_folder_path, self.file_name + '_' +
                        self.columns_headers_list[i] + '_filtered.npy'),
                    filtered_disp)

        # 3- Export creep for displacements
        # Cutting unwanted max min values to get correct full cycles and remove
        # false min/max values caused by noise
        if self.cutting_method == "Define Max, Min":
            force_max_indices_cutted, force_min_indices_cutted = \
                self.cut_indices_of_min_max_range(force_rest,
                                                  force_max_indices,
                                                  force_min_indices,
                                                  self.force_max,
                                                  self.force_min)
        elif self.cutting_method == "Define min cycle range(force difference)":
            force_max_indices_cutted, force_min_indices_cutted = \
                self.cut_indices_of_defined_range(force_rest,
                                                  force_max_indices,
                                                  force_min_indices,
                                                  self.min_cycle_force_range)

        print("Cycles number= ", len(force_min_indices))
        print("Cycles number after cutting fake cycles because of noise= ",
              len(force_min_indices_cutted))

        # TODO I skipped time with presuming it's the first column
        for i in range(1, len(self.columns_headers_list)):
            array = np.load(
                os.path.join(
                    self.npy_folder_path, self.file_name + '_' +
                    self.columns_headers_list[i] + '.npy')).flatten()
            array_rest = array[peak_force_before_cycles_index:]
            array_rest_maxima = array_rest[force_max_indices_cutted]
            array_rest_minima = array_rest[force_min_indices_cutted]
            np.save(
                os.path.join(
                    self.npy_folder_path, self.file_name + '_' +
                    self.columns_headers_list[i] + '_max.npy'),
                array_rest_maxima)
            np.save(
                os.path.join(
                    self.npy_folder_path, self.file_name + '_' +
                    self.columns_headers_list[i] + '_min.npy'),
                array_rest_minima)

        print('Filtered and creep npy files are generated.')

    def cut_indices_of_min_max_range(self, array, max_indices, min_indices,
                                     range_upper_value, range_lower_value):
        cutted_max_indices = []
        cutted_min_indices = []

        for max_index in max_indices:
            if abs(array[max_index]) > abs(range_upper_value):
                cutted_max_indices.append(max_index)
        for min_index in min_indices:
            if abs(array[min_index]) < abs(range_lower_value):
                cutted_min_indices.append(min_index)
        return cutted_max_indices, cutted_min_indices

    def cut_indices_of_defined_range(self, array, max_indices, min_indices,
                                     range_):
        cutted_max_indices = []
        cutted_min_indices = []

        for max_index, min_index in zip(max_indices, min_indices):
            if abs(array[max_index] - array[min_index]) > range_:
                cutted_max_indices.append(max_index)
                cutted_min_indices.append(min_index)

        return cutted_max_indices, cutted_min_indices

    def get_array_max_and_min_indices(self, input_array):

        # Checking dominant sign
        positive_values_count = np.sum(np.array(input_array) >= 0)
        negative_values_count = input_array.size - positive_values_count

        # Getting max and min indices
        if (positive_values_count > negative_values_count):
            force_max_indices = argrelextrema(input_array, np.greater_equal)[0]
            force_min_indices = argrelextrema(input_array, np.less_equal)[0]
        else:
            force_max_indices = argrelextrema(input_array, np.less_equal)[0]
            force_min_indices = argrelextrema(input_array, np.greater_equal)[0]

        # Remove subsequent max/min indices (np.greater_equal will give 1,2 for
        # [4, 8, 8, 1])
        force_max_indices = self.remove_subsequent_max_values(
            force_max_indices)
        force_min_indices = self.remove_subsequent_min_values(
            force_min_indices)

        # If size is not equal remove the last element from the big one
        if force_max_indices.size > force_min_indices.size:
            force_max_indices = force_max_indices[:-1]
        elif force_max_indices.size < force_min_indices.size:
            force_min_indices = force_min_indices[:-1]

        return force_max_indices, force_min_indices

    def remove_subsequent_max_values(self, force_max_indices):
        to_delete_from_maxima = []
        for i in range(force_max_indices.size - 1):
            if force_max_indices[i + 1] - force_max_indices[i] == 1:
                to_delete_from_maxima.append(i)

        force_max_indices = np.delete(force_max_indices, to_delete_from_maxima)
        return force_max_indices

    def remove_subsequent_min_values(self, force_min_indices):
        to_delete_from_minima = []
        for i in range(force_min_indices.size - 1):
            if force_min_indices[i + 1] - force_min_indices[i] == 1:
                to_delete_from_minima.append(i)
        force_min_indices = np.delete(force_min_indices, to_delete_from_minima)
        return force_min_indices

    def _activate_changed(self):
        if self.activate == False:
            self.old_peak_force_before_cycles = self.peak_force_before_cycles
            self.peak_force_before_cycles = 0
        else:
            self.peak_force_before_cycles = self.old_peak_force_before_cycles

    def _window_length_changed(self, new):

        if new <= self.polynomial_order:
            dialog = MessageDialog(
                title='Attention!',
                message='Window length must be bigger than polynomial order.')
            dialog.open()

        if new % 2 == 0 or new <= 0:
            dialog = MessageDialog(
                title='Attention!',
                message='Window length must be odd positive integer.')
            dialog.open()

    def _polynomial_order_changed(self, new):

        if new >= self.window_length:
            dialog = MessageDialog(
                title='Attention!',
                message='Polynomial order must be less than window length.')
            dialog.open()

    #=========================================================================
    # Plotting
    #=========================================================================

    plot_list_current_elements_num = tr.Int(0)

    def npy_files_exist(self, path):
        if os.path.exists(path) == True:
            return True
        else:
            dialog = MessageDialog(
                title='Attention!',
                message='Please parse csv file to generate npy files first.'.
                format(self.plots_num))
            dialog.open()
            return False

    def filtered_and_creep_npy_files_exist(self, path):
        if os.path.exists(path) == True:
            return True
        else:
            dialog = MessageDialog(
                title='Attention!',
                message='Please generate filtered and creep npy files first.'.
                format(self.plots_num))
            dialog.open()
            return False

    def max_plots_number_is_reached(self):
        if len(self.plot_list) >= self.plots_num:
            dialog = MessageDialog(title='Attention!',
                                   message='Max plots number is {}'.format(
                                       self.plots_num))
            dialog.open()
            return True
        else:
            return False

    def _plot_list_changed(self):
        if len(self.plot_list) > self.plot_list_current_elements_num:
            self.plot_list_current_elements_num = len(self.plot_list)

    data_changed = tr.Event

    def _add_plot_fired(self):

        if self.max_plots_number_is_reached() == True:
            return

        if self.apply_filters:

            if self.filtered_and_creep_npy_files_exist(
                    os.path.join(
                        self.npy_folder_path, self.file_name + '_' +
                        self.x_axis + '_filtered.npy')) == False:
                return

            x_axis_name = self.x_axis + '_filtered'
            y_axis_name = self.y_axis + '_filtered'

            print('Loading npy files...')

            x_axis_array = self.x_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.x_axis
                                     + '_filtered.npy'))
            y_axis_array = self.y_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.y_axis
                                     + '_filtered.npy'))
        else:

            if self.npy_files_exist(
                    os.path.join(self.npy_folder_path, self.file_name + '_' +
                                 self.x_axis + '.npy')) == False:
                return

            x_axis_name = self.x_axis
            y_axis_name = self.y_axis

            print('Loading npy files...')

            x_axis_array = self.x_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.x_axis
                                     + '.npy'))
            y_axis_array = self.y_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.y_axis
                                     + '.npy'))

        print('Adding Plot...')
        mpl.rcParams['agg.path.chunksize'] = 50000

        ax = self.apply_new_subplot()

        ax.set_xlabel(x_axis_name)
        ax.set_ylabel(y_axis_name)
        ax.plot(x_axis_array,
                y_axis_array,
                'k',
                linewidth=1.2,
                color=np.random.rand(3, ),
                label=self.file_name + ', ' + x_axis_name)

        ax.legend()

        self.plot_list.append('{}, {}'.format(x_axis_name, y_axis_name))
        self.data_changed = True
        print('Finished adding plot!')

    def apply_new_subplot(self):
        plt = self.figure
        if (self.plots_num == 1):
            return plt.add_subplot(1, 1, 1)
        elif (self.plots_num == 2):
            plot_location = int('12' + str(len(self.plot_list) + 1))
            return plt.add_subplot(plot_location)
        elif (self.plots_num == 3):
            plot_location = int('13' + str(len(self.plot_list) + 1))
            return plt.add_subplot(plot_location)
        elif (self.plots_num == 4):
            plot_location = int('22' + str(len(self.plot_list) + 1))
            return plt.add_subplot(plot_location)
        elif (self.plots_num == 6):
            plot_location = int('23' + str(len(self.plot_list) + 1))
            return plt.add_subplot(plot_location)
        elif (self.plots_num == 9):
            plot_location = int('33' + str(len(self.plot_list) + 1))
            return plt.add_subplot(plot_location)

    def _add_creep_plot_fired(self):

        if self.filtered_and_creep_npy_files_exist(
                os.path.join(self.npy_folder_path, self.file_name + '_' +
                             self.x_axis + '_max.npy')) == False:
            return

        if self.max_plots_number_is_reached() == True:
            return

        disp_max = self.x_axis_multiplier * \
            np.load(os.path.join(self.npy_folder_path,
                                 self.file_name + '_' + self.x_axis + '_max.npy'))
        disp_min = self.x_axis_multiplier * \
            np.load(os.path.join(self.npy_folder_path,
                                 self.file_name + '_' + self.x_axis + '_min.npy'))
        complete_cycles_number = disp_max.size

        print('Adding creep-fatigue plot...')
        mpl.rcParams['agg.path.chunksize'] = 50000

        ax = self.apply_new_subplot()

        ax.set_xlabel('Cycles number')
        ax.set_ylabel(self.x_axis)

        if self.plot_every_nth_point > 1:
            disp_max = disp_max[0::self.plot_every_nth_point]
            disp_min = disp_min[0::self.plot_every_nth_point]

        if self.smooth:
            # Keeping the first item of the array and filtering the rest
            disp_max = np.concatenate(
                (np.array([disp_max[0]]),
                 savgol_filter(disp_max[1:],
                               window_length=self.window_length,
                               polyorder=self.polynomial_order)))
            disp_min = np.concatenate(
                (np.array([disp_min[0]]),
                 savgol_filter(disp_min[1:],
                               window_length=self.window_length,
                               polyorder=self.polynomial_order)))

        if self.normalize_cycles:
            ax.plot(np.linspace(0, 1., disp_max.size),
                    disp_max,
                    'k',
                    linewidth=1.2,
                    color='red',
                    label='Max' + ', ' + self.file_name + ', ' + self.x_axis)
            ax.plot(np.linspace(0, 1., disp_max.size),
                    disp_min,
                    'k',
                    linewidth=1.2,
                    color='green',
                    label='Min' + ', ' + self.file_name + ', ' + self.x_axis)
        else:
            ax.plot(np.linspace(0, complete_cycles_number, disp_max.size),
                    disp_max,
                    'k',
                    linewidth=1.2,
                    color='red',
                    label='Max' + ', ' + self.file_name + ', ' + self.x_axis)
            ax.plot(np.linspace(0, complete_cycles_number, disp_max.size),
                    disp_min,
                    'k',
                    linewidth=1.2,
                    color='green',
                    label='Min' + ', ' + self.file_name + ', ' + self.x_axis)

        ax.legend()

        self.plot_list.append('Creep-fatigue: {}, {}'.format(
            self.x_axis, self.y_axis))
        self.data_changed = True

        print('Finished adding creep-fatigue plot!')

    def reset(self):
        self.delimiter = ';'
        self.skip_first_rows = 3
        self.columns_headers_list = []
        self.npy_folder_path = ''
        self.file_name = ''
        self.apply_filters = False
        self.force_name = 'Kraft'
        self.plot_list = []
        self.columns_to_be_averaged = []

    #=========================================================================
    # Configuration of the view
    #=========================================================================

    traits_view = ui.View(ui.HSplit(
        ui.VSplit(
            ui.HGroup(ui.UItem('open_file_csv'),
                      ui.UItem('file_csv', style='readonly', width=0.1),
                      label='Input data'),
            ui.Item('add_columns_average', show_label=False),
            ui.VGroup(
                ui.VGroup(ui.Item(
                    'records_per_second',
                    enabled_when='take_time_from_first_column == False'),
                          ui.Item('take_time_from_first_column'),
                          label='Time calculation',
                          show_border=True),
                ui.VGroup(ui.Item('skip_first_rows'),
                          ui.Item('decimal'),
                          ui.Item('delimiter'),
                          ui.Item('parse_csv_to_npy', show_label=False),
                          label='Processing csv file',
                          show_border=True),
                ui.VGroup(ui.HGroup(ui.Item('plots_num'),
                                    ui.Item('clear_plot')),
                          ui.HGroup(ui.Item('x_axis'),
                                    ui.Item('x_axis_multiplier')),
                          ui.HGroup(ui.Item('y_axis'),
                                    ui.Item('y_axis_multiplier')),
                          ui.VGroup(ui.HGroup(
                              ui.Item('add_plot', show_label=False),
                              ui.Item('apply_filters')),
                                    show_border=True,
                                    label='Plotting X axis with Y axis'),
                          ui.VGroup(ui.HGroup(
                              ui.Item('add_creep_plot', show_label=False),
                              ui.VGroup(ui.Item('normalize_cycles'),
                                        ui.Item('smooth'),
                                        ui.Item('plot_every_nth_point'))),
                                    show_border=True,
                                    label='Plotting Creep-fatigue of x-axis'),
                          ui.Item('plot_list'),
                          show_border=True,
                          label='Plotting'))),
        ui.VGroup(
            ui.Item('force_name'),
            ui.VGroup(ui.VGroup(
                ui.Item('window_length'),
                ui.Item('polynomial_order'),
                enabled_when='activate == True or smooth == True'),
                      show_border=True,
                      label='Smoothing parameters (Savitzky-Golay filter):'),
            ui.VGroup(ui.VGroup(
                ui.Item('activate'),
                ui.Item('peak_force_before_cycles',
                        enabled_when='activate == True')),
                      show_border=True,
                      label='Smooth ascending branch for all displacements:'),
            ui.VGroup(
                ui.Item('cutting_method'),
                ui.VGroup(ui.Item('force_max'),
                          ui.Item('force_min'),
                          label='Max, Min:',
                          show_border=True,
                          enabled_when='cutting_method == "Define Max, Min"'),
                ui.VGroup(
                    ui.Item('min_cycle_force_range'),
                    label='Min cycle force range:',
                    show_border=True,
                    enabled_when=
                    'cutting_method == "Define min cycle range(force difference)"'
                ),
                show_border=True,
                label='Cut fake cycles for creep:'),
            ui.Item('generate_filtered_and_creep_npy', show_label=False),
            show_border=True,
            label='Filters'),
        ui.UItem('figure',
                 editor=MPLFigureEditor(),
                 resizable=True,
                 springy=True,
                 width=0.8,
                 label='2d plots')),
                          title='HCFF Filter',
                          resizable=True,
                          width=0.85,
                          height=0.7)
示例#11
0
class TFunPWLInteractive(MFnLineArray, BMCSLeafNode, Vis2D):
    '''Interactive time function.
    '''
    node_name = 'time function'
    t_values = List(Float, [0])
    f_values = List(Float, [0])

    def reset(self):
        self.f_values = [0]
        self.t_values = [0]
        self.f_value = self.f_min

    n_f_values = Int(10,
                     input=True,
                     auto_set=False, enter_set=True)

    f_min = Float(0.0, input=True,
                  auto_set=False, enter_set=True,
                  label='F minimum')

    f_max = Float(1.0,
                  input=True,
                  auto_set=False, enter_set=True,
                  label='F maximum')

    t_ref = Float(1.0, auto_set=False, enter_set=True,
                  label='Initial time range')

    f_value = Range(low='f_min', high='f_max', value=0,
                    input=True,
                    auto_set=False, enter_set=True)

    enable_slider = Bool(True, disable_on_run=True)

    run_eagerly = Bool(True, label='Run eagerly')

    t_snap = Float(0.1, label='Time step to snap to',
                   auto_set=False, enter_set=True)

    def __init__(self, *arg, **kw):
        super(TFunPWLInteractive, self).__init__(*arg, **kw)
        self.xdata = np.array(self.t_values)
        self.ydata = np.array(self.f_values)

    d_t = Property(depends_on='t_ref,n_f_values')

    @cached_property
    def _get_d_t(self):
        return self.t_ref / self.n_f_values

    def _update_xy_arrays(self):
        delta_f = self.f_value - self.f_values[-1]
        self.f_values.append(self.f_value)
        rel_step = delta_f / (self.f_max - self.f_min)
        delta_t = rel_step * self.t_ref
        t_value = np.fabs(delta_t) + self.t_values[-1]
        n_steps = int(t_value / self.t_snap) + 1
        t_value = n_steps * self.t_snap
        self.t_values.append(t_value)
        self.xdata = np.array(self.t_values)
        self.ydata = np.array(self.f_values)
        self.replot()

    def _f_value_changed(self):
        self._update_xy_arrays()
        t_value = self.t_values[-1]
        f_value = self.f_values[-1]
        if self.ui:
            self.ui.model.set_tmax(t_value)
            if self.run_eagerly:
                print('LS-run', t_value, f_value)
                self.ui.run()

    def get_ty_data(self, vot):
        return self.t_values, self.f_values

    viz2d_classes = {
        'time_function': TFViz2D,
    }

    tree_view = View(
        VGroup(
            VSplit(
                VGroup(
                    VGroup(
                        Include('actions'),
                    ),
                    Tabbed(
                        VGroup(
                            VGroup(
                                UItem('f_value',
                                      full_size=True, resizable=True,
                                      enabled_when='enable_slider'
                                      ),
                            ),
                            VGroup(
                                Item('f_max',
                                     full_size=True, resizable=True),
                                Item('f_min',
                                     full_size=True),
                                Item('n_f_values',
                                     full_size=True),
                                Item('t_snap', tooltip='Snap value to round off'
                                     'the value to',
                                     full_size=True),
                            ),
                            spring,
                            label='Steering',
                        ),
                        VGroup(
                            Item('run_eagerly',
                                 full_size=True, resizable=True,
                                 tooltip='True - run calculation immediately'
                                 'after moving the value slider; \nFalse - user must'
                                 'start calculation by clicking Run button'),
                            spring,
                            label='Mode',
                        ),
                    ),
                ),
                UItem('figure', editor=MPLFigureEditor(),
                      height=300,
                      resizable=True,
                      springy=True),
            ),
        )
    )

    traits_view = tree_view
示例#12
0
class HCFT(tr.HasStrictTraits):
    '''High-Cycle Fatigue Tool
    '''
    #=========================================================================
    # Traits definitions
    #=========================================================================
    decimal = tr.Enum(',', '.')
    delimiter = tr.Str(';')
    records_per_second = tr.Float(100)
    take_time_from_time_column = tr.Bool(True)
    file_csv = tr.File
    open_file_csv = tr.Button('Input file')
    skip_first_rows = tr.Range(low=1, high=10**9, mode='spinner')
    columns_headers_list = tr.List([])
    x_axis = tr.Enum(values='columns_headers_list')
    y_axis = tr.Enum(values='columns_headers_list')
    force_column = tr.Enum(values='columns_headers_list')
    time_column = tr.Enum(values='columns_headers_list')
    x_axis_multiplier = tr.Enum(1, -1)
    y_axis_multiplier = tr.Enum(-1, 1)
    npy_folder_path = tr.Str
    file_name = tr.Str
    apply_filters = tr.Bool
    plot_settings_btn = tr.Button
    plot_settings = PlotSettings()
    plot_settings_active = tr.Bool
    normalize_cycles = tr.Bool
    smooth = tr.Bool
    plot_every_nth_point = tr.Range(low=1, high=1000000, mode='spinner')
    old_peak_force_before_cycles = tr.Float
    peak_force_before_cycles = tr.Float
    window_length = tr.Range(low=1, high=10**9 - 1, value=31, mode='spinner')
    polynomial_order = tr.Range(low=1, high=10**9, value=2, mode='spinner')
    activate = tr.Bool(False)
    add_plot = tr.Button
    add_creep_plot = tr.Button(desc='Creep plot of X axis array')
    clear_plot = tr.Button
    parse_csv_to_npy = tr.Button
    generate_filtered_and_creep_npy = tr.Button
    add_columns_average = tr.Button
    force_max = tr.Float(100)
    force_min = tr.Float(40)
    min_cycle_force_range = tr.Float(50)
    cutting_method = tr.Enum(
        'Define min cycle range(force difference)', 'Define Max, Min')
    columns_to_be_averaged = tr.List
    figure = tr.Instance(mpl.figure.Figure)
    log = tr.Str('')
    clear_log = tr.Button

    def _figure_default(self):
        figure = mpl.figure.Figure(facecolor='white')
        figure.set_tight_layout(True)
        return figure

    #=========================================================================
    # File management
    #=========================================================================

    def _open_file_csv_fired(self):
        try:

            self.reset()

            """ Handles the user clicking the 'Open...' button.
            """
            extns = ['*.csv', ]  # seems to handle only one extension...
            wildcard = '|'.join(extns)

            dialog = FileDialog(title='Select text file',
                                action='open', wildcard=wildcard,
                                default_path=self.file_csv)

            result = dialog.open()

            """ Test if the user opened a file to avoid throwing an exception if he 
            doesn't """
            if result == OK:
                self.file_csv = dialog.path
            else:
                return

            """ Filling x_axis and y_axis with values """
            headers_array = np.array(
                pd.read_csv(
                    self.file_csv, delimiter=self.delimiter, decimal=self.decimal,
                    nrows=1, header=None
                )
            )[0]
            for i in range(len(headers_array)):
                headers_array[i] = self.get_valid_file_name(headers_array[i])
            self.columns_headers_list = list(headers_array)

            """ Saving file name and path and creating NPY folder """
            dir_path = os.path.dirname(self.file_csv)
            self.npy_folder_path = os.path.join(dir_path, 'NPY')
            if os.path.exists(self.npy_folder_path) == False:
                os.makedirs(self.npy_folder_path)

            self.file_name = os.path.splitext(
                os.path.basename(self.file_csv))[0]

        except Exception as e:
            self.deal_with_exception(e)

    def _parse_csv_to_npy_fired(self):
        # Run method on different thread so GUI doesn't freeze
        #thread = Thread(target = threaded_function, function_args = (10,))
        thread = Thread(target=self.parse_csv_to_npy_fired)
        thread.start()

    def parse_csv_to_npy_fired(self):
        try:
            self.print_custom('Parsing csv into npy files...')

            for i in range(len(self.columns_headers_list) -
                           len(self.columns_to_be_averaged)):
                current_column_name = self.columns_headers_list[i]
                column_array = np.array(pd.read_csv(
                    self.file_csv, delimiter=self.delimiter, decimal=self.decimal,
                    skiprows=self.skip_first_rows, usecols=[i]))

                if current_column_name == self.time_column and \
                        self.take_time_from_time_column == False:
                    column_array = np.arange(start=0.0,
                                             stop=len(column_array) /
                                             self.records_per_second,
                                             step=1.0 / self.records_per_second)

                np.save(os.path.join(self.npy_folder_path, self.file_name +
                                     '_' + current_column_name + '.npy'),
                        column_array)

            """ Exporting npy arrays of averaged columns """
            for columns_names in self.columns_to_be_averaged:
                temp = np.zeros((1))
                for column_name in columns_names:
                    temp = temp + np.load(os.path.join(self.npy_folder_path,
                                                       self.file_name +
                                                       '_' + column_name +
                                                       '.npy')).flatten()
                avg = temp / len(columns_names)

                avg_file_suffex = self.get_suffex_for_columns_to_be_averaged(
                    columns_names)
                np.save(os.path.join(self.npy_folder_path, self.file_name +
                                     '_' + avg_file_suffex + '.npy'), avg)

            self.print_custom('Finsihed parsing csv into npy files.')
        except Exception as e:
            self.deal_with_exception(e)

    def get_suffex_for_columns_to_be_averaged(self, columns_names):
        suffex_for_saved_file_name = 'avg_' + '_'.join(columns_names)
        return suffex_for_saved_file_name

    def get_valid_file_name(self, original_file_name):
        valid_chars = "-_.() %s%s" % (string.ascii_letters, string.digits)
        new_valid_file_name = ''.join(
            c for c in original_file_name if c in valid_chars)
        return new_valid_file_name

    def _clear_plot_fired(self):
        self.figure.clear()
        self.data_changed = True

    def _add_columns_average_fired(self):
        try:
            columns_average = ColumnsAverage()
            for name in self.columns_headers_list:
                columns_average.columns.append(Column(column_name=name))

            # kind='modal' pauses the implementation until the window is closed
            columns_average.configure_traits(kind='modal')

            columns_to_be_averaged_temp = []
            for i in columns_average.columns:
                if i.selected:
                    columns_to_be_averaged_temp.append(i.column_name)

            if columns_to_be_averaged_temp:  # If it's not empty
                self.columns_to_be_averaged.append(columns_to_be_averaged_temp)

                avg_file_suffex = self.get_suffex_for_columns_to_be_averaged(
                    columns_to_be_averaged_temp)
                self.columns_headers_list.append(avg_file_suffex)
        except Exception as e:
            self.deal_with_exception(e)

    def _generate_filtered_and_creep_npy_fired(self):
        # Run method on different thread so GUI doesn't freeze
        #thread = Thread(target = threaded_function, function_args = (10,))
        thread = Thread(target=self.generate_filtered_and_creep_npy_fired)
        thread.start()

    def generate_filtered_and_creep_npy_fired(self):
        try:
            if self.npy_files_exist(os.path.join(
                    self.npy_folder_path, self.file_name + '_' + self.force_column
                    + '.npy')) == False:
                return

            self.print_custom('Generating filtered and creep files...')

            # 1- Export filtered force
            force = np.load(os.path.join(self.npy_folder_path,
                                         self.file_name + '_' + self.force_column
                                         + '.npy')).flatten()
            peak_force_before_cycles_index = np.where(
                abs((force)) > abs(self.peak_force_before_cycles))[0][0]
            force_ascending = force[0:peak_force_before_cycles_index]
            force_rest = force[peak_force_before_cycles_index:]

            force_max_indices, force_min_indices = self.get_array_max_and_min_indices(
                force_rest)

            force_max_min_indices = np.concatenate(
                (force_min_indices, force_max_indices))
            force_max_min_indices.sort()

            force_rest_filtered = force_rest[force_max_min_indices]
            force_filtered = np.concatenate(
                (force_ascending, force_rest_filtered))
            np.save(os.path.join(self.npy_folder_path, self.file_name +
                                 '_' + self.force_column + '_filtered.npy'),
                    force_filtered)

            # 2- Export filtered displacements
            for i in range(0, len(self.columns_headers_list)):
                if self.columns_headers_list[i] != self.force_column and \
                        self.columns_headers_list[i] != self.time_column:

                    disp = np.load(os.path.join(self.npy_folder_path, self.file_name
                                                + '_' +
                                                self.columns_headers_list[i]
                                                + '.npy')).flatten()
                    disp_ascending = disp[0:peak_force_before_cycles_index]
                    disp_rest = disp[peak_force_before_cycles_index:]

                    if self.activate == True:
                        disp_ascending = savgol_filter(
                            disp_ascending, window_length=self.window_length,
                            polyorder=self.polynomial_order)

                    disp_rest_filtered = disp_rest[force_max_min_indices]
                    filtered_disp = np.concatenate(
                        (disp_ascending, disp_rest_filtered))
                    np.save(os.path.join(self.npy_folder_path, self.file_name + '_'
                                         + self.columns_headers_list[i] +
                                         '_filtered.npy'), filtered_disp)

            # 3- Export creep for displacements
            # Cutting unwanted max min values to get correct full cycles and remove
            # false min/max values caused by noise
            if self.cutting_method == "Define Max, Min":
                force_max_indices_cutted, force_min_indices_cutted = \
                    self.cut_indices_of_min_max_range(force_rest,
                                                      force_max_indices,
                                                      force_min_indices,
                                                      self.force_max,
                                                      self.force_min)
            elif self.cutting_method == "Define min cycle range(force difference)":
                force_max_indices_cutted, force_min_indices_cutted = \
                    self.cut_indices_of_defined_range(force_rest,
                                                      force_max_indices,
                                                      force_min_indices,
                                                      self.min_cycle_force_range)

            self.print_custom("Cycles number= ", len(force_min_indices))
            self.print_custom("Cycles number after cutting fake cycles = ",
                              len(force_min_indices_cutted))

            for i in range(0, len(self.columns_headers_list)):
                if self.columns_headers_list[i] != self.time_column:
                    array = np.load(os.path.join(self.npy_folder_path, self.file_name +
                                                 '_' +
                                                 self.columns_headers_list[i]
                                                 + '.npy')).flatten()
                    array_rest = array[peak_force_before_cycles_index:]
                    array_rest_maxima = array_rest[force_max_indices_cutted]
                    array_rest_minima = array_rest[force_min_indices_cutted]
                    np.save(os.path.join(self.npy_folder_path, self.file_name + '_' +
                                         self.columns_headers_list[i] + '_max.npy'), array_rest_maxima)
                    np.save(os.path.join(self.npy_folder_path, self.file_name + '_' +
                                         self.columns_headers_list[i] + '_min.npy'), array_rest_minima)

            self.print_custom('Filtered and creep npy files are generated.')
        except Exception as e:
            self.deal_with_exception(e)

    def cut_indices_of_min_max_range(self, array, max_indices, min_indices,
                                     range_upper_value, range_lower_value):
        cutted_max_indices = []
        cutted_min_indices = []

        for max_index in max_indices:
            if abs(array[max_index]) > abs(range_upper_value):
                cutted_max_indices.append(max_index)
        for min_index in min_indices:
            if abs(array[min_index]) < abs(range_lower_value):
                cutted_min_indices.append(min_index)
        return cutted_max_indices, cutted_min_indices

    def cut_indices_of_defined_range(self, array, max_indices, min_indices, range_):
        cutted_max_indices = []
        cutted_min_indices = []

        for max_index, min_index in zip(max_indices, min_indices):
            if abs(array[max_index] - array[min_index]) > range_:
                cutted_max_indices.append(max_index)
                cutted_min_indices.append(min_index)

        if max_indices.size > min_indices.size:
            cutted_max_indices.append(max_indices[-1])
        elif min_indices.size > max_indices.size:
            cutted_min_indices.append(min_indices[-1])

        return cutted_max_indices, cutted_min_indices

    def get_array_max_and_min_indices(self, input_array):

        # Checking dominant sign
        positive_values_count = np.sum(np.array(input_array) >= 0)
        negative_values_count = input_array.size - positive_values_count

        # Getting max and min indices
        if (positive_values_count > negative_values_count):
            force_max_indices = self.get_max_indices(input_array)
            force_min_indices = self.get_min_indices(input_array)
        else:
            force_max_indices = self.get_min_indices(input_array)
            force_min_indices = self.get_max_indices(input_array)

        return force_max_indices, force_min_indices

    def get_max_indices(self, a):
        # This method doesn't qualify first and last elements as max
        max_indices = []
        i = 1
        while i < a.size - 1:
            previous_element = a[i - 1]

            # Skip repeated elements and record previous element value
            first_repeated_element = True

            while a[i] == a[i + 1] and i < a.size - 1:
                if first_repeated_element:
                    previous_element = a[i - 1]
                    first_repeated_element = False
                if i < a.size - 2:
                    i += 1
                else:
                    break

            if a[i] > a[i + 1] and a[i] > previous_element:
                max_indices.append(i)
            i += 1
        return np.array(max_indices)

    def get_min_indices(self, a):
        # This method doesn't qualify first and last elements as min
        min_indices = []
        i = 1
        while i < a.size - 1:
            previous_element = a[i - 1]

            # Skip repeated elements and record previous element value
            first_repeated_element = True
            while a[i] == a[i + 1]:
                if first_repeated_element:
                    previous_element = a[i - 1]
                    first_repeated_element = False
                if i < a.size - 2:
                    i += 1
                else:
                    break

            if a[i] < a[i + 1] and a[i] < previous_element:
                min_indices.append(i)
            i += 1
        return np.array(min_indices)

    def _activate_changed(self):
        if self.activate == False:
            self.old_peak_force_before_cycles = self.peak_force_before_cycles
            self.peak_force_before_cycles = 0
        else:
            self.peak_force_before_cycles = self.old_peak_force_before_cycles

    def _window_length_changed(self, new):

        if new <= self.polynomial_order:
            dialog = MessageDialog(
                title='Attention!',
                message='Window length must be bigger than polynomial order.')
            dialog.open()

        if new % 2 == 0 or new <= 0:
            dialog = MessageDialog(
                title='Attention!',
                message='Window length must be odd positive integer.')
            dialog.open()

    def _polynomial_order_changed(self, new):
        if new >= self.window_length:
            dialog = MessageDialog(
                title='Attention!',
                message='Polynomial order must be smaller than window length.')
            dialog.open()

    #=========================================================================
    # Plotting
    #=========================================================================

    def _plot_settings_btn_fired(self):
        try:
            self.plot_settings.configure_traits(kind='modal')
        except Exception as e:
            self.deal_with_exception(e)

    def npy_files_exist(self, path):
        if os.path.exists(path) == True:
            return True
        else:
            # TODO fix this
            self.print_custom(
                'Please parse csv file to generate npy files first.')
#             dialog = MessageDialog(
#                 title='Attention!',
#                 message='Please parse csv file to generate npy files first.')
#             dialog.open()
            return False

    def filtered_and_creep_npy_files_exist(self, path):
        if os.path.exists(path) == True:
            return True
        else:
            # TODO fix this
            self.print_custom(
                'Please generate filtered and creep npy files first.')
#             dialog = MessageDialog(
#                 title='Attention!',
#                 message='Please generate filtered and creep npy files first.')
#             dialog.open()
            return False

    data_changed = tr.Event

    def _add_plot_fired(self):
        # Run method on different thread so GUI doesn't freeze
        #thread = Thread(target = threaded_function, function_args = (10,))
        thread = Thread(target=self.add_plot_fired)
        thread.start()

    def add_plot_fired(self):
        try:
            if self.apply_filters:
                if self.filtered_and_creep_npy_files_exist(os.path.join(
                        self.npy_folder_path, self.file_name + '_' + self.x_axis
                        + '_filtered.npy')) == False:
                    return
                x_axis_name = self.x_axis + '_filtered'
                y_axis_name = self.y_axis + '_filtered'
                self.print_custom('Loading npy files...')
                # when mmap_mode!=None, the array will be loaded as 'numpy.memmap'
                # object which doesn't load the array to memory until it's
                # indexed
                x_axis_array = np.load(os.path.join(self.npy_folder_path,
                                                    self.file_name + '_' + self.x_axis
                                                    + '_filtered.npy'), mmap_mode='r')
                y_axis_array = np.load(os.path.join(self.npy_folder_path,
                                                    self.file_name + '_' + self.y_axis
                                                    + '_filtered.npy'), mmap_mode='r')
            else:
                if self.npy_files_exist(os.path.join(
                        self.npy_folder_path, self.file_name + '_' + self.x_axis
                        + '.npy')) == False:
                    return

                x_axis_name = self.x_axis
                y_axis_name = self.y_axis
                self.print_custom('Loading npy files...')
                # when mmap_mode!=None, the array will be loaded as 'numpy.memmap'
                # object which doesn't load the array to memory until it's
                # indexed
                x_axis_array = np.load(os.path.join(self.npy_folder_path,
                                                    self.file_name + '_' + self.x_axis
                                                    + '.npy'), mmap_mode='r')
                y_axis_array = np.load(os.path.join(self.npy_folder_path,
                                                    self.file_name + '_' + self.y_axis
                                                    + '.npy'), mmap_mode='r')

            if self.plot_settings_active:
                print(self.plot_settings.first_rows)
                print(self.plot_settings.distance)
                print(self.plot_settings.num_of_rows_after_each_distance)
                print(np.size(x_axis_array))
                indices = self.get_indices_array(np.size(x_axis_array),
                                                 self.plot_settings.first_rows,
                                                 self.plot_settings.distance,
                                                 self.plot_settings.num_of_rows_after_each_distance)
                x_axis_array = self.x_axis_multiplier * x_axis_array[indices]
                y_axis_array = self.y_axis_multiplier * y_axis_array[indices]
            else:
                x_axis_array = self.x_axis_multiplier * x_axis_array
                y_axis_array = self.y_axis_multiplier * y_axis_array

            self.print_custom('Adding Plot...')
            mpl.rcParams['agg.path.chunksize'] = 10000

            ax = self.figure.add_subplot(1, 1, 1)

            ax.set_xlabel(x_axis_name)
            ax.set_ylabel(y_axis_name)
            ax.plot(x_axis_array, y_axis_array, 'k',
                    linewidth=1.2, color=np.random.rand(3), label=self.file_name +
                    ', ' + x_axis_name)

            ax.legend()
            self.data_changed = True
            self.print_custom('Finished adding plot.')

        except Exception as e:
            self.deal_with_exception(e)

    def _add_creep_plot_fired(self):
        # Run method on different thread so GUI doesn't freeze
        #thread = Thread(target = threaded_function, function_args = (10,))
        thread = Thread(target=self.add_creep_plot_fired)
        thread.start()

    def add_creep_plot_fired(self):
        try:
            if self.filtered_and_creep_npy_files_exist(os.path.join(
                    self.npy_folder_path, self.file_name + '_' + self.x_axis
                    + '_max.npy')) == False:
                return

            self.print_custom('Loading npy files...')
            disp_max = self.x_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.x_axis + '_max.npy'))
            disp_min = self.x_axis_multiplier * \
                np.load(os.path.join(self.npy_folder_path,
                                     self.file_name + '_' + self.x_axis + '_min.npy'))
            complete_cycles_number = disp_max.size

            self.print_custom('Adding creep-fatigue plot...')
            mpl.rcParams['agg.path.chunksize'] = 10000

            ax = self.figure.add_subplot(1, 1, 1)

            ax.set_xlabel('Cycles number')
            ax.set_ylabel(self.x_axis)

            if self.plot_every_nth_point > 1:
                disp_max = disp_max[0::self.plot_every_nth_point]
                disp_min = disp_min[0::self.plot_every_nth_point]

            if self.smooth:
                # Keeping the first item of the array and filtering the rest
                disp_max = np.concatenate((
                    np.array([disp_max[0]]),
                    savgol_filter(disp_max[1:],
                                  window_length=self.window_length,
                                  polyorder=self.polynomial_order)
                ))
                disp_min = np.concatenate((
                    np.array([disp_min[0]]),
                    savgol_filter(disp_min[1:],
                                  window_length=self.window_length,
                                  polyorder=self.polynomial_order)
                ))

            if self.normalize_cycles:
                ax.plot(np.linspace(0, 1., disp_max.size), disp_max,
                        'k', linewidth=1.2, color=np.random.rand(3), label='Max'
                        + ', ' + self.file_name + ', ' + self.x_axis)
                ax.plot(np.linspace(0, 1., disp_min.size), disp_min,
                        'k', linewidth=1.2, color=np.random.rand(3), label='Min'
                        + ', ' + self.file_name + ', ' + self.x_axis)
            else:
                ax.plot(np.linspace(0, complete_cycles_number,
                                    disp_max.size), disp_max,
                        'k', linewidth=1.2, color=np.random.rand(3), label='Max'
                        + ', ' + self.file_name + ', ' + self.x_axis)
                ax.plot(np.linspace(0, complete_cycles_number,
                                    disp_min.size), disp_min,
                        'k', linewidth=1.2, color=np.random.rand(3), label='Min'
                        + ', ' + self.file_name + ', ' + self.x_axis)

            ax.legend()
            self.data_changed = True
            self.print_custom('Finished adding creep-fatigue plot.')

        except Exception as e:
            self.deal_with_exception(e)

    def get_indices_array(self,
                          array_size,
                          first_rows,
                          distance,
                          num_of_rows_after_each_distance):
        result_1 = np.arange(first_rows)
        result_2 = np.arange(start=first_rows, stop=array_size,
                             step=distance + num_of_rows_after_each_distance)
        result_2_updated = np.array([], dtype=np.int_)

        for result_2_value in result_2:
            data_slice = np.arange(result_2_value, result_2_value +
                                   num_of_rows_after_each_distance)
            result_2_updated = np.concatenate((result_2_updated, data_slice))

        result = np.concatenate((result_1, result_2_updated))
        return result

    def reset(self):
        self.columns_to_be_averaged = []
        self.log = ''

    def print_custom(self, *input_args):
        print(*input_args)
        if self.log == '':
            self.log = ''.join(str(e) for e in list(input_args))
        else:
            self.log = self.log + '\n' + \
                ''.join(str(e) for e in list(input_args))

    def deal_with_exception(self, e):
        self.print_custom('SOMETHING WENT WRONG!')
        self.print_custom('--------- Error message: ---------')
        self.print_custom(traceback.format_exc())
        self.print_custom('----------------------------------')

    def _clear_log_fired(self):
        self.log = ''

    #=========================================================================
    # Configuration of the view
    #=========================================================================
    traits_view = ui.View(
        ui.HSplit(
            ui.VSplit(
                ui.VGroup(
                    ui.VGroup(
                        ui.Item('decimal'),
                        ui.Item('delimiter'),
                        ui.HGroup(
                            ui.UItem('open_file_csv', has_focus=True),
                            ui.UItem('file_csv', style='readonly', width=0.1)),
                        label='Importing csv file',
                        show_border=True)),
                ui.VGroup(
                    ui.VGroup(
                        ui.VGroup(
                            ui.Item('take_time_from_time_column'),
                            ui.Item('time_column',
                                    enabled_when='take_time_from_time_column == True'),
                            ui.Item('records_per_second',
                                    enabled_when='take_time_from_time_column == False'),
                            label='Time calculation',
                            show_border=True),
                        ui.UItem('add_columns_average'),
                        ui.Item('skip_first_rows'),
                        ui.UItem('parse_csv_to_npy', resizable=True),
                        label='Processing csv file',
                        show_border=True)),
                ui.VGroup(
                    ui.VGroup(
                        ui.HGroup(ui.Item('x_axis'), ui.Item(
                            'x_axis_multiplier')),
                        ui.HGroup(ui.Item('y_axis'), ui.Item(
                            'y_axis_multiplier')),
                        ui.VGroup(
                            ui.HGroup(ui.UItem('add_plot'),
                                      ui.Item('apply_filters'),
                                      ui.Item('plot_settings_btn',
                                              label='Settings',
                                              show_label=False,
                                              enabled_when='plot_settings_active == True'),
                                      ui.Item('plot_settings_active',
                                              show_label=False)
                                      ),
                            show_border=True,
                            label='Plotting X axis with Y axis'
                        ),
                        ui.VGroup(
                            ui.HGroup(ui.UItem('add_creep_plot'),
                                      ui.VGroup(
                                          ui.Item('normalize_cycles'),
                                          ui.Item('smooth'),
                                          ui.Item('plot_every_nth_point'))
                                      ),
                            show_border=True,
                            label='Plotting Creep-fatigue of X axis variable'
                        ),
                        ui.UItem('clear_plot', resizable=True),
                        show_border=True,
                        label='Plotting'))
            ),
            ui.VGroup(
                ui.Item('force_column'),
                ui.VGroup(ui.VGroup(
                    ui.Item('window_length'),
                    ui.Item('polynomial_order'),
                    enabled_when='activate == True or smooth == True'),
                    show_border=True,
                    label='Smoothing parameters (Savitzky-Golay filter):'
                ),
                ui.VGroup(ui.VGroup(
                    ui.Item('activate'),
                    ui.Item('peak_force_before_cycles',
                            enabled_when='activate == True')
                ),
                    show_border=True,
                    label='Smooth ascending branch for all displacements:'
                ),
                ui.VGroup(ui.Item('cutting_method'),
                          ui.VGroup(ui.Item('force_max'),
                                    ui.Item('force_min'),
                                    label='Max, Min:',
                                    show_border=True,
                                    enabled_when='cutting_method == "Define Max, Min"'),
                          ui.VGroup(ui.Item('min_cycle_force_range'),
                                    label='Min cycle force range:',
                                    show_border=True,
                                    enabled_when='cutting_method == "Define min cycle range(force difference)"'),
                          show_border=True,
                          label='Cut fake cycles for creep:'),

                ui.VSplit(
                    ui.UItem('generate_filtered_and_creep_npy'),
                    ui.VGroup(
                        ui.Item('log',
                                width=0.1, style='custom'),
                        ui.UItem('clear_log'))),
                show_border=True,
                label='Filters'
            ),
            ui.UItem('figure', editor=MPLFigureEditor(),
                     resizable=True,
                     springy=True,
                     width=0.8,
                     label='2d plots')
        ),
        title='High-cycle fatigue tool',
        resizable=True,
        width=0.85,
        height=0.7
    )
示例#13
0
class HCFF(tr.HasStrictTraits):
    '''High-Cycle Fatigue Filter
    '''

    something = tr.Instance(Something)
    decimal = tr.Enum(',', '.')
    delimiter = tr.Str(';')

    path_hdf5 = tr.Str('')

    def _something_default(self):
        return Something()

    #=========================================================================
    # File management
    #=========================================================================
    file_csv = tr.File

    open_file_csv = tr.Button('Input file')

    def _open_file_csv_fired(self):
        """ Handles the user clicking the 'Open...' button.
        """
        extns = [
            '*.csv',
        ]  # seems to handle only one extension...
        wildcard = '|'.join(extns)

        dialog = FileDialog(title='Select text file',
                            action='open',
                            wildcard=wildcard,
                            default_path=self.file_csv)
        dialog.open()
        self.file_csv = dialog.path
        """ Filling x_axis and y_axis with values """
        headers_array = np.array(
            pd.read_csv(self.file_csv,
                        delimiter=self.delimiter,
                        decimal=self.decimal,
                        nrows=1,
                        header=None))[0]
        for i in range(len(headers_array)):
            headers_array[i] = self.get_valid_file_name(headers_array[i])
        self.columns_headers_list = list(headers_array)

    #=========================================================================
    # Parameters of the filter algorithm
    #=========================================================================

    chunk_size = tr.Int(10000, auto_set=False, enter_set=True)

    skip_rows = tr.Int(4, auto_set=False, enter_set=True)

    # 1) use the decorator
    @tr.on_trait_change('chunk_size, skip_rows')
    def whatever_name_size_changed(self):
        print('chunk-size changed')

    # 2) use the _changed or _fired extension
    def _chunk_size_changed(self):
        print('chunk_size changed - calling the named function')

    data = tr.Array(dtype=np.float_)

    read_loadtxt_button = tr.Button()

    def _read_loadtxt_button_fired(self):
        self.data = np.loadtxt(self.file_csv,
                               skiprows=self.skip_rows,
                               delimiter=self.delimiter)
        print(self.data.shape)

    read_csv_button = tr.Button
    read_hdf5_button = tr.Button

    def _read_csv_button_fired(self):
        self.read_csv()

    def _read_hdf5_button_fired(self):
        self.read_hdf5_no_filter()

    def read_csv(self):
        '''Read the csv file and transform it to the hdf5 format.
        The output file has the same name as the input csv file
        with an extension hdf5
        '''
        path_csv = self.file_csv
        # Following splitext splits the path into a pair (root, extension)
        self.path_hdf5 = os.path.splitext(path_csv)[0] + '.hdf5'

        for i, chunk in enumerate(
                pd.read_csv(path_csv,
                            delimiter=self.delimiter,
                            decimal=self.decimal,
                            skiprows=self.skip_rows,
                            chunksize=self.chunk_size)):
            chunk_array = np.array(chunk)
            chunk_data_frame = pd.DataFrame(
                chunk_array, columns=['a', 'b', 'c', 'd', 'e', 'f'])
            if i == 0:
                chunk_data_frame.to_hdf(self.path_hdf5,
                                        'all_data',
                                        mode='w',
                                        format='table')
            else:
                chunk_data_frame.to_hdf(self.path_hdf5,
                                        'all_data',
                                        append=True)

    def read_hdf5_no_filter(self):

        # reading hdf files is really memory-expensive!
        force = np.array(pd.read_hdf(self.path_hdf5, columns=['b']))
        weg = np.array(pd.read_hdf(self.path_hdf5, columns=['c']))
        disp1 = np.array(pd.read_hdf(self.path_hdf5, columns=['d']))
        disp2 = np.array(pd.read_hdf(self.path_hdf5, columns=['e']))
        disp3 = np.array(pd.read_hdf(self.path_hdf5, columns=['f']))

        force = np.concatenate((np.zeros((1, 1)), force))
        weg = np.concatenate((np.zeros((1, 1)), weg))
        disp1 = np.concatenate((np.zeros((1, 1)), disp1))
        disp2 = np.concatenate((np.zeros((1, 1)), disp2))
        disp3 = np.concatenate((np.zeros((1, 1)), disp3))

        dir_path = os.path.dirname(self.file_csv)
        npy_folder_path = os.path.join(dir_path, 'NPY')
        if os.path.exists(npy_folder_path) == False:
            os.makedirs(npy_folder_path)

        file_name = os.path.splitext(os.path.basename(self.file_csv))[0]

        np.save(
            os.path.join(npy_folder_path, file_name + '_Force_nofilter.npy'),
            force)
        np.save(
            os.path.join(npy_folder_path,
                         file_name + '_Displacement_machine_nofilter.npy'),
            weg)
        np.save(
            os.path.join(npy_folder_path,
                         file_name + '_Displacement_sliding1_nofilter.npy'),
            disp1)
        np.save(
            os.path.join(npy_folder_path,
                         file_name + '_Displacement_sliding2_nofilter.npy'),
            disp2)
        np.save(
            os.path.join(npy_folder_path,
                         file_name + '_Displacement_crack1_nofilter.npy'),
            disp3)

        # Defining chunk size for matplotlib points visualization
        mpl.rcParams['agg.path.chunksize'] = 50000

        plt.subplot(111)
        plt.xlabel('Displacement [mm]')
        plt.ylabel('kN')
        plt.title('original data', fontsize=20)
        plt.plot(disp2, force, 'k')
        plt.show()

    figure = tr.Instance(Figure)

    def _figure_default(self):
        figure = Figure(facecolor='white')
        figure.set_tight_layout(True)
        return figure

    columns_headers_list = tr.List([])
    x_axis = tr.Enum(values='columns_headers_list')
    y_axis = tr.Enum(values='columns_headers_list')
    npy_folder_path = tr.Str
    file_name = tr.Str

    plot = tr.Button

    def _plot_fired(self):
        ax = self.figure.add_subplot(111)
        print('plotting figure')
        print(type(self.x_axis), type(self.y_axis))
        print(self.data[:, 1])
        print(self.data[:, self.x_axis])
        print(self.data[:, self.y_axis])
        ax.plot(self.data[:, self.x_axis], self.data[:, self.y_axis])

    traits_view = ui.View(ui.HSplit(
        ui.VSplit(
            ui.HGroup(ui.UItem('open_file_csv'),
                      ui.UItem('file_csv', style='readonly'),
                      label='Input data'),
            ui.VGroup(ui.Item('chunk_size'),
                      ui.Item('skip_rows'),
                      ui.Item('decimal'),
                      ui.Item('delimiter'),
                      label='Filter parameters'),
            ui.VGroup(
                ui.HGroup(ui.Item('read_loadtxt_button', show_label=False),
                          ui.Item('plot', show_label=False),
                          show_border=True),
                ui.HGroup(ui.Item('read_csv_button', show_label=False),
                          ui.Item('read_hdf5_button', show_label=False),
                          show_border=True))),
        ui.UItem('figure',
                 editor=MPLFigureEditor(),
                 resizable=True,
                 springy=True,
                 label='2d plots'),
    ),
                          resizable=True,
                          width=0.8,
                          height=0.6)