def compare(w, reputations): results = {w: { 'reputations': reputations, 'utilities': None, 'prices': None }} try: n = reputations.size except AttributeError: reputations = np.array(reputations) n = reputations.size # load appropriate version of FSM method if n == 2: import dm.fsm.main as dm else: import dm.efsm.main as dm # estimate param param = estimate_param(w, reputations) if not param: return results # estimate lower and upper extremities lowers = np.empty(n, dtype=np.float) uppers = np.empty(n, dtype=np.float) for i in np.arange(n): lowers[i] = (1-w) * reputations[i] uppers[i] = (1-w) * reputations[i] + w # pick parameters for the common support case support = [lowers[0], uppers[-1]] bajari_params = [] for i in np.arange(n): location = lowers[i] + w / 2 scale = w / 4 bajari_params.append({'location': location, 'scale': scale}) # compute approximations if n == 2: dm_bids, dm_costs = dm.solve(w, reputations) else: dm_bids, dm_costs = dm.solve(w, reputations, param=param) bajari_bids, bajari_costs = bajari.solve(support, bajari_params) # ensure costs are monotonically increasing dm_costs, dm_bids = util.ensure_monotonicity(dm_costs, dm_bids) bajari_costs, bajari_bids = util.ensure_monotonicity(bajari_costs, bajari_bids) if n == 2: # precondition solutions: remove endpoints where fails # Lipschitz condition for c in dm_costs: diffs = list(map(lambda x,y: abs(x-y), c, dm_bids)) for i in np.arange(len(diffs)): if diffs[i] <= 5e-5: index = i break try: dm_costs = np.array([c[:index] for c in dm_costs]) dm_bids = dm_bids[:index] except NameError: pass # interpolate bidding functions and their inverses dm_bid_funcs = [] bajari_bid_funcs = [] dm_inverses = [] bajari_inverses = [] for i in np.arange(n): # fit dm_bid_func = util.csplinefit(dm_costs[i], dm_bids) dm_inverse = util.csplinefit(dm_bids, dm_costs[i]) dm_bid_funcs.append(dm_bid_func) dm_inverses.append(dm_inverse) bajari_bid_func = util.csplinefit(bajari_costs[i], bajari_bids) bajari_inverse = util.csplinefit(bajari_bids, bajari_costs[i]) bajari_bid_funcs.append(bajari_bid_func) bajari_inverses.append(bajari_inverse) # compute ex-ante expected utilities params = [{'loc': lowers[i], 'scale': w} for i in np.arange(n)] cdfs = [ss.uniform(**p) for p in params] dm_utils = [] bajari_utils = [] common_costs = [] for i in np.arange(n): # common costs costs = np.linspace(lowers[i], min(dm_costs[i][-1], bajari_costs[i][-1]), 1000) common_costs.append(costs) # derive expected utility functions js = [j for j in np.arange(n) if j != i] def dm_exp_util(x): bid = dm_bid_funcs[i](x) probs = [(1 - cdfs[j].cdf(dm_inverses[j](bid))) for j in js] return (bid - x) * reduce(lambda x,y: x*y, probs) def bajari_exp_util(x): bid = bajari_bid_funcs[i](x) probs = [(1 - cdfs[j].cdf(bajari_inverses[j](bid))) for j in js] return (bid - x) * reduce(lambda x,y: x*y, probs) # compute ex-ante expected utilities dm_utilities = np.array([dm_exp_util(x) * cdfs[i].pdf(x) for x in costs]) bajari_utilities = np.array([bajari_exp_util(x) * cdfs[i].pdf(x) for x in costs]) dm_util = si.simps(dm_utilities, costs) bajari_util = si.simps(bajari_utilities, costs) dm_utils.append(dm_util) bajari_utils.append(bajari_util) # sample and generate prices for each auction size = 1000 sampled_costs = [] params = [{'loc': common_costs[i][0], 'scale': common_costs[i][-1]-common_costs[i][0]} for i in np.arange(n)] for p in params: loc = p['loc'] scale = p['scale'] sampled_costs.append(ss.uniform.rvs(loc=loc, scale=scale, size=size)) dm_prices = [] for costs in zip(*sampled_costs): bids = [dm_bid_funcs[i](costs[i]) for i in np.arange(n)] dm_prices.append(min(bids)) bajari_prices = [] for costs in zip(*sampled_costs): bids = [bajari_bid_funcs[i](costs[i]) for i in np.arange(n)] bajari_prices.append(min(bids)) results[w]['utilities'] = {'dm': dm_utils, 'cp': bajari_utils} results[w]['prices'] = {'dm': np.mean(dm_prices), 'cp': np.mean(bajari_prices)} return results
# compute approximations dm_bids, dm_costs = dm.solve(w, reputations) bajari_bids, bajari_costs = bajari.solve(support, bajari_params) # ensure costs are monotonically increasing dm_costs, dm_bids = util.ensure_monotonicity(dm_costs, dm_bids) bajari_costs, bajari_bids = util.ensure_monotonicity(bajari_costs, bajari_bids) # interpolate bidding functions and their inverses dm_bid_funcs = [] bajari_bid_funcs = [] dm_inverses = [] bajari_inverses = [] for i in np.arange(n): # fit dm_bid_func = util.csplinefit(dm_costs[i], dm_bids) dm_inverse = util.csplinefit(dm_bids, dm_costs[i]) dm_bid_funcs.append(dm_bid_func) dm_inverses.append(dm_inverse) bajari_bid_func = util.csplinefit(bajari_costs[i], bajari_bids) bajari_inverse = util.csplinefit(bajari_bids, bajari_costs[i]) bajari_bid_funcs.append(bajari_bid_func) bajari_inverses.append(bajari_inverse) # compute ex-ante expected utilities params = [{'loc': lowers[i], 'scale': w} for i in np.arange(n)] cdfs = [ss.uniform(**p) for p in params] dm_utils = [] bajari_utils = []
# compute approximations dm_bids, dm_costs = dm.solve(w, reputations) bajari_bids, bajari_costs = bajari.solve(support, bajari_params) # ensure costs are monotonically increasing dm_costs, dm_bids = util.ensure_monotonicity(dm_costs, dm_bids) bajari_costs, bajari_bids = util.ensure_monotonicity(bajari_costs, bajari_bids) # interpolate bidding functions dm_bid_funcs = [] bajari_bid_funcs = [] for i in np.arange(n): # fit dm_bid_func = util.csplinefit(dm_costs[i], dm_bids) bajari_bid_func = util.csplinefit(bajari_costs[i], bajari_bids) dm_bid_funcs.append(dm_bid_func) bajari_bid_funcs.append(bajari_bid_func) # sample and generate prices for each auction dm_sampled_costs = [] dm_params = [{'loc': dm_costs[i][0], 'scale': dm_costs[i][-1]-dm_costs[i][0]} for i in np.arange(n)] for p in dm_params: loc = p['loc'] scale = p['scale'] dm_sampled_costs.append(ss.uniform.rvs(loc=loc, scale=scale, size=size)) bajari_sampled_costs = [] for p,i in zip(bajari_params, np.arange(n)):