示例#1
0
def evaluate_accuracy(model, data, batch_size, gpu, debug=0):
    n = float(len(data))
    correct = 0
    num_1s = 0
    correct_1 = 0
    false_negative = 0
    for batch in chunked_sorted(data, batch_size):
        batch_obj = Batch([x for x, y in batch], model.embeddings,
                          to_cuda(gpu))
        gold = [y for x, y in batch]
        predicted = model.predict(batch_obj, debug)

        num_1s += predicted.count(1)
        correct += sum(1 for pred, gold in zip(predicted, gold)
                       if pred == gold)
        correct_1 += sum(1 for pred, gold in zip(predicted, gold)
                         if pred == gold and gold == 1)
        false_negative += sum(1 for pred, gold in zip(predicted, gold)
                              if pred != gold and gold == 1)

    precision = correct_1 / max(num_1s, 1)
    recall = correct_1 / (false_negative + correct_1)

    print("num predicted 1s:", num_1s)
    print("num gold 1s:     ", sum(gold == 1 for _, gold in data))
    print("precision", precision)
    print("recall", recall)
    print("f1 score", 2 * precision * recall / max(precision + recall, 1))

    return correct / n
示例#2
0
def evaluate_accuracy(model, data, batch_size, gpu, debug=0):
    n = float(len(data))
    correct = 0
    num_1s = 0
    for batch in chunked_sorted(data, batch_size):
        batch_obj = Batch([x for x, y in batch], model.embeddings, to_cuda(gpu))
        gold = [y for x, y in batch]
        predicted = model.predict(batch_obj, debug)
        num_1s += predicted.count(1)
        correct += sum(1 for pred, gold in zip(predicted, gold) if pred == gold)

    print("num predicted 1s:", num_1s)
    print("num gold 1s:     ", sum(gold == 1 for _, gold in data))

    return correct / n
示例#3
0
    def test_same_forward_for_diff_batches(self):
        """ Test that different batch sizes yield same `forward` results """
        # for each batch size, chunk data into batches, run model.forward,
        # then flatten results into a list (one NUM_CLASSESx1 vec per doc).
        for model in self.models:
            forward_results = [
                [
                    fwd
                    for chunk in chunked_sorted(self.data, batch_size)
                    for fwd in model.forward(Batch([x for x, y in chunk],
                                                   self.embeddings,
                                                   to_cuda(GPU))).data
                ]
                for batch_size in self.batch_sizes
            ]

            # transpose, so doc_forwards are all the diff batch sizes for a given doc
            for doc_forwards in zip(*forward_results):
                # make sure adjacent batch sizes predict the same probs
                for batch_size_a, batch_size_b in zip(doc_forwards, doc_forwards[1:]):
                    for y in range(NUM_CLASSES):
                        self.assertAlmostEqual(batch_size_a[y], batch_size_b[y], places=4)
示例#4
0
def train(train_data,
          dev_data,
          model,
          num_classes,
          model_save_dir,
          num_iterations,
          model_file_prefix,
          learning_rate,
          batch_size,
          run_scheduler=False,
          gpu=False,
          clip=None,
          max_len=-1,
          debug=0,
          dropout=0,
          word_dropout=0,
          patience=1000):
    """ Train a model on all the given docs """

    optimizer = Adam(model.parameters(), lr=learning_rate)
    loss_function = NLLLoss(None, False)

    enable_gradient_clipping(model, clip)

    if dropout:
        dropout = torch.nn.Dropout(dropout)
    else:
        dropout = None

    debug_print = int(100 / batch_size) + 1

    writer = None

    if model_save_dir is not None:
        writer = SummaryWriter(os.path.join(model_save_dir, "logs"))

    if run_scheduler:
        scheduler = ReduceLROnPlateau(optimizer, 'min', 0.1, 10, True)

    best_dev_loss = 100000000
    best_dev_loss_index = -1
    best_dev_acc = -1
    start_time = monotonic()

    for it in range(num_iterations):
        np.random.shuffle(train_data)

        loss = 0.0
        i = 0
        for batch in shuffled_chunked_sorted(train_data, batch_size):
            batch_obj = Batch([x[0] for x in batch], model.embeddings,
                              to_cuda(gpu), word_dropout, max_len)
            gold = [x[1] for x in batch]
            loss += torch.sum(
                train_batch(model, batch_obj, num_classes, gold, optimizer,
                            loss_function, gpu, debug, dropout))

            if i % debug_print == (debug_print - 1):
                print(".", end="", flush=True)
            i += 1

        if writer is not None:
            for name, param in model.named_parameters():
                writer.add_scalar("parameter_mean/" + name, param.data.mean(),
                                  it)
                writer.add_scalar("parameter_std/" + name, param.data.std(),
                                  it)
                if param.grad is not None:
                    writer.add_scalar("gradient_mean/" + name,
                                      param.grad.data.mean(), it)
                    writer.add_scalar("gradient_std/" + name,
                                      param.grad.data.std(), it)

            writer.add_scalar("loss/loss_train", loss, it)

        dev_loss = 0.0
        i = 0
        for batch in chunked_sorted(dev_data, batch_size):
            batch_obj = Batch([x[0] for x in batch], model.embeddings,
                              to_cuda(gpu))
            gold = [x[1] for x in batch]
            dev_loss += torch.sum(
                compute_loss(model, batch_obj, num_classes, gold,
                             loss_function, gpu, debug).data)

            if i % debug_print == (debug_print - 1):
                print(".", end="", flush=True)

            i += 1

        if writer is not None:
            writer.add_scalar("loss/loss_dev", dev_loss, it)
        print("\n")

        finish_iter_time = monotonic()
        train_acc = evaluate_accuracy(model, train_data[:1000], batch_size,
                                      gpu)
        dev_acc = evaluate_accuracy(model, dev_data, batch_size, gpu)

        print(
            "iteration: {:>7,} train time: {:>9,.3f}m, eval time: {:>9,.3f}m "
            "train loss: {:>12,.3f} train_acc: {:>8,.3f}% "
            "dev loss: {:>12,.3f} dev_acc: {:>8,.3f}%".format(
                it, (finish_iter_time - start_time) / 60,
                (monotonic() - finish_iter_time) / 60, loss / len(train_data),
                train_acc * 100, dev_loss / len(dev_data), dev_acc * 100))

        if dev_loss < best_dev_loss:
            if dev_acc > best_dev_acc:
                best_dev_acc = dev_acc
                print("New best acc!")
            print("New best dev!")
            best_dev_loss = dev_loss
            best_dev_loss_index = 0
            if model_save_dir is not None:
                model_save_file = os.path.join(
                    model_save_dir, "{}_{}.pth".format(model_file_prefix, it))
                print("saving model to", model_save_file)
                torch.save(model.state_dict(), model_save_file)
        else:
            best_dev_loss_index += 1
            if best_dev_loss_index == patience:
                print("Reached", patience,
                      "iterations without improving dev loss. Breaking")
                break

        if dev_acc > best_dev_acc:
            best_dev_acc = dev_acc
            print("New best acc!")
            if model_save_dir is not None:
                model_save_file = os.path.join(
                    model_save_dir, "{}_{}.pth".format(model_file_prefix, it))
                print("saving model to", model_save_file)
                torch.save(model.state_dict(), model_save_file)

        if run_scheduler:
            scheduler.step(dev_loss)

    return model