示例#1
0
 def natural_gas_consumption_location_heating_region_geometry_foundation_type(
         self, screen_scen):
     df = util.create_dataframe(self.session, rdb, screen_scen=screen_scen)
     df = util.assign_climate_zones(df)
     df = util.assign_heating_location(df)
     df = util.assign_vintage(df)
     df = util.assign_foundation_type(df)
     df = util.assign_natural_gas_consumption(df)
     df = df.groupby([
         'Dependency=Location Heating Region',
         'Dependency=Geometry Foundation Type'
     ])
     count = df.agg(['count']).ix[:, 0]
     weight = df.agg(['sum'])['Weight']
     df = df[['thm_nrm']].sum()
     df['Count'] = count
     df['Weight'] = weight
     df['thm_nrm_per_home'] = df['thm_nrm'] / df['Count']
     df['thm_nrm_total'] = df['thm_nrm_per_home'] * df['Weight']
     df = df.reset_index()
     df = df.sort_values(by=[
         'Dependency=Location Heating Region',
         'Dependency=Geometry Foundation Type'
     ]).set_index([
         'Dependency=Location Heating Region',
         'Dependency=Geometry Foundation Type'
     ])
     return df
示例#2
0
 def natural_gas_consumption_location_heating_region_vintage(
         self, screen_scen):
     df = util.create_dataframe(self.session, rdb, screen_scen=screen_scen)
     df = util.assign_climate_zones(df)
     df = util.assign_heating_location(df)
     df = util.assign_vintage(df)
     df = util.assign_natural_gas_consumption(df)
     df = df.groupby(
         ['Dependency=Location Heating Region', 'Dependency=Vintage'])
     count = df.agg(['count']).ix[:, 0]
     weight = df.agg(['sum'])['Weight']
     df = df[['thm_nrm']].sum()
     df['Count'] = count
     df['Weight'] = weight
     df['thm_nrm_per_home'] = df['thm_nrm'] / df['Count']
     df['thm_nrm_total'] = df['thm_nrm_per_home'] * df['Weight']
     df = df.reset_index()
     df['Dependency=Vintage'] = pd.Categorical(
         df['Dependency=Vintage'],
         ['<1950', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'])
     df = df.sort_values(
         by=['Dependency=Location Heating Region', 'Dependency=Vintage'
             ]).set_index([
                 'Dependency=Location Heating Region', 'Dependency=Vintage'
             ])
     return df
示例#3
0
 def vintage(self):
     df = util.assign_vintage(self.session)
     df = add_option_prefix(df)
     df = df[[
         'Option=<1950', 'Option=1950s', 'Option=1960s', 'Option=1970s',
         'Option=1980s', 'Option=1990s', 'Option=2000s', 'Count', 'Weight'
     ]]
     return df
示例#4
0
 def natural_gas_consumption_vintage(self, screen_scen):
     df = util.create_dataframe(self.session, rdb, screen_scen=screen_scen)
     df = util.assign_vintage(df)
     df = util.assign_natural_gas_consumption(df)  
     df = df.groupby(['Dependency=Vintage'])
     count = df.agg(['count']).ix[:, 0]
     weight = df.agg(['sum'])['Weight']
     df = df[['thm_nrm']].sum()
     df['Count'] = count
     df['Weight'] = weight
     df['thm_nrm_per_home'] = df['thm_nrm'] / df['Count']
     df['thm_nrm_total'] = df['thm_nrm_per_home'] * df['Weight']
     df = df.reset_index()
     df['Dependency=Vintage'] = pd.Categorical(df['Dependency=Vintage'], ['<1950', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'])
     df = df.sort_values(by=['Dependency=Vintage']).set_index(['Dependency=Vintage'])             
     return df
示例#5
0
 def natural_gas_consumption_geometry_foundation_type(self, screen_scen):
     df = util.create_dataframe(self.session, rdb, screen_scen=screen_scen)
     df = util.assign_climate_zones(df)
     df = util.assign_heating_location(df)        
     df = util.assign_vintage(df)
     df = util.assign_foundation_type(df)
     df = util.assign_natural_gas_consumption(df)
     df = df.groupby(['Dependency=Geometry Foundation Type'])
     count = df.agg(['count']).ix[:, 0]
     weight = df.agg(['sum'])['Weight']
     df = df[['thm_nrm']].sum()
     df['Count'] = count
     df['Weight'] = weight
     df['thm_nrm_per_home'] = df['thm_nrm'] / df['Count']
     df['thm_nrm_total'] = df['thm_nrm_per_home'] * df['Weight']
     df = df.reset_index()
     df = df.sort_values(by=['Dependency=Geometry Foundation Type']).set_index(['Dependency=Geometry Foundation Type'])             
     return df
示例#6
0
 def electricity_consumption_location_heating_region_vintage(self, screen_scen):
     df = util.create_dataframe(self.session, rdb, screen_scen=screen_scen)
     df = util.assign_climate_zones(df)
     df = util.assign_heating_location(df)
     df = util.assign_vintage(df)
     df = util.assign_electricity_consumption(df)
     df = df.groupby(['Dependency=Location Heating Region', 'Dependency=Vintage'])
     count = df.agg(['count']).ix[:, 0]
     weight = df.agg(['sum'])['Weight']
     df = df[['kwh_nrm']].sum()
     df['Count'] = count
     df['Weight'] = weight
     df['kwh_nrm_per_home'] = df['kwh_nrm'] / df['Count']
     df['kwh_nrm_total'] = df['kwh_nrm_per_home'] * df['Weight']
     df = df.reset_index()
     df['Dependency=Vintage'] = pd.Categorical(df['Dependency=Vintage'], ['<1950', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'])
     df = df.sort_values(by=['Dependency=Location Heating Region', 'Dependency=Vintage']).set_index(['Dependency=Location Heating Region', 'Dependency=Vintage'])             
     return df        
示例#7
0
 def electricity_consumption_vintage(self, screen_scen):
     df = util.create_dataframe(self.session, rdb, screen_scen=screen_scen)
     df = util.assign_vintage(df)
     df = util.assign_electricity_consumption(df)
     df = df.groupby(['Dependency=Vintage'])
     count = df.agg(['count']).ix[:, 0]
     weight = df.agg(['sum'])['Weight']
     df = df[['kwh_nrm']].sum()
     df['Count'] = count
     df['Weight'] = weight
     df['kwh_nrm_per_home'] = df['kwh_nrm'] / df['Count']
     df['kwh_nrm_total'] = df['kwh_nrm_per_home'] * df['Weight']
     df = df.reset_index()
     df['Dependency=Vintage'] = pd.Categorical(
         df['Dependency=Vintage'],
         ['<1950', '1950s', '1960s', '1970s', '1980s', '1990s', '2000s'])
     df = df.sort_values(by=['Dependency=Vintage']).set_index(
         ['Dependency=Vintage'])
     return df