示例#1
0
文件: controller.py 项目: divelab/GPT
def setup_losses(
    gitapp: GetInputTargetAndPredictedParameters,
    name: str = None,
) -> Tuple[Dict[str, lt.LabeledTensor], Dict[str, lt.LabeledTensor]]:
    """Creates cross entropy losses.

  Args:
    gitapp: GetInputTargetAndPredictedParameters.
    name: Optional op name.

  Returns:
    A dictionary of tensors with the input reconstruction losses.

    A dictionary of tensors with the target prediction losses.
  """
    logging.info('Setting up losses')
    with tf.name_scope(name, 'setup_losses', []) as scope:
        (_, input_lt, target_lt, predict_input_lt,
         predict_target_lt) = get_input_target_and_predicted(gitapp)

        predicted_size = len(predict_input_lt.axes['row'])
        visualize.summarize_image(
            visualize.error_panel(util.crop_center(predicted_size, input_lt),
                                  visualize.to_softmax(predict_input_lt),
                                  name=scope + 'input_patch_error_panel'))
        visualize.summarize_image(
            visualize.error_panel(util.crop_center(predicted_size, target_lt),
                                  visualize.to_softmax(predict_target_lt),
                                  name=scope + 'target_patch_error_panel'))

        def mean(lts: Dict[str, lt.LabeledTensor]) -> tf.Tensor:
            sum_op = tf.add_n([t.tensor for t in lts.values()])
            return sum_op / float(len(lts))

        tag = 'input'
        input_loss_lts = itemize_losses(gitapp.loss,
                                        input_lt,
                                        predict_input_lt,
                                        name=scope + tag)
        tf.summary.scalar(name='loss/' + tag, tensor=mean(input_loss_lts))

        tag = 'target'
        target_loss_lts = itemize_losses(gitapp.loss,
                                         target_lt,
                                         predict_target_lt,
                                         name=scope + tag)
        tf.summary.scalar(name='loss/' + tag, tensor=mean(target_loss_lts))

        variables = tf.global_variables()
        for v in variables:
            tf.summary.histogram(name='variable/' + v.name, values=v)

        return input_loss_lts, target_loss_lts
示例#2
0
    def func(data):
        data = np.rot90(data, k=-1, axes=(1, 2))

        data = crop_center(data, 256, 256)

        data = minmax_normalize(data)
        return data
示例#3
0
文件: train.py 项目: royaljava/dsrn
def build_model(source, target):
  """Build the model graph."""
  with tf.name_scope('model'):
    prediction = model.build_model(
        source, FLAGS.scale, training=True, reuse=False)
    target_cropped = util.crop_center(target, tf.shape(prediction)[1:3])
    tf.summary.histogram('prediction', prediction)
    tf.summary.histogram('groundtruth', target)
  return prediction, target_cropped
示例#4
0
文件: controller.py 项目: divelab/GPT
def add_loss(
    loss: Callable,
    target_lt: lt.LabeledTensor,
    predicted_lt: lt.LabeledTensor,
    name: str = None,
) -> lt.LabeledTensor:
    """Add a loss.

  Args:
    loss: Loss function to use.
      Arguments should be (target, mask, prediction, name).
    target_lt: The target values in the canonical format.
    predicted_lt: The predicted values in the canonical prediction format.
    name: Optional op name.

  Returns:
    A scalar tensor representing the weighted cross-entropy loss.
  """
    with tf.name_scope(name, 'loss', [target_lt, predicted_lt]) as scope:
        target_lt = lt.transpose(target_lt, util.CANONICAL_AXIS_ORDER)
        predicted_lt = lt.transpose(predicted_lt,
                                    util.CANONICAL_PREDICTION_AXIS_ORDER)

        predicted_size = len(predicted_lt.axes['row'])
        assert predicted_size == len(predicted_lt.axes['column'])
        target_lt = util.crop_center(predicted_size, target_lt)

        signal_lt = lt.select(target_lt, {'mask': False})
        mask_lt = lt.select(target_lt, {'mask': True})

        signal_lt = lt.reshape(signal_lt, util.CANONICAL_AXIS_ORDER[:-1],
                               ['batch'])
        mask_lt = lt.reshape(mask_lt, util.CANONICAL_AXIS_ORDER[:-1],
                             ['batch'])
        predicted_lt = lt.reshape(predicted_lt,
                                  util.CANONICAL_PREDICTION_AXIS_ORDER[:-1],
                                  ['batch'])

        assert list(signal_lt.axes.keys()) == ['batch']
        assert list(mask_lt.axes.keys()) == ['batch']
        assert list(predicted_lt.axes.keys()) == ['batch', 'class']

        signal_lt = tensorcheck.bounds(0.0, 1.0, signal_lt)
        mask_lt = tensorcheck.bounds(0.0, 1.0, mask_lt)

        loss_lt = loss(signal_lt, mask_lt, predicted_lt)

        return lt.identity(loss_lt, name=scope)
示例#5
0
def build_model(source, target):
    """Build the model graph."""
    with tf.name_scope('model'):
        prediction = model.build_model(source,
                                       FLAGS.scale,
                                       training=True,
                                       reuse=False)
        '''
    with tf.Session() as sess:
        sess.run(tf.local_variables_initializer())
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        print(sess.run(source).shape)

        coord.request_stop()
        coord.join(threads)
    '''
        target_cropped = util.crop_center(target, tf.shape(prediction)[1:3])
        tf.summary.histogram('prediction', prediction)
        tf.summary.histogram('groundtruth', target)
    return prediction, target_cropped
示例#6
0
    losses = []
    grads = []
    for i in range(FLAGS.gpu_num):
        with tf.device('/gpu:' + str(i)):
            stager = data_flow_ops.StagingArea([tf.float32, tf.float32],
                                               shapes=[[None, None, None, 3],
                                                       [None, None, None, 3]])
            stage = stager.put([target_batch_staging, source_batch_staging])
            stages.append(stage)
            target_batch, source_batch = stager.get()
            predict_batch = model.build_model(source_batch,
                                              FLAGS.scale,
                                              training=True,
                                              reuse=(i > 0))
            target_cropped_batch = util.crop_center(
                target_batch,
                tf.shape(predict_batch)[1:3])
            loss = tf.losses.mean_squared_error(target_cropped_batch,
                                                predict_batch)
            losses.append(loss)
            grad = optimizer.compute_gradients(loss)
            grads.append(grad)
    loss = tf.reduce_mean(tf.stack(losses))

    def average_gradients(tower_grads):
        average_grads = []
        for grad_and_vars in zip(*tower_grads):
            grads = []
            for g, _ in grad_and_vars:
                grads.append(g)
            grad = tf.stack(grads)
示例#7
0
    lr_image = tf.expand_dims(lr_image, 0)
    lr_image_shape = tf.shape(lr_image)[1:3]
    hr_image_shape = lr_image_shape * FLAGS.scale
    if (data.resize):
        lr_image = util.resize_func(lr_image, hr_image_shape)
        lr_image = tf.reshape(lr_image,
                              [1, hr_image_shape[0], hr_image_shape[1], 3])
    else:
        lr_image = tf.reshape(lr_image,
                              [1, lr_image_shape[0], lr_image_shape[1], 3])
    lr_image_padded = util.pad_boundary(lr_image)
    hr_image = model.build_model(lr_image_padded - 0.5,
                                 FLAGS.scale,
                                 training=False,
                                 reuse=False)
    hr_image = util.crop_center(hr_image, hr_image_shape)
    if (data.residual):
        if (data.resize):
            hr_image += lr_image
        else:
            hr_image += util.resize_func(lr_image, hr_image_shape)
    hr_image = hr_image * tf.uint8.max + 0.5
    hr_image = tf.saturate_cast(hr_image, tf.uint8)
    hr_image = tf.reshape(hr_image, [hr_image_shape[0], hr_image_shape[1], 3])
    hr_image = tf.image.encode_png(hr_image)

    init = tf.global_variables_initializer()
    init_local = tf.local_variables_initializer()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(init_local)
示例#8
0
vts_nps = [util.VTKSPtoNumpyFromFile(v) for v in vts_files]

if any([(v.shape[1] < crop_dims or v.shape[2] < crop_dims) for v in vts_nps]):
    raise RuntimeError(
        "Error Vtk structured points files have dimension smaller than 128x128, need at least 128x128"
    )

#Crop and normalize the images
M = len(vts_nps)
V = np.zeros((M, crop_dims, crop_dims, 1))
max_ = np.amax(vts_nps)
min_ = np.amin(vts_nps)
for i in range(M):
    v = vts_nps[i][0]
    print v.shape
    V[i] = util.crop_center(v, crop_dims, crop_dims).reshape(128, 128, 1)
vts_nps = V
#vts_nps = [util.crop_center_nd(v,crop_dims,crop_dims) for v in vts_nps]
#vts_nps = np.asarray(vts_nps)[:,0,:,:,np.newaxis].astype(float)
print vts_nps.shape

if modality == 'ct':
    print "CT"
    #vts_nps = 1.0*vts_nps/3000
    vts_nps = 1.0 * vts_nps / 3000
if modality == 'mr':
    vts_nps = 2.0 * (1.0 * vts_nps - min_) / (max_ - min_) - 1
    print "MR"

#Need there to be a multiple of Nbatch images
print "Padding images to be multiple of Nbatch"
示例#9
0
文件: controller.py 项目: divelab/GPT
def setup_stitch(
    gitapp: GetInputTargetAndPredictedParameters,
    name=None,
) -> Dict[str, lt.LabeledTensor]:
    """Creates diagnostic images.

  All diagnostic images are registered as summaries.

  Args:
    gitapp: GetInputTargetAndPredictedParameters.
    name: Optional op name.

  Returns:
    A mapping where the keys are names of summary images and the values
    are image tensors.
  """
    logging.info('Setting up stitch')
    with tf.name_scope(name, 'setup_stitch', []) as scope:
        (patch_centers, input_lt, target_lt, predict_input_lt,
         predict_target_lt) = get_input_target_and_predicted(gitapp)

        predicted_size = len(predict_input_lt.axes['row'])
        assert predicted_size == len(predict_input_lt.axes['column'])
        input_lt = util.crop_center(predicted_size, input_lt)
        target_lt = util.crop_center(predicted_size, target_lt)

        # For now, we're not handling overlap or missing data.
        assert gitapp.stride == predicted_size

        if gitapp.bp is not None:
            # Rebatch so a single tensor is all the patches in a single image.
            [input_lt, target_lt, predict_input_lt,
             predict_target_lt] = util.entry_point_batch(
                 [input_lt, target_lt, predict_input_lt, predict_target_lt],
                 bp=util.BatchParameters(size=len(patch_centers),
                                         num_threads=1,
                                         capacity=1),
                 enqueue_many=True,
                 entry_point_names=[
                     'input_stitch', 'target_stitch', 'predict_input_stitch',
                     'predict_target_stitch'
                 ],
                 name='stitch')

        rc = lt.ReshapeCoder(util.CANONICAL_AXIS_ORDER[3:], ['channel'])
        input_lt = rc.decode(
            ops.patches_to_image(patch_centers, rc.encode(input_lt)))

        rc = lt.ReshapeCoder(util.CANONICAL_AXIS_ORDER[3:], ['channel'])
        target_lt = rc.decode(
            ops.patches_to_image(patch_centers, rc.encode(target_lt)))

        rc = lt.ReshapeCoder(util.CANONICAL_PREDICTION_AXIS_ORDER[3:],
                             ['channel'])
        predict_input_lt = rc.decode(
            ops.patches_to_image(patch_centers, rc.encode(predict_input_lt)))

        rc = lt.ReshapeCoder(util.CANONICAL_PREDICTION_AXIS_ORDER[3:],
                             ['channel'])
        predict_target_lt = rc.decode(
            ops.patches_to_image(patch_centers, rc.encode(predict_target_lt)))

        def get_statistics(t: lt.LabeledTensor) -> lt.LabeledTensor:
            t = visualize.to_softmax(t)
            rc = lt.ReshapeCoder(list(t.axes.keys())[:-1], ['batch'])
            return rc.decode(ops.distribution_statistics(rc.encode(t)))

        # C++ entry points .
        with tf.name_scope(''):
            input_lt = lt.identity(input_lt, name='entry_point_stitched_input')
            target_lt = lt.identity(target_lt,
                                    name='entry_point_stitched_target')
            # The nodes are used purely to export data to C++.
            lt.identity(get_statistics(predict_input_lt),
                        name='entry_point_stitched_predicted_input')
            lt.identity(get_statistics(predict_target_lt),
                        name='entry_point_stitched_predicted_target')

        predict_input_lt = visualize.to_softmax(predict_input_lt)
        predict_target_lt = visualize.to_softmax(predict_target_lt)

        input_summary_lt = visualize.error_panel(input_lt, predict_input_lt)
        target_summary_lt = visualize.error_panel(target_lt, predict_target_lt)

        if gitapp.bp is not None:
            input_summary_lt, target_summary_lt = lt.batch(
                [input_summary_lt, target_summary_lt],
                # We'll see 3 images in the visualizer.
                batch_size=3,
                enqueue_many=True,
                num_threads=1,
                capacity=1,
                name='group')

        input_summary_lt = lt.identity(input_summary_lt,
                                       name=scope + 'input_error_panel')
        target_summary_lt = lt.identity(target_summary_lt,
                                        name=scope + 'target_error_panel')

        visualize_op_dict = {}
        visualize_op_dict['input'] = input_lt
        visualize_op_dict['predict_input'] = predict_input_lt
        visualize_op_dict['target'] = target_lt
        visualize_op_dict['predict_target'] = predict_target_lt

        def summarize(tag, labeled_tensor):
            visualize.summarize_image(labeled_tensor,
                                      name=scope + 'summarize/' + tag)
            visualize_op_dict[tag] = labeled_tensor

        summarize('input_error_panel', input_summary_lt)
        summarize('target_error_panel', target_summary_lt)

        return visualize_op_dict