def cnn(x):
    
    """ CNN model to detect lung cancer
    
            Args:
                x: tensor of shape [batch_size, width, height, channels]
        
            Returns:
                pool2: tensor with all convolutions, pooling applied
    """
    
    with tf.name_scope('cnn') as scope:
        with tf.name_scope('conv1') as inner_scope:
            wcnn1 = tu.weight([3, 3, 1, 64], name='wcnn1')
            bcnn1 = tu.bias(1.0, [64], name='bcnn1')
            conv1 = tf.add(tu.conv2d(x, wcnn1, stride=(1, 1), padding='SAME'), bcnn1)
            conv1 = tu.relu(conv1)
            # (?, 192, 192, 64)
            
        with tf.name_scope('conv2') as inner_scope:
            wcnn2 = tu.weight([3, 3, 64, 64], name='wcnn2')
            bcnn2 = tu.bias(1.0, [64], name='bcnn2')
            conv2 = tf.add(tu.conv2d(conv1, wcnn2, stride=(1, 1), padding='SAME'), bcnn2)
            conv2 = tu.relu(conv2)
            #(?, 192, 192, 64)
            
        with tf.name_scope('max_pool') as inner_scope:
            pool1 = tu.max_pool2d(conv2, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], padding='SAME') 
            # (?, 96, 96, 64)
            
        with tf.name_scope('conv3') as inner_scope:
            wcnn3 = tu.weight([3, 3, 64, 64], name='wcnn3')
            bcnn3 = tu.bias(1.0, [64], name='bcnn3')
            conv3 = tf.add(tu.conv2d(pool1, wcnn3, stride=(1, 1), padding='SAME'), bcnn3)
            conv3 = tu.relu(conv3)
            # (?, 96, 96, 64)
            
        with tf.name_scope('conv4') as inner_scope:
            wcnn4 = tu.weight([3, 3, 64, 64], name='wcnn4')
            bcnn4 = tu.bias(1.0, [64], name='bcnn4')
            conv4 = tf.add(tu.conv2d(conv3, wcnn4, stride=(1, 1), padding='SAME'), bcnn4)
            conv4 = tu.relu(conv4)
            # (?, 96, 96, 64)
            
        with tf.name_scope('conv5') as inner_scope:
            wcnn5 = tu.weight([3, 3, 64, 64], name='wcnn5')
            bcnn5 = tu.bias(1.0, [64], name='bcnn5')
            conv5 = tf.add(tu.conv2d(conv4, wcnn5, stride=(1, 1), padding='SAME'), bcnn5)
            conv5 = tu.relu(conv5)
            # (?, 96, 96, 64)
            
        with tf.name_scope('max_pool') as inner_scope:
            pool2 = tu.max_pool2d(conv5, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], padding='SAME') 
            # (?, 48, 48, 64)
            
        return pool2
def classifier(x):
    #parameters for convolution kernels
    IMG_DEPTH = 1
    C1_KERNEL_SIZE, C2_KERNEL_SIZE, C3_KERNEL_SIZE = 5, 5, 5
    C1_OUT_CHANNELS, C2_OUT_CHANNELS, C3_OUT_CHANNELS = 6, 16, 120
    C1_STRIDES, C2_STRIDES, C3_STRIDES = 1, 1, 1

    P1_SIZE, P2_SIZE = 2, 2
    P1_STRIDE, P2_STRIDE = 2, 2

    F4_SIZE, F5_SIZE = 84, 10

    C1_kernel = util.weights(
        [C1_KERNEL_SIZE, C1_KERNEL_SIZE, IMG_DEPTH, C1_OUT_CHANNELS], 0.1,
        'C1_kernel')
    C2_kernel = util.weights(
        [C2_KERNEL_SIZE, C2_KERNEL_SIZE, C1_OUT_CHANNELS, C2_OUT_CHANNELS],
        0.1, 'C2_kernel')
    C3_kernel = util.weights(
        [C3_KERNEL_SIZE, C3_KERNEL_SIZE, C2_OUT_CHANNELS, C3_OUT_CHANNELS],
        0.1, 'C3_kernel')

    C1_bias = util.bias([C1_OUT_CHANNELS], 'C1_bias')
    C2_bias = util.bias([C2_OUT_CHANNELS], 'C2_bias')
    C3_bias = util.bias([C3_OUT_CHANNELS], 'C3_bias')

    #LeNet-5 structure
    C1 = util.convLayer(x, C1_kernel, C1_STRIDES, 'SAME')
    ReLU1 = tf.nn.relu(C1 + C1_bias)
    P1 = util.max_pool(ReLU1, P1_SIZE, P1_STRIDE)

    C2 = util.convLayer(P1, C2_kernel, C2_STRIDES, 'SAME')
    ReLU2 = tf.nn.relu(C2 + C2_bias)
    P2 = util.max_pool(ReLU2, P2_SIZE, P2_STRIDE)

    C3 = util.convLayer(P2, C3_kernel, C3_STRIDES, 'SAME')
    ReLU3 = tf.nn.relu(C3 + C3_bias)

    num_F4_in = (int)(ReLU3.shape[1] * ReLU3.shape[2] * ReLU3.shape[3])
    F4_in = tf.reshape(ReLU3, [-1, num_F4_in])

    F4_weights = util.weights([num_F4_in, F4_SIZE], 0.1, 'F4_weights')
    F4_bias = util.bias([F4_SIZE], 'F4_bias')
    F4 = tf.matmul(F4_in, F4_weights)
    ReLU4 = tf.nn.relu(F4 + F4_bias)

    F5_weights = util.weights([F4_SIZE, F5_SIZE], 0.1, 'F5_weights')
    F5_bias = util.bias([F5_SIZE], 'F5_bias')
    F5 = tf.matmul(ReLU4, F5_weights) + F5_bias

    return F5
示例#3
0
def classifier(x):
    #Initialize parameters in nn
    F1_weights = util.weights([784, 784], 0.01, 'F1_weights')
    F1_bias = util.bias([784], 'F1_bias')

    F2_weights = util.weights([784, 10], 0.01, 'F2_weights')
    F2_bias = util.bias([10], 'F2_bias')

    F1 = tf.matmul(x, F1_weights) + F1_bias
    ReLU1 = tf.nn.relu(F1)
    F2 = tf.matmul(ReLU1, F2_weights) + F2_bias
    y = tf.nn.softmax(F2)

    return y
示例#4
0
def classifier(x, dropout):
    """
	AlexNet fully connected layers definition

	Args:
		x: tensor of shape [batch_size, width, height, channels]
		dropout: probability of non dropping out units

	Returns:
		fc3: 1000 linear tensor taken just before applying the softmax operation
			it is needed to feed it to tf.softmax_cross_entropy_with_logits()
		softmax: 1000 linear tensor representing the output probabilities of the image to classify

	"""
    pool5 = alexnet(x)

    dim = pool5.get_shape().as_list()
    flat_dim = dim[1] * dim[2] * dim[3]  # 6 * 6 * 256
    flat = tf.reshape(pool5, [-1, flat_dim])

    with tf.name_scope('classifier') as scope:
        with tf.name_scope('fullyconected1') as inner_scope:
            wfc1 = tu.weight([flat_dim, 4096], name='wfc1')
            bfc1 = tu.bias(0.0, [4096], name='bfc1')
            fc1 = tf.add(tf.matmul(flat, wfc1), bfc1)
            #fc1 = tu.batch_norm(fc1)
            fc1 = tu.relu(fc1)
            fc1 = tf.nn.dropout(fc1, dropout)

        with tf.name_scope('fullyconected2') as inner_scope:
            wfc2 = tu.weight([4096, 4096], name='wfc2')
            bfc2 = tu.bias(0.0, [4096], name='bfc2')
            fc2 = tf.add(tf.matmul(fc1, wfc2), bfc2)
            #fc2 = tu.batch_norm(fc2)
            fc2 = tu.relu(fc2)
            fc2 = tf.nn.dropout(fc2, dropout)

        with tf.name_scope('classifier_output') as inner_scope:
            wfc3 = tu.weight([4096, 1000], name='wfc3')
            bfc3 = tu.bias(0.0, [1000], name='bfc3')
            fc3 = tf.add(tf.matmul(fc2, wfc3), bfc3)
            softmax = tf.nn.softmax(fc3)

    return fc3, softmax
def classifier(x, dropout):
    
    """cnn fully connected layers definition
    
            Args:
                x: tensor of shape [batch_size, width, height, channels]
                dropout: probability of non dropping out units
                
            Returns:
                fc3: 2 linear tensor taken just before applying the softmax operation
                    it is needed to feed it to tf.softmax_cross_entropy_with_logits()
                softmax: 2 linear tensor representing the output probabilities of the image to classify
    """
    
    pool2 = cnn(x)
    
    dim = pool2.get_shape().as_list()
    flat_dim = dim[1] * dim[2] * dim[3] # 48 * 48 * 64
    flat = tf.reshape(pool2, [-1, flat_dim])
    
    with tf.name_scope('classifier') as scope:
        with tf.name_scope('fullyconected1') as inner_scope:
            wfc1 = tu.weight([flat_dim, 500], name='wfc1')
            bfc1 = tu.bias(1.0, [500], name='bfc1')
            fc1 = tf.add(tf.matmul(flat, wfc1), bfc1)
            fc1 = tu.relu(fc1)
            fc1 = tf.nn.dropout(fc1, dropout)
            
        with tf.name_scope('fullyconected2') as inner_scope:
            wfc2 = tu.weight([500, 100], name='wfc2')
            bfc2 = tu.bias(1.0, [100], name='bfc2')
            fc2 = tf.add(tf.matmul(fc1, wfc2), bfc2)
            fc2 = tu.relu(fc2)
            fc2 = tf.nn.dropout(fc2, dropout)
            
        with tf.name_scope('classifier_output') as inner_scope:
            wfc3 = tu.weight([100, 2], name='wfc3')
            bfc3 = tu.bias(1.0, [2], name='bfc3')
            fc3 = tf.add(tf.matmul(fc2, wfc3), bfc3)
            softmax = tf.nn.softmax(fc3)
            
    return fc3, softmax
def cnn(x):
    """ CNN model to detect lung cancer
    
            Args:
                x: tensor of shape [batch_size, width, height, channels]
        
            Returns:
                pool2: tensor with all convolutions, pooling applied
    """

    with tf.name_scope('cnn') as scope:
        with tf.name_scope('conv1') as inner_scope:
            wcnn1 = tu.weight([3, 3, 1, 64], name='wcnn1')
            bcnn1 = tu.bias(1.0, [64], name='bcnn1')
            conv1 = tf.add(tu.conv2d(x, wcnn1, stride=(1, 1), padding='SAME'),
                           bcnn1)
            conv1 = tu.relu(conv1)
            # (?, 192, 192, 64)

        with tf.name_scope('conv2') as inner_scope:
            wcnn2 = tu.weight([3, 3, 64, 64], name='wcnn2')
            bcnn2 = tu.bias(1.0, [64], name='bcnn2')
            conv2 = tf.add(
                tu.conv2d(conv1, wcnn2, stride=(1, 1), padding='SAME'), bcnn2)
            conv2 = tu.relu(conv2)
            #(?, 192, 192, 64)

        with tf.name_scope('max_pool') as inner_scope:
            pool1 = tu.max_pool2d(conv2,
                                  kernel=[1, 2, 2, 1],
                                  stride=[1, 2, 2, 1],
                                  padding='SAME')
            # (?, 96, 96, 64)

        with tf.name_scope('conv3') as inner_scope:
            wcnn3 = tu.weight([3, 3, 64, 64], name='wcnn3')
            bcnn3 = tu.bias(1.0, [64], name='bcnn3')
            conv3 = tf.add(
                tu.conv2d(pool1, wcnn3, stride=(1, 1), padding='SAME'), bcnn3)
            conv3 = tu.relu(conv3)
            # (?, 96, 96, 64)

        with tf.name_scope('conv4') as inner_scope:
            wcnn4 = tu.weight([3, 3, 64, 64], name='wcnn4')
            bcnn4 = tu.bias(1.0, [64], name='bcnn4')
            conv4 = tf.add(
                tu.conv2d(conv3, wcnn4, stride=(1, 1), padding='SAME'), bcnn4)
            conv4 = tu.relu(conv4)
            # (?, 96, 96, 64)

        with tf.name_scope('conv5') as inner_scope:
            wcnn5 = tu.weight([3, 3, 64, 64], name='wcnn5')
            bcnn5 = tu.bias(1.0, [64], name='bcnn5')
            conv5 = tf.add(
                tu.conv2d(conv4, wcnn5, stride=(1, 1), padding='SAME'), bcnn5)
            conv5 = tu.relu(conv5)
            # (?, 96, 96, 64)

        with tf.name_scope('max_pool') as inner_scope:
            pool2 = tu.max_pool2d(conv5,
                                  kernel=[1, 2, 2, 1],
                                  stride=[1, 2, 2, 1],
                                  padding='SAME')
            # (?, 48, 48, 64)

        return pool2
示例#7
0
def classifier(x):
    #parameters for convolution kernels
    IMG_DEPTH = 1
    C1_KERNEL_SIZE, C2_KERNEL_SIZE, C3_KERNEL_SIZE, C4_KERNEL_SIZE, C5_KERNEL_SIZE = 11, 5, 3, 3, 3
    C1_OUT_CHANNELS, C2_OUT_CHANNELS, C3_OUT_CHANNELS, C4_OUT_CHANNELS, C5_OUT_CHANNELS = 96, 256, 384, 384, 256
    #C1_OUT_CHANNELS,C2_OUT_CHANNELS,C3_OUT_CHANNELS,C4_OUT_CHANNELS,C5_OUT_CHANNELS=48,128,197,197,128
    C1_STRIDES, C2_STRIDES, C3_STRIDES, C4_STRIDES, C5_STRIDES = 1, 1, 1, 1, 1
    P1_SIZE, P2_SIZE, P5_SIZE = 3, 3, 3
    P1_STRIDE, P2_STRIDE, P5_STRIDE = 2, 2, 2
    F6_SIZE, F7_SIZE = 4096, 4096
    F8_SIZE = 10

    #convolution kernels and bias
    C1_kernel = util.weights(
        [C1_KERNEL_SIZE, C1_KERNEL_SIZE, IMG_DEPTH, C1_OUT_CHANNELS], 0.01,
        'C1_kernel')
    C2_kernel = util.weights(
        [C2_KERNEL_SIZE, C2_KERNEL_SIZE, C1_OUT_CHANNELS, C2_OUT_CHANNELS],
        0.01, 'C2_kernel')
    C3_kernel = util.weights(
        [C3_KERNEL_SIZE, C3_KERNEL_SIZE, C2_OUT_CHANNELS, C3_OUT_CHANNELS],
        0.01, 'C3_kernel')
    C4_kernel = util.weights(
        [C4_KERNEL_SIZE, C4_KERNEL_SIZE, C3_OUT_CHANNELS, C4_OUT_CHANNELS],
        0.01, 'C4_kernel')
    C5_kernel = util.weights(
        [C5_KERNEL_SIZE, C5_KERNEL_SIZE, C4_OUT_CHANNELS, C5_OUT_CHANNELS],
        0.01, 'C5_kernel')

    C1_bias = util.bias([C1_OUT_CHANNELS], 'C1_bias')
    C2_bias = util.bias([C2_OUT_CHANNELS], 'C2_bias')
    C3_bias = util.bias([C3_OUT_CHANNELS], 'C3_bias')
    C4_bias = util.bias([C4_OUT_CHANNELS], 'C4_bias')
    C5_bias = util.bias([C5_OUT_CHANNELS], 'C5_bias')

    #AlexNet network

    #Conv layer 1
    C1 = util.convLayer(x, C1_kernel, C1_STRIDES, 'SAME')
    ReLU1 = tf.nn.relu(C1 + C1_bias)
    P1 = util.max_pool(ReLU1, P1_SIZE, P1_STRIDE)
    NORM1 = tf.nn.local_response_normalization(P1)

    #Conv layer 2
    C2 = util.convLayer(NORM1, C2_kernel, C2_STRIDES, 'SAME')
    ReLU2 = tf.nn.relu(C2 + C2_bias)
    P2 = util.max_pool(ReLU2, P2_SIZE, P2_STRIDE)
    NORM2 = tf.nn.local_response_normalization(P2)

    #Conv layer 3
    C3 = util.convLayer(NORM2, C3_kernel, C3_STRIDES, 'SAME')
    ReLU3 = tf.nn.relu(C3 + C3_bias)

    #Conv layer 4
    C4 = util.convLayer(ReLU3, C4_kernel, C4_STRIDES, 'SAME')
    ReLU4 = tf.nn.relu(C4 + C4_bias)

    #Conv layer 5
    C5 = util.convLayer(ReLU4, C5_kernel, C5_STRIDES, 'SAME')
    ReLU5 = tf.nn.relu(C5 + C5_bias)
    P5_pre = util.max_pool(ReLU5, P5_SIZE, P5_STRIDE)

    num_P5_out = (int)(P5_pre.shape[1] * P5_pre.shape[2] * P5_pre.shape[3])
    P5 = tf.reshape(P5_pre, [-1, num_P5_out])

    #Fully connected layer 6
    F6_weights = util.weights([num_P5_out, F6_SIZE], 0.01, 'F6_weights')
    F6_bias = util.bias([F6_SIZE], 'F6_bias')
    F6 = tf.matmul(P5, F6_weights)
    ReLU6 = tf.nn.relu(F6 + F6_bias)
    DROP6 = tf.nn.dropout(ReLU6, 0.5)

    #Fully connected layer 7
    F7_weights = util.weights([F6_SIZE, F7_SIZE], 0.01, 'F7_weights')
    F7_bias = util.bias([F7_SIZE], 'F7_bias')
    F7 = tf.matmul(DROP6, F7_weights)
    ReLU7 = tf.nn.relu(F7 + F7_bias)
    DROP7 = tf.nn.dropout(ReLU7, 0.5)

    #Fully connected layer 8
    F8_weights = util.weights([F7_SIZE, F8_SIZE], 0.01, 'F8_weights')
    F8_bias = util.bias([F8_SIZE], 'F8_bias')
    logits = tf.matmul(DROP7, F8_weights) + F8_bias

    return logits
def alexnet(x):
    """
  AlexNet conv layers definition
  
  Args:
      x: tensor of shape[batch_size,width,height,channels]
  Returns:
      pool5: tensor with all convolutions ,pooling and lrn operations applied
      
  """
    with tf.name_scope('alexnetwork') as scope:
        with tf.name_scope('conv1') as inner_scope:
            wcnn1 = tu.weight([11, 11, 3, 96], name='wcnn1')
            bcnn1 = tu.bias(0.0, [96], name='bcnn1')
            conv1 = tf.add(tu.conv2d(x, wcnn1, stride=(4, 4), padding='SAME'),
                           bcnn1)

            #conv1 = tu.batch_norm(conv1)

            conv1 = tu.relu(conv1)
            norm1 = tu.lrn(conv1,
                           depth_radius=5,
                           bias=1.0,
                           alpha=1e-04,
                           beta=0.75)
            pool1 = tu.max_pool2d(norm1,
                                  kernel=[1, 3, 3, 1],
                                  stride=[1, 2, 2, 1],
                                  padding='VALID')

        with tf.name_scope('conv2') as inner_scope:
            wcnn2 = tu.weights([5, 5, 96, 256], name='wcnn2')
            bcnn2 = tu.bias(1.0, [256], name='bcnn2')
            conv2 = tf.add(
                tu.conv2d(pool1, wcnn2, stride=(1, 1), padding='SAME'), bcnn2)

            #conv2 = tu.batch_norm(conv2)

            conv2 = tu.relu(conv2)
            norm2 = tu.lrn(conv2,
                           depth_radius=5,
                           bias=1.0,
                           alpha=1e-04,
                           beta=0.75)
            pool2 = tu.max_pool2d(norm2,
                                  kernel=[1, 3, 3, 1],
                                  stride=[1, 2, 2, 1],
                                  padding='VALID')

        with tf.name_scope('conv3') as inner_scope:
            wcnn3 = tu.weights([3, 3, 256, 384], name='wcnn3')
            bcnn3 = tu.bias(0.0, [384], name='bcnn3')
            conv3 = tf.add(
                tu.conv2d(pool2, wcnn3, stride=(1, 1), padding='SAME'), bcnn3)
            #conv3 = tu.batch_norm(conv3)
            conv3 = tu.relu(conv3)

        with tf.name_scope('conv4') as inner_scope:
            wcnn4 = tu.weight([3, 3, 384, 384], name='wcnn4')
            bcnn4 = tu.bias(1.0, [384], name='bcnn4')
            conv4 = tf.add(
                tu.conv2d(conv3, wcnn5, stride=(1, 1), padding='SAME'), bcnn5)
            #conv5 = tu.batch_norm(conv5)
            conv5 = tu.relu(conv5)
            pool5 = tu.max_pool2d(conv5,
                                  kernel=[1, 3, 3, 1],
                                  stride=[1, 2, 2, 1],
                                  padding='VALID')

        return pool5