示例#1
0
assert cfg.EXP_NAME == os.path.basename(args.cfg).replace('.yaml', '')
if args.opts:
    merge_cfg_from_list(args.opts)


# Start session
os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.GPU_ID)
sess = tf.Session(config=tf.ConfigProto(
    gpu_options=tf.GPUOptions(allow_growth=cfg.GPU_MEM_GROWTH)))

# Data files
imdb_file = cfg.IMDB_FILE % cfg.TRAIN.SPLIT_VQA
data_reader = DataReader(
    imdb_file, shuffle=True, one_pass=False, batch_size=cfg.TRAIN.BATCH_SIZE,
    vocab_question_file=cfg.VOCAB_QUESTION_FILE, T_encoder=cfg.MODEL.T_ENCODER,
    vocab_answer_file=cfg.VOCAB_ANSWER_FILE,
    load_gt_layout=cfg.TRAIN.USE_GT_LAYOUT,
    vocab_layout_file=cfg.VOCAB_LAYOUT_FILE, T_decoder=cfg.MODEL.T_CTRL,
    load_soft_score=cfg.TRAIN.VQA_USE_SOFT_SCORE)
num_vocab = data_reader.batch_loader.vocab_dict.num_vocab
num_choices = data_reader.batch_loader.answer_dict.num_vocab
module_names = data_reader.batch_loader.layout_dict.word_list

# Inputs and model
input_seq_batch = tf.placeholder(tf.int32, [None, None])
seq_length_batch = tf.placeholder(tf.int32, [None])
image_feat_batch = tf.placeholder(
    tf.float32, [None, cfg.MODEL.H_FEAT, cfg.MODEL.W_FEAT, cfg.MODEL.FEAT_DIM])
model = Model(
    input_seq_batch, seq_length_batch, image_feat_batch, num_vocab=num_vocab,
    num_choices=num_choices, module_names=module_names, is_training=True)
示例#2
0
save_file = './exp_vqa/results/%s/%s.%s.txt' % (exp_name, snapshot_name,
                                                tst_image_set)
os.makedirs(os.path.dirname(save_file), exist_ok=True)
eval_output_name = 'vqa_OpenEnded_mscoco_%s_%s_%s_results.json' % (
    tst_image_set, exp_name, snapshot_name)
eval_output_file = './exp_vqa/eval_outputs/%s/%s' % (exp_name,
                                                     eval_output_name)
os.makedirs(os.path.dirname(eval_output_file), exist_ok=True)

assembler = Assembler(vocab_layout_file)

data_reader_tst = DataReader(imdb_file_tst,
                             shuffle=False,
                             one_pass=True,
                             batch_size=N,
                             T_encoder=T_encoder,
                             T_decoder=T_decoder,
                             assembler=assembler,
                             vocab_question_file=vocab_question_file,
                             vocab_answer_file=vocab_answer_file)

num_vocab_txt = data_reader_tst.batch_loader.vocab_dict.num_vocab
num_vocab_nmn = len(assembler.module_names)
num_choices = data_reader_tst.batch_loader.answer_dict.num_vocab

# Network inputs
input_seq_batch = tf.placeholder(tf.int32, [None, None])
seq_length_batch = tf.placeholder(tf.int32, [None])
image_feat_batch = tf.placeholder(tf.float32, [None, H_feat, W_feat, D_feat])
expr_validity_batch = tf.placeholder(tf.bool, [None])
示例#3
0
assert cfg.EXP_NAME == os.path.basename(args.cfg).replace('.yaml', '')
if args.opts:
    merge_cfg_from_list(args.opts)

# Start session
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   ### edit_vedika
os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.GPU_ID)
sess = tf.Session(config=tf.ConfigProto(
    gpu_options=tf.GPUOptions(allow_growth=cfg.GPU_MEM_GROWTH)))

# Data files
imdb_file = cfg.IMDB_FILE % cfg.TEST.SPLIT_VQA
#print(imdb_file)
data_reader = DataReader(
    imdb_file, shuffle=False, one_pass=True, batch_size=cfg.TRAIN.BATCH_SIZE,               ## cfg.TRAIN.BATCH_SIZE =128 (vqa_v2_scratch.yaml)
    vocab_question_file=cfg.VOCAB_QUESTION_FILE, T_encoder=cfg.MODEL.T_ENCODER,
    vocab_answer_file=cfg.VOCAB_ANSWER_FILE, load_gt_layout=True,
    vocab_layout_file=cfg.VOCAB_LAYOUT_FILE, T_decoder=cfg.MODEL.T_CTRL)
num_vocab = data_reader.batch_loader.vocab_dict.num_vocab
num_choices = data_reader.batch_loader.answer_dict.num_vocab
module_names = data_reader.batch_loader.layout_dict.word_list

# Eval files
if cfg.TEST.GEN_EVAL_FILE:
    eval_file_pkl = cfg.TEST.EVAL_FILE_pkl % (
        cfg.EXP_NAME, cfg.TEST.SPLIT_VQA, cfg.EXP_NAME, cfg.TEST.ITER)
    # print('evaluation outputs will be saved to %s' % eval_file_pkl)
    os.makedirs(os.path.dirname(eval_file_pkl), exist_ok=True)

    answer_word_list = data_reader.batch_loader.answer_dict.word_list      ##aanswer_word_list is here
    assert(answer_word_list[0] == '<unk>')    ### here asserting unk to position 0