def main_train() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_29_1') model = StrideCNN((16, 32, 64, 256), (512, 128), 4, device) print(model) summary(model.cuda(), (3, 128, 128))
def main_train() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_08_1') model = CNNAugDataRegularized((32, 64, 128, 256), (1024, 128), 4, device) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 60, 20, tracker, learning_rate=0.0001) tracker.graphs() tracker.save('metrics.csv')
def main_train() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_26_2') model = TransferCNN(device) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 20, 20, tracker, learning_rate = 0.0001) tracker.graphs() tracker.save('metrics.csv')
def main_predict() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_08_2') model = CNNAugDataRegularized((32, 64, 128, 256), (512, 128), 4, device) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 18, 20, tracker, learning_rate=0.0001) test_X, imgs_ids = data.get_test() pred_y = model.predict(test_X) create_submit(pred_y, imgs_ids, path.join(save_dir, 'submission.csv'))
def main_train() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_26_1') conv_filter_nums = (16, 32, 64, 64, 128, 128) neuron_nums = (512, 128) model = BigCNN(conv_filter_nums, neuron_nums, device) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 40, 20, tracker, learning_rate=0.0001) tracker.graphs() tracker.save('metrics.csv')
def main_train() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_25_1') model = DropoutCNN((32, 64, 128, 256), (512, 128), 4, device, drop_dense_p=0.2, drop_conv_p=0.2) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 40, 20, tracker, learning_rate=0.0001) tracker.graphs() tracker.save('metrics.csv')
def main_predict() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_04_25_1') model = DropoutCNN((32, 64, 128, 256), (512, 128), 4, device, drop_dense_p=0.2, drop_conv_p=0.2) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 30, 20, tracker, learning_rate=0.0001) test_X, imgs_ids = data.get_test() pred_y = model.predict(test_X) create_submit(pred_y, imgs_ids, path.join(save_dir, 'submission.csv'))
def main() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_05_10_1') model = VGGStyleNet(4, device) summary(model.cuda(), (3, 128, 128)) print(model) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) model.train(data, 40, 64, tracker, learning_rate=0.00001) tracker.graphs() tracker.save('metrics.csv') test_X, imgs_ids = data.get_test() pred_y = model.predict(test_X) create_submit(pred_y, imgs_ids, path.join(save_dir, 'submission.csv'))
def main() -> None: detect_gpu() device = get_device() save_dir = path.join('modelling', 'model_2020_05_10_2') batch_size = 64 epochs = 15 model = VGGStyleBNNet(4, device) summary(model.cuda(), (3, 128, 128)) print(model) data = FirstAugmentedDataset() tracker = PerformanceTracker(save_dir) try: model.train(data, epochs, batch_size, tracker, learning_rate=0.001) except KeyboardInterrupt: print('Training interrupted, writing stats...') finally: tracker.graphs() tracker.save('metrics.csv') test_X, imgs_ids = data.get_test() pred_y = model.predict(test_X, batch_size) create_submit(pred_y, imgs_ids, path.join(save_dir, 'submission.csv'))
# Python libraries import os # Internal modules from util.get_128px_data import get_128px_test_data, get_128px_train_data from util.use_gpu import detect_gpu, get_device from modelling.model_2020_03_31_1.ConvolutionalNeuralNet import ConvolutionalNeuralNet from util.PerformanceTracker import PerformanceTracker from util.create_submit import create_submit detect_gpu() device = get_device() model = ConvolutionalNeuralNet((64, 128, 512, 1024), (1024, 1024), 4, device) def main_try() -> None: train_X, train_y, val_X, val_y = get_128px_train_data() tracker = PerformanceTracker( os.path.join('modelling', 'model_2020_03_31_1')) model.train((train_X, train_y), 45, 10, val=(val_X, val_y), tracker=tracker) tracker.graphs() tracker.save('metrics.csv') def main_full() -> None: train_X, train_y, val_X, val_y = get_128px_train_data(val_size=2)