示例#1
0
def main():
    parser = argparse.ArgumentParser("Test a trained model on SQuAD")
    parent = argparse.ArgumentParser(add_help=False)

    util.add_data_args(parent)
    util.add_test_args(parent)
    subparsers = parser.add_subparsers()

    add_subparser("bidaf", "bidaf", subparsers, parent, bidaf_trainer)
    add_subparser("glove_transformer", "bidaf", subparsers, parent,
                  glove_transformer_trainer)
    add_subparser("roberta_finetune", "bpe", subparsers, parent,
                  roberta_finetune)

    args = parser.parse_args()

    # Require load_path for test.py
    if not args.load_path:
        raise argparse.ArgumentError("Missing required argument --load_path")

    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    args.data_dir = util.get_data_dir(args.data_dir, args.data_sub_dir)
    util.build_data_dir_path(args)

    test = args.test
    del args.test
    test(args)
示例#2
0
def main():
    # define parser and arguments
    args = get_train_test_args()
    util.set_seed(args.seed)

    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    DistilBert = DistilBertModel.from_pretrained('distilbert-base-uncased')
    Experts = [DistilBertQA(DistilBertModel.from_pretrained('distilbert-base-uncased')).to(device) for _ in range(args.num_experts)]
    tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
    gate_model = GateNetwork(384, 3,3, DistilBert.config).to(device)
    print(f'Args: {json.dumps(vars(args), indent=4, sort_keys=True)}')
    if args.do_train:
        if not os.path.exists(args.save_dir):
            os.makedirs(args.save_dir)
        args.save_dir = util.get_save_dir(args.save_dir, args.run_name)
        log = util.get_logger(args.save_dir, 'log_train')
        log.info(f'Args: {json.dumps(vars(args), indent=4, sort_keys=True)}')
        log.info("Preparing Training Data...")
        args.device = device
        trainer = train.Trainer(args, log)
        train_dataset, _ = get_dataset(args, args.train_datasets, args.train_dir, tokenizer, 'train')
        log.info("Preparing Validation Data...")
        val_dataset, val_dict = get_dataset(args, args.train_datasets, args.val_dir, tokenizer, 'val')
        train_loader = DataLoader(train_dataset,
                                batch_size=args.batch_size,
                                sampler=RandomSampler(train_dataset))
        val_loader = DataLoader(val_dataset,
                                batch_size=1,
                                sampler=SequentialSampler(val_dataset))
        best_scores = trainer.train(Experts, gate_model, train_loader, val_loader, val_dict, args.num_experts)
    if args.do_eval:
        split_name = 'test' if 'test' in args.eval_dir else 'validation'
        log = util.get_logger(args.save_dir, f'log_{split_name}')
        trainer = train.Trainer(args, log)
        # load model
        restore_model("",args.num_experts, Experts, gate_model)
        eval_dataset, eval_dict = get_dataset(args, args.eval_datasets, args.eval_dir, tokenizer, split_name)
        eval_loader = DataLoader(eval_dataset,
                                 batch_size=1,
                                 sampler=SequentialSampler(eval_dataset))
        args.device = device
        eval_preds, eval_scores = trainer.evaluate(Experts, gate_model, eval_loader,
                                                   eval_dict, return_preds=True,
                                                   split=split_name)
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in eval_scores.items())
        log.info(f'Eval {results_str}')
        # Write submission file
        sub_path = os.path.join(args.save_dir, split_name + '_' + args.sub_file)
        log.info(f'Writing submission file to {sub_path}...')
        with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
            csv_writer = csv.writer(csv_fh, delimiter=',')
            csv_writer.writerow(['Id', 'Predicted'])
            for uuid in sorted(eval_preds):
                csv_writer.writerow([uuid, eval_preds[uuid]])
示例#3
0
def save_video(n_frame, type_, exp=None):
    save_dir = get_save_dir(exp)
    save_path = os.path.join(save_dir, '{}.avi'.format(type_))
    video_writer = cv2.VideoWriter(save_path,
                                   cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
                                   25, (352, 288))
    for i in range(n_frame):
        img_name = './result/{}_{}.png'.format(type_, i)
        f = cv2.imread(img_name)
        os.remove(img_name)
        video_writer.write(f)
    video_writer.release()
示例#4
0
def test(args):
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info('saving to directory {}'.format(args.save_dir))
    tbx = SummaryWriter(args.save_dir)
    if args.gpu_ids == 'cpu':
        device, args.gpu_ids = torch.device('cpu'), []
    else:
        device, args.gpu_ids = util.get_available_devices()
    log.info('testing on device {} with gpu_id {}'.format(str(device), str(args.gpu_ids)))
    log.info('Building model...')
    if args.task == 'tag':
        model = SummarizerLinear()
#        model = SummarizerLinearAttended(128, 256)
#        model = SummarizerRNN(128, 256)
    else:
        model = SummarizerAbstractive(128, 256, device)

    if len(args.gpu_ids) > 0:
        model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        raise Exception('no specified checkpoint, abort')
    model = model.to(device)
    model.eval()
    log.info('Building dataset...')
    data_path = PROCESSED_DATA_SUPER_TINY if 'super_tiny' in args.split else PROCESSED_DATA
    with open(data_path, 'rb') as f:
        all_data = pickle.load(f)
    if 'tiny' in args.split:
        test_split = all_data['tiny']
    elif 'dev' in args.split:
        test_split = all_data['dev']
    else:
        test_split = all_data['test']
    test_dataset = SummarizationDataset(
            test_split['X'], test_split['y'], test_split['gold'])
    collate_fn = tag_collate_fn if args.task == 'tag' else decode_collate_fn
    test_loader = data.DataLoader(test_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers,
                                   shuffle=False,
                                   collate_fn=collate_fn)
    # Evaluate
    log.info('Evaluating at step {}...'.format(step))
    results, pred = evaluate(args, model, test_loader, device)
    if results is None:
        log.info('Selected predicted no select for all in batch')
        raise Exception('no results found')
    return results, pred
示例#5
0
def main():
    torch.autograd.set_detect_anomaly(True)
    # define parser and arguments
    args = get_train_test_args()
    util.set_seed(args.seed)
    tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    if args.model_dir == 'save/xxx':
        args.save_dir = util.get_save_dir(args.save_dir, args.run_name)
    else:
        args.save_dir = args.model_dir

    if args.train_adv:
        trainer = AdvTrainer(args)
    else:
        trainer = Trainer(args)

    print("Preparing Training Data...")
    train_datasets = []
    for dataset_idx, train_dataset_name in enumerate(args.train_datasets.split(",")):
        train_dataset, _ = get_dataset(args, train_dataset_name, args.train_dir, tokenizer, 'train', dataset_idx)
        train_datasets.append(train_dataset)
    train_loader = DataLoader(ConcatDataset(train_datasets),
                          batch_size=args.batch_size,
                          shuffle=True)

    print("Preparing ind Validation Data...")
    ind_val_dataset, ind_val_dict = get_dataset(args, args.train_datasets.split(","), args.ind_val_dir, tokenizer, 'ind_val')
    ind_val_loader = DataLoader(ind_val_dataset,
                                batch_size=args.batch_size,
                                shuffle=False)

    print("Preparing ood Validation Data...")
    ood_val_loaders = []
    ood_val_dicts = []
    ood_val_names = []
    for ood_val_dataset_name in args.ood_val_datasets.split(","):
        ood_val_dataset, ood_val_dict = get_dataset(args, ood_val_dataset_name, args.ood_val_dir, tokenizer, 'ood_val')
        ood_val_loader = DataLoader(ood_val_dataset,
                                    batch_size=args.batch_size,
                                    shuffle=False)
        ood_val_loaders.append(ood_val_loader)
        ood_val_dicts.append(ood_val_dict)
        ood_val_names.append(ood_val_dataset_name)
    trainer.train(train_loader, ind_val_loader, ind_val_dict, ood_val_loaders, ood_val_dicts, ood_val_names, args.resume_iters)
示例#6
0
def main(args):
    import pandas as pd

    experiment_save_dir = util.get_save_dir(args.save_dir,
                                            args.name,
                                            args.dataset,
                                            mode="hyper")
    training_function = create_training_function(args, experiment_save_dir)

    grid_search = GridSearch.load(args.experiments_file)
    results = [
        training_function(experiment, config) for experiment, config in
        grid_search.random_experiments(args.max_experiments)
    ]

    df = pd.DataFrame(results)
    df.to_csv("hyperparams.csv")

    print("Best config: ", df.sort_values('F1', ascending=False).iloc[0])
示例#7
0
def predict(args, cw_idxs, qn_idxs):
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors, hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)
    log.info('Loading checkpoint from {}...'.format(args.load_path))
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()
    y_pred = model(cw_idxs, qn_idxs)
    return y_pred
示例#8
0
文件: train.py 项目: jeffdshen/squad
def main():
    parser = argparse.ArgumentParser("Train a model on SQuAD")
    parent = argparse.ArgumentParser(add_help=False)

    util.add_data_args(parent)
    util.add_train_args(parent)
    subparsers = parser.add_subparsers()

    add_subparser("bidaf", "bidaf", subparsers, parent, bidaf_trainer)
    add_subparser("glove_transformer", "bidaf", subparsers, parent,
                  glove_transformer_trainer)
    add_subparser("roberta_pretrain", "bpe", subparsers, parent,
                  roberta_pretrainer)
    add_subparser("electra_pretrain", "bpe", subparsers, parent,
                  electra_pretrainer)
    add_subparser("didae_pretrain", "bpe", subparsers, parent,
                  didae_pretrainer)
    add_subparser("roberta_finetune", "bpe", subparsers, parent,
                  roberta_finetune)
    add_subparser("roberta_augment", "bpe", subparsers, parent,
                  roberta_augment)

    args = parser.parse_args()
    if args.metric_name.startswith("NLL"):
        # Best checkpoint is the one that minimizes negative log-likelihood
        args.maximize_metric = False
    elif args.metric_name in ("EM",
                              "F1") or args.metric_name.startswith("acc"):
        # Best checkpoint is the one that maximizes EM or F1
        args.maximize_metric = True
    else:
        raise ValueError(f'Unrecognized metric name: "{args.metric_name}"')

    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    args.data_dir = util.get_data_dir(args.data_dir, args.data_sub_dir)
    util.build_data_dir_path(args)

    train = args.train
    del args.train
    train(args)
示例#9
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Load embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Build QA model
    log.info('Building model...')
    model = QA_Model(word_vectors=word_vectors,
                     hidden_size=args.hidden_size,
                     drop_prob=args.drop_prob,
                     attention_type=args.attention_type,
                     train_embeddings=args.train_embeddings)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        # Load QA model from file
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    #optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')

                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')
示例#10
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    char_vectors = util.torch_from_json(args.char_emb_file)

    # ######################################
    # tokenizer = BertTokenizer.from_pretrained('bert-large-uncased', do_lower_case=True)
    # train_examples = None
    # train_examples = read_squad_examples(
    #     input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
    # train_features = convert_examples_to_features(
    #     examples=train_examples,
    #     tokenizer=tokenizer,
    #     max_seq_length=args.max_seq_length,
    #     doc_stride=args.doc_stride,
    #     max_query_length=args.max_query_length,
    #     is_training=True)
    # if args.local_rank == -1 or torch.distributed.get_rank() == 0:
    #     logger.info("  Saving train features into cached file %s", cached_train_features_file)
    #     with open(cached_train_features_file, "wb") as writer:
    #         pickle.dump(train_features, writer)
    # all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
    # x = all_input_ids
    ###########################################

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  char_vectors=char_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)

                # added_flag
                cc_idxs = cc_idxs.to(device)
                qc_idxs = qc_idxs.to(device)

                optimizer.zero_grad()

                # Forward
                # log_p1, log_p2 = model(cw_idxs, qw_idxs)
                log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
示例#11
0
def main():
    torch.backends.cudnn.enabled = False

    # Make save dir for logfiles and state_dicts
    run_name = "optflow_nvidia"
    save_path = osp.join("save", run_name)
    save_dir = util.get_save_dir(save_path, run_name,
                                 training=True)  # unique save dir
    log = util.get_logger(save_dir, run_name)  # logger
    saver = util.CheckpointSaver(
        save_dir,  # save model
        max_checkpoints=10,
        maximize_metric=False,
        metric_name="MSE",
        log=log)
    # Data, batches & epochs
    max_epoch = 25
    batch_size = 32
    window = 7
    train_loader, val_loader = create_datasplit(batch_size=batch_size,
                                                window=window)

    # Model Creation
    log.info("Building model")
    # model = resnet18(sample_size=(240, 640), sample_duration=2*window+1, shortcut_type="A", num_classes=1)
    # model = C3D()
    model = nvidia()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = nn.DataParallel(
        model
    )  # If loading state dict throws KeyError ie. unexpected keys "module.convX.X"
    model.to(device)
    model.train()

    # Possibly load model state_dict here
    step = 0
    # load_path = 'c3d.pickle'
    # log.info('Loading checkpoint from {}...'.format(load_path))
    # model.load_state_dict(torch.load(load_path))
    # model = util.load_model(model, load_path, 0)  # uses the saved step num

    # Loss & Optimizer
    criterion = nn.MSELoss()
    lr = 1e-4
    weight_decay = 1e-5
    # optimizer = optim.SGD(model.parameters(), lr=lr, momentum=.9, weight_decay=weight_decay)
    optimizer = optim.Adam(model.parameters(),
                           lr=lr,
                           weight_decay=weight_decay)

    # Log args
    # log.info('Args: {}'.format(dumps(vars({"lr": lr, "max_epoch": max_epoch, "batch_size": batch_size,
    #                                        "window_size": window}), indent=4, sort_keys=True)))

    # Initialize epoch and step_to_eval counters
    steps_till_eval = int(.4 * len(train_loader.dataset))
    epoch = step // len(train_loader.dataset)

    while epoch != max_epoch:
        epoch += 1
        log.info("=============Epoch %i=============" % epoch)
        with torch.enable_grad(), tqdm(
                total=len(train_loader.dataset)) as progress_bar:

            for sample_batch in train_loader:
                model.zero_grad()  # Zero gradients after each batch

                x, y = sample_batch

                x = x.to(device)
                y = y.to(device)

                f = model(x)

                loss = criterion(f, y)
                loss.backward()
                optimizer.step()

                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, MSE=loss.item())

                steps_till_eval -= batch_size

                if steps_till_eval <= 0:
                    steps_till_eval = int(.4 * len(train_loader.dataset))

                    # Eval on validation set
                    val_mse = evalu(model, val_loader, device)

                    # Save checkpoint
                    saver.save(step, model, val_mse, device)

                    # Print to console
                    results_str = "MSE: " + str(val_mse)
                    log.info('Dev {}'.format(results_str))
示例#12
0
def main(args):

    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    seed = 42
    torch.manual_seed(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

    # Get model
    #log.info(f'Loading checkpoint from {args.load_path}...')

    model = resnet.resnet50()
    model = nn.DataParallel(model, gpu_ids)
    #log.info(f'Loading checkpoint from {args.load_path}...')
    #model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('loading dataset...')
    input_data_file = '/home/mahbub/research/flat-resnet/data/dev_images.pt'
    #vars(args)[f'{args.input_data_file}']
    dataset = ImageDataset(input_data_file)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=None)

    #class_label_file = '/home/mahbub/research/flat-resnet/imagenet_classes.txt'
    # Read the categories
    #with open(class_label_file, "r") as f:
    #    categories = [s.strip() for s in f.readlines()]

    # Evaluate
    log.info(f'Running inference ...')

    output = torch.zeros(
        len(dataset), 1000
    )  # TODO: 1000 is number of class or resnet output size, remove hard coding.
    out_idx = 0
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for images in data_loader:
            # Setup for forward
            images = images.to(device)

            batch_size = images.shape[0]
            #print ("batch size is {}".format(batch_size))

            #print("Input is : {}".format(images[0,0,0,:10]))
            # Forward
            output[out_idx:out_idx + batch_size] = model(images)
            out_idx += batch_size

            #print("output shape is {}".format(output.shape))
            #print("Output is: {}".format(output))

            #probabilities = torch.nn.functional.softmax(output, dim=1)
            #print("probabilities shape is {}".format(probabilities.shape))
            #print ("probabilities sum = {}".format(probabilities.sum(axis=1)))

            # Show top categories per image
            #K = 5
            #top_prob, top_catid = torch.topk(probabilities, K)

            #print("top catid shape is {}".format(top_catid.shape))

            #for i in range(top_prob.shape[0]):
            #    for k in range(K):
            #        print(categories[top_catid[i,k]], top_prob[i,k].item())

            # Log info
            progress_bar.update(batch_size)

    # Write output to a file
    torch.save(output, "resnet50_output")
def main():
    #save_dir = util.get_save_dir('save','vgglinear', training=False)
    #log = util.get_logger(save_dir, 'vgglinear')
    save_dir = util.get_save_dir('save', 'TimeCNN', training=False)
    log = util.get_logger(save_dir, 'TimeCNN')
    device, gpu_ids = util.get_available_devices()
    tbx = SummaryWriter(save_dir)

    'save/train/TimeCNN-wd0.01-epoch100-01/best.pth.tar'
    #path = 'save/train/Resnet-82/best.pth.tar'
    #path = 'save/train/TimeCNN-epoch30-1024-01/best.pth.tar'
    #path = 'save/train/vgglinear-02/best.pth.tar'
    #build model here
    log.info("Building model")
    #model = Baseline(8 * 96 * 64)
    model = TimeCNN()
    #model = Resnet()
    #model = VGGLinear()
    model = nn.DataParallel(model, gpu_ids)
    model = util.load_model(model, path, gpu_ids, return_step=False)
    model = model.to(device)
    model = model.double()
    model.eval()

    log.info("Building Dataset")
    test_dataset = Shots("videos/test.h5py", "labels/test.npy")
    test_loader = data.DataLoader(test_dataset,
                                  batch_size=BATCH_SIZE,
                                  shuffle=False,
                                  num_workers=4,
                                  collate_fn=collate_fn)
    num_correct = 0
    num_samples = 0
    missed_1, missed_0 = 0, 0
    num_1_predicted = 0
    num_0_predicted = 0
    with torch.no_grad():
        for frames, y in test_loader:
            frames = frames.to(device)
            y = y.to(device)
            scores = model(frames)
            loss = F.cross_entropy(scores, y)
            _, preds = scores.max(1)
            num_correct += (preds == y).sum()

            # This accumulates how many 1's and 0's were misclassified
            for i in range(y.shape[0]):
                if y[i] == 1 and preds[i] == 0:
                    missed_1 += 1
                elif y[i] == 0 and preds[i] == 1:
                    missed_0 += 1
            num_samples += preds.shape[0]
            num_1_predicted += (preds == 1).sum()
            num_0_predicted += (preds == 0).sum()
    acc = float(num_correct) / num_samples

    log.info("Path: {}".format(path))
    log.info("Accuracy on test set is {}".format(acc))
    log.info("Missed 1's: {}, Missed 0's: {}".format(missed_1, missed_0))
    log.info("Number 1's predicted: {}".format(num_1_predicted))
    log.info("Number 0's predicted: {}".format(num_0_predicted))

    log.info('-----------------')

    log.info("Best Accuracy on test set is {} and path was {}".format(
        best_accuracy, best_path))
示例#14
0
def main(args):
  print("in main")
  print("args: ", args)

  if True: 
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')

    # CHECK IF WE NEED TO USE ALL OF THESE???? 
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR


    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    print("train dataset!: ", train_dataset)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)


# Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
示例#15
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:

            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)
            optimizer.zero_grad()

            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            loss_val = loss.item()

            # Backward
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
            optimizer.step()
            scheduler.step(step // batch_size)
            ema(model, step // batch_size)

            # Log info
            step += batch_size
            if step % 1000 == 0 and step > 0:
                log.info(f'Step {step}: training loss {loss_val}...')

            steps_till_eval -= batch_size
            if steps_till_eval <= 0:
                steps_till_eval = args.eval_steps

                # Evaluate and save checkpoint
                log.info(f'Evaluating at step {step}...')
                ema.assign(model)
                results, pred_dict = evaluate(model, dev_loader, device,
                                              args.dev_eval_file,
                                              args.max_ans_len,
                                              args.use_squad_v2)
                saver.save(step, model, results[args.metric_name], device)
                ema.resume(model)

                # Log to console
                results_str = ', '.join(f'{k}: {v:05.2f}'
                                        for k, v in results.items())
                log.info(f'Dev {results_str}')

                # Log to TensorBoard
                log.info('Visualizing in TensorBoard...')
                for k, v in results.items():
                    tbx.add_scalar(f'dev/{k}', v, step)
                util.visualize(tbx,
                               pred_dict=pred_dict,
                               eval_path=args.dev_eval_file,
                               step=step,
                               split='dev',
                               num_visuals=args.num_visuals)
示例#16
0
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)
    ch_vectors = util.torch_from_json(args.char_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  ch_vectors=ch_vectors,
                  hidden_size=args.hidden_size)
    model = nn.DataParallel(model, gpu_ids)
    log.info(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args.use_squad_v2)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            cc_idxs = cc_idxs.to(device)
            qc_idxs = qc_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs, cc_idxs, qc_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)
        results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    if args.model == 'bidaf':
        model = BiDAF(word_vectors=word_vectors, hidden_size=args.hidden_size)
    elif args.model == 'bidafextra':
        model = BiDAFExtra(word_vectors=word_vectors, args=args)
    elif args.model == 'fusionnet':
        model = FusionNet(word_vectors=word_vectors, args=args)

    model = nn.DataParallel(model, gpu_ids)
    log.info(f'Loading checkpoint from {args.load_path}...')
    model = util.load_model(model, args.load_path, gpu_ids, return_step=False)
    model = model.to(device)
    model.eval()

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)
    # print("*"*80)
    # print(len(dataset.question_idxs))

    # for question_idx in dataset.question_idxs:
    #    print(question_idx)
    #    print("*" * 80)

    # print(self.question_idxs[question_idx])
    # self.question_idxs[idx]
    # print("data_loader: ",data_loader)
    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)

    # create statistics
    # print("*"*80)
    # print(len(gold_dict))
    # print(gold_dict['1']['question'])

    count_questions_type = defaultdict(lambda: 0)

    audit_trail_from_question_type = defaultdict(lambda: [])
    list_of_interrogative_pronouns = [
        "what", "whose", "why", "which", "where", "when", "how", "who", "whom"
    ]

    for index in range(1, len(gold_dict)):
        # transform the question in lower case to simplify the analysis, thus losing the benefit of the capital letters
        # possibly indicating the position of the interrogative pronoun in the sentence.
        question_lower_case = gold_dict[str(index)]['question'].lower()

        list_question_lower_case_with_punctuation = question_lower_case.translate(
            {ord(i): " "
             for i in "'"}).split()

        #
        question_lower_case = []
        for item in list_question_lower_case_with_punctuation:
            question_lower_case.append(
                item.translate({ord(i): ""
                                for i in ",.<>!@£$%^&*()_-+=?"}))

        # defining a variable for the first word
        first_word_question_lower_case = question_lower_case[0]

        # defining variable for the second word
        second_word_question_lower_case = question_lower_case[1]

        # defining variable for the first and second word
        combined_first_and_second_words = first_word_question_lower_case + " " + second_word_question_lower_case

        #printing on the screen test for debugging purpose

        # Analyzing the sentence
        if first_word_question_lower_case in list_of_interrogative_pronouns:
            count_questions_type[first_word_question_lower_case] += 1
            audit_trail_from_question_type[
                first_word_question_lower_case].append(str(index))
        # composed question starting by in
        elif first_word_question_lower_case == "in":
            if second_word_question_lower_case in list_of_interrogative_pronouns and second_word_question_lower_case != "whose":
                count_questions_type[combined_first_and_second_words] += 1
                audit_trail_from_question_type[
                    combined_first_and_second_words].append(str(index))
            else:
                pronoun = find_first_interrogative_pronoun(
                    list_of_interrogative_pronouns, question_lower_case)
                count_questions_type[pronoun] += 1
                audit_trail_from_question_type[pronoun].append(str(index))

        # composed question starting by by
        elif first_word_question_lower_case == "by":
            if second_word_question_lower_case in list_of_interrogative_pronouns \
                    and second_word_question_lower_case !="whom"\
                    and second_word_question_lower_case !="which"\
                    and second_word_question_lower_case !="when"\
                    and second_word_question_lower_case !="how":
                count_questions_type[combined_first_and_second_words] += 1
                audit_trail_from_question_type[
                    combined_first_and_second_words].append(str(index))
            else:
                pronoun = find_first_interrogative_pronoun(
                    list_of_interrogative_pronouns, question_lower_case)
                count_questions_type[pronoun] += 1
                audit_trail_from_question_type[pronoun].append(str(index))

        else:
            pronoun = find_first_interrogative_pronoun(
                list_of_interrogative_pronouns, question_lower_case)
            #if pronoun =="":
            #    print(">>", question_lower_case)
            #    print("@@@", gold_dict[str(index)]['question'])
            count_questions_type[pronoun] += 1
            audit_trail_from_question_type[pronoun].append(str(index))
            # if pronoun =="":
            #    print(">>", question_lower_case.split())
            # print()
            #if first_word_question_lower_case == "if":
            #    print(">>", question_lower_case.split())

    # print(count_questions_type)
    # if gold_dict[str(index)]['question'].lower().split()[0] == "in":
    #    print(gold_dict[str(index)]['question'])

    reverse_dict_by_value = OrderedDict(
        sorted(count_questions_type.items(), key=lambda x: x[1]))
    # print(count_questions_type)
    total_questions = sum(count_questions_type.values())
    # print(reverse_dict)
    #for k, v in reverse_dict_by_value.items():
    #   print( "%s: %s and in percentage: %s" % (k, v, 100*v/total_questions))
    #print(audit_trail_from_question_type)
    # exit()
    with torch.no_grad(), \
         tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, cw_pos, cw_ner, cw_freq, cqw_extra, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            if args.model == 'bidaf':
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
            else:
                log_p1, log_p2 = model(cw_idxs, qw_idxs, cw_pos, cw_ner,
                                       cw_freq, cqw_extra)

            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)

        # Printing information for questions without interrogative pronouns
        """"
        print("len(gold_dict): ", len(gold_dict))
        print("len(pred_dict): ", len(pred_dict))
        print("Is gold_dict.keys() identical to pred_dict.keys(): ", gold_dict.keys()==pred_dict.keys())
        if gold_dict.keys()!=pred_dict.keys():
            for key in gold_dict.keys():
                if key not in pred_dict.keys():
                    print("key ", key, " missing in pred_dict.keys(")
        """
        results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Computing the F1 score for each type of question
        #
        #    audit_trail_from_question_type[pronoun].append(str(index))

        # create a list of the types of questions by extracting the keys from the dict audit_trail_from_question_type
        types_of_questions = list(audit_trail_from_question_type.keys())

        gold_dict_per_type_of_questions = defaultdict(lambda: [])
        pred_dict_per_type_of_questions = {}

        gold_dict_per_type_of_questions_start = {}
        pred_dict_per_type_of_questions_start = {}

        gold_dict_per_type_of_questions_middle = {}
        pred_dict_per_type_of_questions_middle = {}

        gold_dict_per_type_of_questions_end = {}
        pred_dict_per_type_of_questions_end = {}

        for type_of_questions in types_of_questions:
            #gold_pred = {key: value for key, value in gold_dict.items() if key in audit_trail_from_question_type[type_of_questions]}
            #lst_pred = {key: value for key, value in pred_dict.items() if key in audit_trail_from_question_type[type_of_questions]}

            # Create two dictionnaries for each type of sentence for gold_dict_per_type_of_questions and pred_dict_per_type_of_questions
            gold_dict_per_type_of_questions[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            # print(type_of_questions," F1 score: ", util.eval_dicts(gold_dict_per_type_of_questions[type_of_questions], pred_dict_per_type_of_questions[type_of_questions], args.use_squad_v2)['F1'])

            gold_dict_per_type_of_questions_start[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions_start[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }

            gold_dict_per_type_of_questions_middle[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions_middle[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }

            gold_dict_per_type_of_questions_end[type_of_questions] = {
                key: value
                for key, value in gold_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }
            pred_dict_per_type_of_questions_end[type_of_questions] = {
                key: value
                for key, value in pred_dict.items()
                if key in audit_trail_from_question_type[type_of_questions]
                and key in pred_dict.keys()
            }

            for key, value in gold_dict.items():
                #if key in audit_trail_from_question_type[type_of_questions] and key in pred_dict.keys():
                if key in audit_trail_from_question_type[
                        type_of_questions] and type_of_questions != "" and key in pred_dict_per_type_of_questions[
                            type_of_questions]:
                    """
                    print("type_of_questions: ",type_of_questions)
                    print("key: ", key)
                    print("question: ", value["question"])
                    sub_index = value["question"].lower().find(type_of_questions)
                    print("sub_index: ",sub_index)
                    test_fc = value["question"].lower().find(type_of_questions)
                    print("present type of the var: ",type(test_fc))
                    #print("question: ", value["question"][str(key)])
                    print("length of the question: ", len(value["question"]))
                    print('Position of the interrogative pronoun in the question:', )
                    """
                    # Create two dictionnaries for each type of sentence based at the start of the sentence

                    if value["question"].lower().find(
                            type_of_questions) == 1 or value["question"].lower(
                            ).find(type_of_questions) == 0:
                        #print("BEGINNING")
                        if type_of_questions != "":
                            try:
                                del gold_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del gold_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                        #pred_dict_per_type_of_questions_start[type_of_questions] = {key: pred_dict[key] for key in
                        #                                                            gold_dict_per_type_of_questions_start[
                        #                                                                type_of_questions].keys()}
                    elif value["question"].lower(
                    ).find(type_of_questions) >= len(
                            value["question"]) - len(type_of_questions) - 5:
                        #print("END")

                        if type_of_questions != "":
                            try:
                                del gold_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_middle[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del gold_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                        #print("type_of_questions: ",type_of_questions)
                        #sub_index = value["question"].lower().find(type_of_questions)
                        #print("sub_index: ", sub_index)
                        #print("len(value['question']) - len(type_of_questions) - 2: ", len(value["question"])-len(type_of_questions)-2)
                        #start_string = len(value["question"])-len(type_of_questions)-6
                        #end_string = len(value["question"])-1
                        #print("extract at the end: ", value["question"][start_string:end_string])
                    else:
                        #print("MIDDLE")
                        if type_of_questions != "":
                            try:
                                del gold_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_start[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del gold_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass

                            try:
                                del pred_dict_per_type_of_questions_end[
                                    type_of_questions][key]
                            except KeyError:
                                pass
                            pass
            """
            if  type_of_questions != "":
                gold_dict_per_type_of_questions_start[type_of_questions] = {key: value for key, value in gold_dict.items() if (key in audit_trail_from_question_type[type_of_questions] \
                                                                        and (value["question"].lower().find(type_of_questions) <= 1) \
                                                                        and key in pred_dict_per_type_of_questions[type_of_questions]) }
            """
            """
                for key in gold_dict_per_type_of_questions_start[type_of_questions].keys():
                    print("key:: ", key )
                    print("type(key):: ", type(key) )
                            print("pred_dict[,key,] : ", pred_dict[key])
                print("@@@@@@@@@@@@@@@@@@@@@@@@")
                
                pred_dict_per_type_of_questions_start[type_of_questions] = {key: pred_dict[key] for key in gold_dict_per_type_of_questions_start[type_of_questions].keys()}

                #pred_dict_per_type_of_questions_start[type_of_questions] = {key: value for key, value in pred_dict.items() if key in list(gold_dict_per_type_of_questions_start[type_of_questions].keys()) }

                # Create two dictionnaries for each type of sentence based at the end of the sentence
                gold_dict_per_type_of_questions_end[type_of_questions] = {key: value for key, value in gold_dict.items() if key in audit_trail_from_question_type[type_of_questions] \
                                                                        and value["question"].lower().find(type_of_questions) >= len(value["question"])-len(type_of_questions)-2 \
                                                                        and key in pred_dict_per_type_of_questions[type_of_questions]}


                pred_dict_per_type_of_questions_end[type_of_questions] = {key: pred_dict[key] for key in list(gold_dict_per_type_of_questions_end[type_of_questions].keys())}

                #print("*"*80)
                # Create two dictionnaries for each type of sentence based at the middle of the sentencecount_questions_type
                gold_dict_per_type_of_questions_middle[type_of_questions] = {key: value for key, value in gold_dict.items() if key not in list(gold_dict_per_type_of_questions_start[type_of_questions].keys()) \
                                                                            and key not in list(gold_dict_per_type_of_questions_end[type_of_questions].keys())}

                pred_dict_per_type_of_questions_middle[type_of_questions] = {key: pred_dict[key] for key in list(gold_dict_per_type_of_questions_end[type_of_questions].keys())}
            else:
                gold_dict_per_type_of_questions_start[""] = gold_dict_per_type_of_questions[""]
                pred_dict_per_type_of_questions_start[""] = pred_dict_per_type_of_questions[""]
                gold_dict_per_type_of_questions_end[""] = gold_dict_per_type_of_questions[""]
                pred_dict_per_type_of_questions_end[""] = pred_dict_per_type_of_questions[""]
                gold_dict_per_type_of_questions_middle[""] = gold_dict_per_type_of_questions[""]
                pred_dict_per_type_of_questions_middle[""] = pred_dict_per_type_of_questions[""]
        """

        positions_in_question = ["beginning", "middle", "end"]

        # print(type_of_questions," F1 score: ", util.eval_dicts(gold_dict_per_type_of_questions[type_of_questions], pred_dict_per_type_of_questions[type_of_questions], args.use_squad_v2)['F1'])

        list_beginning = [
            util.eval_dicts(
                gold_dict_per_type_of_questions_start[type_of_questions],
                pred_dict_per_type_of_questions_start[type_of_questions],
                args.use_squad_v2)['F1']
            for type_of_questions in types_of_questions
        ]
        list_middle = [
            util.eval_dicts(
                gold_dict_per_type_of_questions_middle[type_of_questions],
                pred_dict_per_type_of_questions_middle[type_of_questions],
                args.use_squad_v2)['F1']
            for type_of_questions in types_of_questions
        ]
        list_end = [
            util.eval_dicts(
                gold_dict_per_type_of_questions_end[type_of_questions],
                pred_dict_per_type_of_questions_end[type_of_questions],
                args.use_squad_v2)['F1']
            for type_of_questions in types_of_questions
        ]

        #for type_of_questions in types_of_questions:
        #    print("gold_dict_per_type_of_questions_start[type_of_questions]: ",gold_dict_per_type_of_questions_start[type_of_questions])
        #    print("pred_dict_per_type_of_questions[type_of_questions]: ",pred_dict_per_type_of_questions[type_of_questions])

        F1 = np.array([list_beginning, list_middle, list_end])

        m, n = F1.shape

        value_to_ignore = []
        for i in range(m):
            for j in range(n):
                if F1[i, j] == "NA" or F1[i, j] == 0:
                    value_to_ignore.append((i, j))
        print("value to ignore: ", value_to_ignore)
        #F1 = np.array([[0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0],
        #                    [0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0],
        #                    [0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0]])

        data_label = copy.deepcopy(F1)

        for row in data_label:
            for column_idx in range(len(row)):
                if row[column_idx] == "NA":
                    row[column_idx] = ""

        # print question without interrogative pronoun required for the second part of the analysis:
        for key, value in gold_dict.items():
            if key in audit_trail_from_question_type[
                    ""] and key in pred_dict.keys():
                print("question: ", gold_dict_per_type_of_questions[''])
                print("golden answers: ", )
                print("prediction: ", pred_dict[key])
                print()

        fig, ax = plt.subplots()

        types_of_questions[types_of_questions.index(
            "")] = "Implicit question without interrogative pronoun"

        im, cbar = heatmap(F1, positions_in_question, types_of_questions, ax=ax, \
                            cmap="YlGn", cbarlabel="F1 scores")

        texts = annotate_heatmap(im,
                                 data=data_label,
                                 valfmt="{x:.1f}",
                                 ignore=value_to_ignore)

        fig.tight_layout()
        plt.show()

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
示例#18
0
文件: train.py 项目: wangyang0922/MRC
def main(args):
    if args.large:
        args.train_record_file += '_large'
        args.dev_eval_file += '_large'
        model_name = "albert-xlarge-v2"
    else:
        model_name = "albert-base-v2"
    if args.xxlarge:
        args.train_record_file += '_xxlarge'
        args.dev_eval_file += '_xxlarge'
        model_name = "albert-xxlarge-v2"
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get model
    log.info('Building model...')
    if args.bidaf:
        char_vectors = util.torch_from_json(args.char_emb_file)

    if args.model_name == 'albert_highway':
        model = models.albert_highway(model_name)
    elif args.model_name == 'albert_lstm_highway':
        model = models.LSTM_highway(model_name, hidden_size=args.hidden_size)
    elif args.model_name == 'albert_bidaf':
        model = models.BiDAF(char_vectors=char_vectors,
                             hidden_size=args.hidden_size,
                             drop_prob=args.drop_prob)
    elif args.model_name == 'albert_bidaf2':
        model = models.BiDAF2(model_name=model_name,
                              char_vectors=char_vectors,
                              hidden_size=args.hidden_size,
                              drop_prob=args.drop_prob)
    else:
        model = AlbertForQuestionAnswering.from_pretrained(args.model_name)

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2,
                          args.bidaf)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers)
    dev_dataset = SQuAD(args.dev_eval_file, args.use_squad_v2, args.bidaf)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers)

    with open(args.dev_gold_file) as f:
        gold_dict = json.load(f)

    tokenizer = AlbertTokenizer.from_pretrained(model_name)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for batch in train_loader:
                batch = tuple(t.to(device) for t in batch)
                inputs = {
                    "input_ids": batch[0],
                    "attention_mask": batch[1],
                    "token_type_ids": batch[2],
                    'start_positions': batch[3],
                    'end_positions': batch[4],
                }
                if args.bidaf:
                    inputs['char_ids'] = batch[6]
                y1 = batch[3]
                y2 = batch[4]
                # Setup for forward
                batch_size = inputs["input_ids"].size(0)
                optimizer.zero_grad()

                # Forward
                # log_p1, log_p2 = model(**inputs)
                y1, y2 = y1.to(device), y2.to(device)
                outputs = model(**inputs)
                loss = outputs[0]
                loss = loss.mean()
                # loss_fct = nn.CrossEntropyLoss()
                # loss = loss_fct(log_p1, y1) + loss_fct(log_p2, y2)
                # loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(args, model, dev_dataset,
                                                  dev_loader, gold_dict,
                                                  tokenizer, device,
                                                  args.max_ans_len,
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
示例#19
0
def main(course_dir,
         text_embedding_size,
         audio_embedding_size,
         image_embedding_size,
         hidden_size,
         drop_prob,
         max_text_length,
         out_heatmaps_dir,
         args,
         batch_size=3,
         num_epochs=100):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Create Dataset objects
    text_dataset = TextDataset(course_dir, max_text_length)
    audio_dataset = AudioDataset(course_dir)
    target_dataset = TargetDataset(course_dir)
    # Preprocess the image in prescribed format
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    transform = transforms.Compose([
        transforms.RandomResizedCrop(256),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    ])
    image_dataset = ImageDataset(course_dir, transform)

    assert len(text_dataset) == len(audio_dataset) and len(
        audio_dataset) == len(image_dataset) and len(image_dataset) == len(
            target_dataset), "Unequal dataset lengths"

    # Creating data indices for training and validation splits:
    train_indices, val_indices = gen_train_val_indices(text_dataset)

    # Creating PT data samplers and loaders:
    train_sampler = torch.utils.data.SequentialSampler(train_indices)
    val_sampler = torch.utils.data.SequentialSampler(val_indices)

    # Get sentence embeddings
    train_text_loader = torch.utils.data.DataLoader(text_dataset,
                                                    batch_size=batch_size,
                                                    shuffle=False,
                                                    num_workers=2,
                                                    collate_fn=collator,
                                                    sampler=train_sampler)
    val_text_loader = torch.utils.data.DataLoader(text_dataset,
                                                  batch_size=batch_size,
                                                  shuffle=False,
                                                  num_workers=2,
                                                  collate_fn=collator,
                                                  sampler=val_sampler)

    # Get Audio embeddings
    train_audio_loader = torch.utils.data.DataLoader(audio_dataset,
                                                     batch_size=batch_size,
                                                     shuffle=False,
                                                     num_workers=2,
                                                     collate_fn=collator,
                                                     sampler=train_sampler)
    val_audio_loader = torch.utils.data.DataLoader(audio_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=False,
                                                   num_workers=2,
                                                   collate_fn=collator,
                                                   sampler=val_sampler)

    # Get images
    train_image_loader = torch.utils.data.DataLoader(image_dataset,
                                                     batch_size=batch_size,
                                                     shuffle=False,
                                                     num_workers=2,
                                                     collate_fn=collator,
                                                     sampler=train_sampler)
    val_image_loader = torch.utils.data.DataLoader(image_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=False,
                                                   num_workers=2,
                                                   collate_fn=collator,
                                                   sampler=val_sampler)

    # Load Target text
    train_target_loader = torch.utils.data.DataLoader(
        target_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=2,
        collate_fn=target_collator,
        sampler=train_sampler)
    val_target_loader = torch.utils.data.DataLoader(target_dataset,
                                                    batch_size=batch_size,
                                                    shuffle=False,
                                                    num_workers=2,
                                                    collate_fn=target_collator,
                                                    sampler=val_sampler)

    # print("lens - train_text_loader {}, val_text_loader {}".format(len(train_text_loader), len(val_text_loader)))
    # print("lens - train_audio_loader {}, val_audio_loader {}".format(len(train_audio_loader), len(val_audio_loader)))
    # print("lens - train_image_loader {}, val_image_loader {}".format(len(train_image_loader), len(val_image_loader)))
    # print("lens - train_target_loader {}, val_target_loader {}".format(len(train_target_loader), len(val_target_loader)))

    # Create model
    model = MMBiDAF(hidden_size, text_embedding_size, audio_embedding_size,
                    image_embedding_size, device, drop_prob, max_text_length)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)  # For exponential moving average

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)  # Need to change the metric name

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Let's do this!
    loss = 0
    eps = 1e-8
    log.info("Training...")
    steps_till_eval = args.eval_steps
    epoch = step // len(TextDataset(course_dir, max_text_length))

    while epoch != args.num_epochs:
        epoch += 1
        log.info("Starting epoch {epoch}...")
        count_item = 0
        loss_epoch = 0
        with torch.enable_grad(), tqdm(
                total=len(train_text_loader.dataset)) as progress_bar:
            for (batch_text, original_text_lengths), (
                    batch_audio, original_audio_lengths), (
                        batch_images,
                        original_img_lengths), (batch_target_indices,
                                                batch_source_paths,
                                                batch_target_paths,
                                                original_target_len) in zip(
                                                    train_text_loader,
                                                    train_audio_loader,
                                                    train_image_loader,
                                                    train_target_loader):
                loss = 0
                max_dec_len = torch.max(
                    original_target_len
                )  # TODO check error : max decoder timesteps for each batch

                # Transfer tensors to GPU
                batch_text = batch_text.to(device)
                log.info("Loaded batch text")
                batch_audio = batch_audio.to(device)
                log.info("Loaded batch audio")
                batch_images = batch_images.to(device)
                log.info("Loaded batch image")
                batch_target_indices = batch_target_indices.to(device)
                log.info("Loaded batch targets")

                # Setup for forward
                batch_size = batch_text.size(0)
                optimizer.zero_grad()

                log.info("Starting forward pass")
                # Forward
                batch_out_distributions, loss = model(
                    batch_text, original_text_lengths, batch_audio,
                    original_audio_lengths, batch_images, original_img_lengths,
                    batch_target_indices, original_target_len, max_dec_len)
                loss_val = loss.item()  # numerical value of loss
                loss_epoch = loss_epoch + loss_val

                log.info("Starting backward")

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(
                    model.parameters(),
                    args.max_grad_norm)  # To tackle exploding gradients
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    # TODO
                    # scores, results = evaluate(model, dev_loader, device,
                    #                               args.dev_eval_file,
                    #                               args.max_ans_len,
                    #                               args.use_squad_v2)
                    saver.save(step, model, device)
                    ema.resume(model)

                # Generate summary
                print('Generated summary for iteration {}: '.format(epoch))
                summaries = get_generated_summaries(batch_out_distributions,
                                                    original_text_lengths,
                                                    batch_source_paths)
                print(summaries)

                # Evaluation
                # rouge = Rouge()
                # rouge_scores = rouge.get_scores(batch_source_paths, batch_target_paths, avg=True)
                # print('Rouge score at iteration {} is {}: '.format(epoch, rouge_scores))

                # Generate Output Heatmaps
                # sns.set()
                # for idx in range(len(out_distributions)):
                #     out_distributions[idx] = out_distributions[idx].squeeze(0).detach().numpy()      # Converting each timestep distribution to numpy array
                # out_distributions = np.asarray(out_distributions)   # Converting the timestep list to array
                # ax = sns.heatmap(out_distributions)
                # fig = ax.get_figure()
                # fig.savefig(out_heatmaps_dir + str(epoch) + '.png')
            print("Epoch loss is : {}".format(loss_epoch / count_item))
示例#20
0
def main():
    # define parser and arguments
    args = get_train_test_args()

    util.set_seed(args.seed)
    model = DistilBertForQuestionAnswering.from_pretrained(
        "distilbert-base-uncased")
    tokenizer = DistilBertTokenizerFast.from_pretrained(
        'distilbert-base-uncased')

    if args.do_train:
        if not os.path.exists(args.save_dir):
            os.makedirs(args.save_dir)
        if args.resume_training:
            checkpoint_path = os.path.join(args.save_dir, 'checkpoint')
            model = DistilBertForQuestionAnswering.from_pretrained(
                checkpoint_path)
            model.to(args.device)
        else:
            args.save_dir = util.get_save_dir(args.save_dir, args.run_name)
        log = util.get_logger(args.save_dir, 'log_train')
        log.info(f'Args: {json.dumps(vars(args), indent=4, sort_keys=True)}')
        log.info("Preparing Training Data...")
        args.device = torch.device(
            'cuda') if torch.cuda.is_available() else torch.device('cpu')
        trainer = Trainer(args, log)
        train_dataset, _ = get_dataset(args, args.train_datasets,
                                       args.train_dir, tokenizer, 'train',
                                       args.outdomain_data_repeat)
        log.info("Preparing Validation Data...")
        val_dataset, val_dict = get_dataset(args, args.train_datasets,
                                            args.val_dir, tokenizer, 'val',
                                            args.outdomain_data_repeat)
        train_loader = DataLoader(train_dataset,
                                  batch_size=args.batch_size,
                                  sampler=RandomSampler(train_dataset))
        val_loader = DataLoader(val_dataset,
                                batch_size=args.batch_size,
                                sampler=RandomSampler(val_dataset))
        best_scores = trainer.train(model, train_loader, val_loader, val_dict)
    if args.do_eval:
        args.device = torch.device(
            'cuda') if torch.cuda.is_available() else torch.device('cpu')
        split_name = 'test' if 'test' in args.eval_dir else 'validation'
        log = util.get_logger(args.save_dir, f'log_{split_name}')
        trainer = Trainer(args, log)
        checkpoint_path = os.path.join(args.save_dir, 'checkpoint')
        model = DistilBertForQuestionAnswering.from_pretrained(checkpoint_path)
        discriminator_input_size = 768
        if args.full_adv:
            discriminator_input_size = 384 * 768
        discriminator = DomainDiscriminator(
            input_size=discriminator_input_size)
        # discriminator.load_state_dict(torch.load(checkpoint_path + '/discriminator'))
        model.to(args.device)
        discriminator.to(args.device)
        eval_dataset, eval_dict = get_dataset(args, args.eval_datasets,
                                              args.eval_dir, tokenizer,
                                              split_name,
                                              args.outdomain_data_repeat)
        eval_loader = DataLoader(eval_dataset,
                                 batch_size=args.batch_size,
                                 sampler=SequentialSampler(eval_dataset))
        eval_preds, eval_scores = trainer.evaluate(model,
                                                   discriminator,
                                                   eval_loader,
                                                   eval_dict,
                                                   return_preds=True,
                                                   split=split_name)
        results_str = ', '.join(f'{k}: {v:05.2f}'
                                for k, v in eval_scores.items())
        log.info(f'Eval {results_str}')
        # Write submission file
        sub_path = os.path.join(args.save_dir,
                                split_name + '_' + args.sub_file)
        log.info(f'Writing submission file to {sub_path}...')
        with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
            csv_writer = csv.writer(csv_fh, delimiter=',')
            csv_writer.writerow(['Id', 'Predicted'])
            for uuid in sorted(eval_preds):
                csv_writer.writerow([uuid, eval_preds[uuid]])
def main():
    args = get_bert_args()
    assert not (args.do_output
                and args.do_train), 'Don\'t output and train at the same time!'
    if args.do_output:
        sub_dir_prefix = 'output'
    elif args.do_train:
        sub_dir_prefix = 'train'
    else:
        sub_dir_prefix = 'test'
    args.save_dir = util.get_save_dir(args.save_dir, args.name, sub_dir_prefix)
    args.output_dir = args.save_dir

    global logger
    logger = util.get_logger(args.save_dir, args.name)

    if args.doc_stride >= args.max_seq_length - args.max_query_length:
        logger.warning(
            "WARNING - You've set a doc stride which may be superior to the document length in some "
            "examples. This could result in errors when building features from the examples. Please reduce the doc "
            "stride or increase the maximum length to ensure the features are correctly built."
        )

    if not args.evaluate_during_saving and args.save_best_only:
        raise ValueError("No best result without evaluation during saving")

    # Use util.get_save_dir, comment this for now
    # if (
    #     os.path.exists(args.output_dir)
    #     and os.listdir(args.output_dir)
    #     and args.do_train
    #     and not args.overwrite_output_dir
    # ):
    #     raise ValueError(
    #         "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
    #             args.output_dir
    #         )
    #     )

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd

        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
    # logging.basicConfig(
    #     format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
    #     datefmt="%m/%d/%Y %H:%M:%S",
    #     level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    # )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )

    if args.local_rank == 0:
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex

            apex.amp.register_half_function(torch, "einsum")
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                tokenizer,
                                                evaluate=False,
                                                output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Save the trained model and the tokenizer
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        # Take care of distributed/parallel training
        model_to_save = model.module if hasattr(model, "module") else model
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(
            args.output_dir)  # , force_download=True)
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        model.to(args.device)

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            logger.info(
                "Loading checkpoints saved during training for evaluation")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
                checkpoints = list(
                    os.path.dirname(c) for c in sorted(
                        glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                                  recursive=True)))
                # logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for evaluation",
                        args.model_name_or_path)
            checkpoints = [args.model_name_or_path]

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(
                checkpoint)  # , force_download=True)
            model.to(args.device)

            # Evaluate
            result = evaluate(args,
                              model,
                              tokenizer,
                              prefix=global_step,
                              save_dir=args.output_dir,
                              save_log_path=os.path.join(
                                  checkpoint, 'eval_result.json'))

            result = dict(
                (k + ("_{}".format(global_step) if global_step else ""), v)
                for k, v in result.items())
            results.update(result)

            logger.info(
                f'Convert format and Writing submission file to directory {args.output_dir}...'
            )
            util.convert_submission_format_and_save(
                args.output_dir,
                prediction_file_path=os.path.join(args.output_dir,
                                                  'predictions_.json'))

    logger.info("Results: {}".format(results))

    # Generate output
    if args.do_output and args.local_rank in [-1, 0]:
        if args.do_train:
            logger.info("Loading checkpoints saved during training for output")
            checkpoints = [args.output_dir]
            if args.eval_all_checkpoints:
                checkpoints = list(
                    os.path.dirname(c) for c in sorted(
                        glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                                  recursive=True)))
                # logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
        else:
            logger.info("Loading checkpoint %s for output",
                        args.model_name_or_path)
            checkpoints = [args.model_name_or_path]

        logger.info("Output the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(
                checkpoint)  # , force_download=True)
            model.to(args.device)

            generate_model_outputs(args,
                                   model,
                                   tokenizer,
                                   is_dev=True,
                                   prefix=global_step,
                                   save_dir=args.output_dir)

    return results
示例#22
0
def train(args):
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    if args.gpu_ids == 'cpu':
        device, args.gpu_ids = torch.device('cpu'), []
    else:
        device, args.gpu_ids = util.get_available_devices()
    log.info('training on device {} with gpu_id {}'.format(str(device), str(args.gpu_ids)))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    log.info('Building model...')
    if args.task == 'tag':
        model = SummarizerLinear()
#        model = SummarizerLinearAttended(128, 256)
#        model = SummarizerRNN(128, 256)
    else:
        model = SummarizerAbstractive(128, 256, device)
    if len(args.gpu_ids) > 0:
        model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()

    ## get a saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    optimizer = optim.Adam(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)

    log.info('Building dataset...')
    data_path = PROCESSED_DATA_SUPER_TINY if args.split == 'super_tiny' else PROCESSED_DATA
    with open(data_path, 'rb') as f:
        all_data = pickle.load(f)
    if 'tiny' in args.split:
        train_split = all_data['tiny']
        dev_split = all_data['tiny']
    else:
        train_split = all_data['train']
        dev_split = all_data['dev']
    train_dataset = SummarizationDataset(
            train_split['X'], train_split['y'], train_split['gold'])
    dev_dataset = SummarizationDataset(
            dev_split['X'], dev_split['y'], dev_split['gold'])
    collate_fn = tag_collate_fn if args.task == 'tag' else decode_collate_fn
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers,
                                   shuffle=True,
                                   collate_fn=collate_fn)
    dev_loader = data.DataLoader(dev_dataset,
                                   batch_size=args.batch_size,
                                   num_workers=args.num_workers,
                                   shuffle=False,
                                   collate_fn=collate_fn)
    ## Train!
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        batch_num = 0
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for X, y, _ in train_loader:
                batch_size = X.size(0)
                batch_num += 1
                X = X.to(device)
                y = y.float().to(device) # (batch_size, max_len) for tag, (batch_size, 110) for decode
                optimizer.zero_grad()
                if args.task == 'tag':
                    logits = model(X) # (batch_size, max_len)
                    mask = (X != PAD_VALUE).float() # 1 for real data, 0 for pad, size of (batch_size, max_len)
                    loss = (F.binary_cross_entropy_with_logits(logits, y, reduction='none') * mask).mean()
                    loss_val = loss.item()
                else:
                    logits = model(X, y[:, :-1]) # (batch_size, 109, max_len)
                    loss = sum(F.cross_entropy(logits[i], y[i, 1:], ignore_index=-1, reduction='mean')\
                               for i in range(batch_size)) / batch_size
                    loss_val = loss.item()
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                # scheduler.step(step // batch_size)

                # Log info
                step += args.batch_size
                progress_bar.update(args.batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         Loss=loss_val)
                tbx.add_scalar('train/Loss', loss_val, step)
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    results, pred_dict = evaluate(args, model, dev_loader, device)
                    if results is None:
                        log.info('Selected predicted no select for all in batch')
                        continue
                    saver.save(step, model, results[args.metric_name], device)

#                     # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
示例#23
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir) # Writes entries directly to event files in the logdir to be consumed by TensorBoard.
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))  # 一个gpu: batch_size=64 看实际情况

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path: # default=None
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay) # ema_decay = 0.999
    # ema core =>  new_average = (1.0 - decay) * param.data + decay * self.shadow[name]

    # Get saver
    # metric_name: NLL or EM F1
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints, # max_checkpoints = 5
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.lr,
                               weight_decay=args.l2_wd)  # lr : default=0.5    l2_wd : default=0
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)  # train_record_file = './data/train.npz'

    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size, # 64
                                   shuffle=True, # sampler = RandomSampler(dataset) batch_sampler = BatchSampler(sampler, batch_size, drop_last)
                                   num_workers=args.num_workers, # 4
                                   collate_fn=collate_fn) # merges a list of samples to form a mini-batch.
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2) #  dev_record_file =  './data/dev.npz'
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)# Merge examples of different length by padding all examples to the maximum length in the batch.

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps # 50000
    epoch = step // len(train_dataset) # len(train_dataset)= 7   epoch=0
    while epoch != args.num_epochs: # 30
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)  # 64
                optimizer.zero_grad()

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)   # max_grad_norm : default=5.0
                optimizer.step()  # 进行1次optimize
                scheduler.step(step // batch_size)# train : step=0
                ema(model, step // batch_size)   # def __call__(self, model, num_updates):

                # Log info
                step += batch_size #step: 0   batch_size=64
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch,
                                         NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step) # Add scalar data to summary.
                tbx.add_scalar('train/LR',
                               optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps  # 50000

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model) ##
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file, # './data/dev_eval.json'
                                                  args.max_ans_len,  # 15
                                                  args.use_squad_v2)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
示例#24
0
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info('Args: {}'.format(dumps(vars(args), indent=4, sort_keys=True)))
    # Comment out to only use 1 GPU on nv12
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info('Using random seed {}...'.format(args.seed))
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get embeddings

    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info('Building model...')
    model = None
    max_context_len, max_question_len = args.para_limit, args.ques_limit
    if (args.model_type == "bidaf" or args.model_type == "bert-bidaf"):
        model = BiDAF(word_vectors=word_vectors,
                      hidden_size=args.hidden_size,
                      drop_prob=args.drop_prob)
    elif (args.model_type == "dcn" or args.model_type == "bert-dcn"):
        model = DCN(word_vectors=word_vectors,
                    hidden_size=args.hidden_size,
                    max_context_len=max_context_len,
                    max_question_len=max_question_len,
                    drop_prob=args.drop_prob)
    elif (args.model_type == "bert-basic"):
        model = BERT(word_vectors=word_vectors,
                     hidden_size=args.hidden_size,
                     drop_prob=args.drop_prob)

    if model is None:
        raise ValueError('Model is unassigned. Please ensure --model_type \
        chooses between {bidaf, bert-bidaf, dcn, bert-dcn, bert-basic} ')

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info('Loading checkpoint from {}...'.format(args.load_path))
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = SQuAD(args.train_record_file, args.use_squad_v2)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = SQuAD(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    count_skip = 0
    while epoch != args.num_epochs:
        epoch += 1
        log.info('Starting epoch {}...'.format(epoch))
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                batch_size = cw_idxs.size(0)
                count_skip += 1
                if (args.skip_examples == True
                        and (count_skip % 5 == 1 or count_skip % 5 == 2
                             or count_skip % 5 == 3 or count_skip % 5 == 4)):
                    step += batch_size
                    progress_bar.update(batch_size)
                    steps_till_eval -= batch_size
                    continue
                # Setup for forward
                cw_idxs = cw_idxs.to(device)
                qw_idxs = qw_idxs.to(device)
                batch_size = cw_idxs.size(0)
                optimizer.zero_grad()

                ## Additions for BERT ##
                max_context_len, max_question_len = args.para_limit, args.ques_limit

                if "bert" in args.model_type:
                    bert_train_embeddings = get_embeddings(
                        "train", ids, args.para_limit, args.ques_limit)
                else:
                    bert_train_embeddings = None

                # Forward
                log_p1, log_p2 = model(cw_idxs, qw_idxs, bert_train_embeddings, \
                max_context_len, max_question_len, device)
                y1, y2 = y1.to(device), y2.to(device)
                loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info('Evaluating at step {}...'.format(step))
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file,
                                                  args.max_ans_len,
                                                  args.use_squad_v2, args)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join('{}: {:05.2f}'.format(k, v)
                                            for k, v in results.items())
                    log.info('Dev {}'.format(results_str))

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar('dev/{}'.format(k), v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
def main(args):
    # Set up logging and devices
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=True)
    log = util.get_logger(args.save_dir, args.name)
    tbx = SummaryWriter(args.save_dir)
    device, args.gpu_ids = util.get_available_devices()
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')
    args.batch_size *= max(1, len(args.gpu_ids))

    # Set random seed
    log.info(f'Using random seed {args.seed}...')
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    # Get model
    log.info('Building model...')
    '''
        TODO: YOUR MODEL HERE
    '''
    model = None

    model = nn.DataParallel(model, args.gpu_ids)
    if args.load_path:
        log.info(f'Loading checkpoint from {args.load_path}...')
        model, step = util.load_model(model, args.load_path, args.gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(),
                               args.lr,
                               weight_decay=args.l2_wd)
    scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR

    # Get data loader
    log.info('Building dataset...')
    train_dataset = MyDataset(args.train_record_file)
    train_loader = data.DataLoader(train_dataset,
                                   batch_size=args.batch_size,
                                   shuffle=True,
                                   num_workers=args.num_workers,
                                   collate_fn=collate_fn)
    dev_dataset = MyDataset(args.dev_record_file, args.use_squad_v2)
    dev_loader = data.DataLoader(dev_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=args.num_workers,
                                 collate_fn=collate_fn)

    # Train
    log.info('Training...')
    steps_till_eval = args.eval_steps
    epoch = step // len(train_dataset)
    while epoch != args.num_epochs:
        epoch += 1
        log.info(f'Starting epoch {epoch}...')
        with torch.enable_grad(), \
                tqdm(total=len(train_loader.dataset)) as progress_bar:
            for features, ys, ids in train_loader:
                # Setup for forward

                batch_size = 1  # TODO:

                optimizer.zero_grad()

                # Forward
                outputs = model(features)
                y = y.to(device)
                loss = loss_fn(outputs, y)  # TODO

                loss_val = loss.item()

                # Backward
                loss.backward()
                nn.utils.clip_grad_norm_(model.parameters(),
                                         args.max_grad_norm)
                optimizer.step()
                scheduler.step(step // batch_size)
                ema(model, step // batch_size)

                # Log info
                step += batch_size
                progress_bar.update(batch_size)
                progress_bar.set_postfix(epoch=epoch, NLL=loss_val)
                tbx.add_scalar('train/NLL', loss_val, step)
                tbx.add_scalar('train/LR', optimizer.param_groups[0]['lr'],
                               step)

                steps_till_eval -= batch_size
                if steps_till_eval <= 0:
                    steps_till_eval = args.eval_steps

                    # Evaluate and save checkpoint
                    log.info(f'Evaluating at step {step}...')
                    ema.assign(model)
                    results, pred_dict = evaluate(model, dev_loader, device,
                                                  args.dev_eval_file)
                    saver.save(step, model, results[args.metric_name], device)
                    ema.resume(model)

                    # Log to console
                    results_str = ', '.join(f'{k}: {v:05.2f}'
                                            for k, v in results.items())
                    log.info(f'Dev {results_str}')

                    # Log to TensorBoard
                    log.info('Visualizing in TensorBoard...')
                    for k, v in results.items():
                        tbx.add_scalar(f'dev/{k}', v, step)
                    util.visualize(tbx,
                                   pred_dict=pred_dict,
                                   eval_path=args.dev_eval_file,
                                   step=step,
                                   split='dev',
                                   num_visuals=args.num_visuals)
示例#26
0
def main(args):

    # Set up logging and devices
    name = "train_exp2"
    args.save_dir = util.get_save_dir(args.logging_dir, name, training=True)
    log = get_logger(args.save_dir, name)
    tbx = SummaryWriter(args.save_dir)
    device, gpu_ids = util.get_available_devices()
    log.info(f"Args: {dumps(vars(args), indent=4, sort_keys=True)}")
    args.batch_size *= max(1, len(gpu_ids))

    # Set random seed
    log.info(f"Using random seed {args.random_seed}...")
    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed_all(args.random_seed)

    # Get embeddings
    log.info(f"Loading embeddings from {args.word_emb_file}...")
    word_vectors = util.torch_from_json(args.word_emb_file)

    # Get model
    log.info("Building model...")
    model = BiDAF(word_vectors=word_vectors,
                  hidden_size=args.hidden_size,
                  drop_prob=args.drop_prob)
    model = nn.DataParallel(model, gpu_ids)
    if args.load_path:
        log.info(f"Loading checkpoint from {args.load_path}...")
        model, step = util.load_model(model, args.load_path, gpu_ids)
    else:
        step = 0
    model = model.to(device)
    model.train()
    ema = util.EMA(model, args.ema_decay)

    # Get saver
    saver = util.CheckpointSaver(args.save_dir,
                                 max_checkpoints=args.max_checkpoints,
                                 metric_name=args.metric_name,
                                 maximize_metric=args.maximize_metric,
                                 log=log)

    # Get optimizer and scheduler
    optimizer = optim.Adadelta(model.parameters(), args.learning_rate,
                               weight_decay=args.learning_rate_decay)
    # scheduler = sched.LambdaLR(optimizer, lambda s: 1.)  # Constant LR
    scheduler = sched.ReduceLROnPlateau(optimizer=optimizer,
                                        mode="min", factor=0.1,
                                        patience=2, verbose=True, cooldown=0 
                                        min_lr=0.0005)


    for epoch in range(args.num_epochs):
        log.info(f"Starting epoch {epoch}...")
        for i in range(args.num_train_chunks):
        # Get data loader
            train_rec_file = f"{args.train_record_file_exp2}_{i}.npz"
            log.info(f'Building dataset from {train_rec_file} ...')
            train_dataset = SQuAD(train_rec_file, args.exp2_train_topic_contexts, use_v2=True)
            train_loader = data.DataLoader(train_dataset,
                                           batch_size=args.batch_size,
                                           shuffle=True,
                                           num_workers=args.num_workers,
                                           collate_fn=collate_fn)

            # Train
            log.info('Training...')
            steps_till_eval = args.eval_steps
            epoch = 0
        # torch.set_num_threads(7)
            with torch.enable_grad(), tqdm(total=len(train_loader.dataset)) as progress_bar:
                for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in train_loader:
                    # Setup for forward
                    cw_idxs = cw_idxs.to(device)
                    qw_idxs = qw_idxs.to(device)
                    batch_size = qw_idxs.size(0)
                    optimizer.zero_grad()

                    # Forward
                    log_p1, log_p2 = model(cw_idxs, qw_idxs)
                    y1, y2 = y1.to(device), y2.to(device)
                    loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                    loss_val = loss.item()

                    # Backward
                    loss.backward()
                    nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                    optimizer.step()
                    scheduler.step(step // batch_size)
                    ema(model, step // batch_size)

                    # Log info
                    step += batch_size
                    progress_bar.update(batch_size)
                    progress_bar.set_postfix(epoch=epoch,
                                             NLL=loss_val)
                    tbx.add_scalar('train/NLL', loss_val, step)
                    tbx.add_scalar('train/LR',
                                   optimizer.param_groups[0]['lr'],
                                   step)

                    steps_till_eval -= batch_size
                    if steps_till_eval <= 0:
                        steps_till_eval = args.eval_steps

                        # Evaluate and save checkpoint
                        log.info(f"Evaluating at step {step}...")
                        ema.assign(model)

                        for i in range(args.num_dev_chunks):
                        # Get data loader
                            all_pred_dicts = {}
                            all_results = OrderedDict() 
                            dev_rec_file = f"{args.dev_record_file_exp2}_{i}.npz"
                            log.info(f'Building evaluating dataset from {dev_rec_file} ...')
                            dev_dataset = SQuAD(dev_rec_file, 
                                                args.exp2_dev_topic_contexts, 
                                                use_v2=True)
                            dev_loader = data.DataLoader(dev_dataset,
                                                           batch_size=args.batch_size,
                                                           shuffle=True,
                                                           num_workers=args.num_workers,
                                                           collate_fn=collate_fn)
                            results, pred_dict = evaluate(model, dev_loader, device,
                                                          args.dev_eval_file,
                                                          args.max_ans_len,
                                                          use_squad_v2=True)
                            all_results.update(results)
                            all_pred_dicts.update(pred_dict)

                            del dev_dataset
                            del dev_loader
                            del results
                            del pred_dict
                            torch.cuda.empty_cache()

                        saver.save(step, model, all_results[args.metric_name], device)
                        ema.resume(model)

                        # Log to console
                        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in all_results.items())
                        log.info(f"Dev {results_str}")

                        # Log to TensorBoard
                        log.info('Visualizing in TensorBoard...')
                        for k, v in all_results.items():
                            tbx.add_scalar(f"dev/{k}", v, step)
                        util.visualize(tbx,
                                       pred_dict=all_pred_dicts,
                                       eval_path=args.dev_eval_file,
                                       step=step,
                                       split='dev',
                                       num_visuals=args.num_visuals)
                    torch.cuda.empty_cache()
            del train_dataset
            del train_loader
            torch.cuda.empty_cache()
示例#27
0
def main():

    # define parser and arguments
    args = get_train_test_args()

    util.set_seed(args.seed)

    if args.mixture_of_experts and args.do_eval:
        model = MoE(load_gate=True)
        experts = True
        model.gate.eval()

    elif args.mixture_of_experts and args.do_train:
        model = MoE(load_gate=False)
        experts = True

    else:
        model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
        experts = False

    if args.reinit > 0:
        transformer_temp = getattr(model, 'distilbert')
        for layer in transformer_temp.transformer.layer[-args.reinit:]:
            for module in layer.modules():
                print(type(module))
                if isinstance(module, (nn.Linear, nn.Embedding)):
                    module.weight.data.normal_(mean=0.0, std=transformer_temp.config.initializer_range)
                elif isinstance(module, nn.LayerNorm):
                    module.bias.data.zero_()
                    module.weight.data.fill_(1.0)
                if isinstance(module, nn.Linear) and module.bias is not None:
                    module.bias.data.zero_()

    tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')

    if args.do_train:
        if not os.path.exists(args.save_dir):
            os.makedirs(args.save_dir)
        args.save_dir = util.get_save_dir(args.save_dir, args.run_name)
        log = util.get_logger(args.save_dir, 'log_train')
        log.info(f'Args: {json.dumps(vars(args), indent=4, sort_keys=True)}')
        log.info("Preparing Training Data...")
        args.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
        trainer = Trainer(args, log)
        train_dataset, _ = get_dataset(args, args.train_datasets, args.train_dir, tokenizer, 'train')
        log.info("Preparing Validation Data...")
        val_dataset, val_dict = get_dataset(args, args.train_datasets, args.val_dir, tokenizer, 'val')
        train_loader = DataLoader(train_dataset,
                                batch_size=args.batch_size,
                                sampler=RandomSampler(train_dataset))
        val_loader = DataLoader(val_dataset,
                                batch_size=args.batch_size,
                                sampler=SequentialSampler(val_dataset))
        best_scores = trainer.train(model, train_loader, val_loader, val_dict, experts)
    if args.do_eval:
        args.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
        split_name = 'test' if 'test' in args.eval_dir else 'validation'
        log = util.get_logger(args.save_dir, f'log_{split_name}')
        trainer = Trainer(args, log)
        if args.mixture_of_experts is False:
            checkpoint_path = os.path.join(args.save_dir, 'checkpoint')
            model = DistilBertForQuestionAnswering.from_pretrained(checkpoint_path)
            model.to(args.device)
        eval_dataset, eval_dict = get_dataset(args, args.eval_datasets, args.eval_dir, tokenizer, split_name)
        eval_loader = DataLoader(eval_dataset,
                                 batch_size=args.batch_size,
                                 sampler=SequentialSampler(eval_dataset))
    
        eval_preds, eval_scores = trainer.evaluate(model, eval_loader,
                                                   eval_dict, return_preds=True,
                                                   split=split_name, MoE = True)

        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in eval_scores.items())
        log.info(f'Eval {results_str}')
        # Write submission file
        sub_path = os.path.join(args.save_dir, split_name + '_' + args.sub_file)
        log.info(f'Writing submission file to {sub_path}...')
        with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
            csv_writer = csv.writer(csv_fh, delimiter=',')
            csv_writer.writerow(['Id', 'Predicted'])
            for uuid in sorted(eval_preds):
                csv_writer.writerow([uuid, eval_preds[uuid]])
示例#28
0
def main():
    # define parser and arguments
    args = get_train_test_args()
    util.set_seed(args.seed)
    # model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
    model = DomainQA(args.num_classes, args.hidden_size, args.num_layers,
                     args.dropout, args.dis_lambda, args.concat, args.anneal)
    tokenizer = DistilBertTokenizerFast.from_pretrained(
        'distilbert-base-uncased')

    if args.do_train:
        if not os.path.exists(args.save_dir):
            os.makedirs(args.save_dir)
        args.save_dir = util.get_save_dir(args.save_dir, args.run_name)
        log = util.get_logger(args.save_dir, 'log_train')
        log.info(f'Args: {json.dumps(vars(args), indent=4, sort_keys=True)}')
        log.info("Preparing Training Data...")
        args.device = torch.device(
            'cuda') if torch.cuda.is_available() else torch.device('cpu')
        if args.load_weights != '':
            args.load_weights = os.path.join(args.load_weights, 'checkpoint',
                                             model.WEIGHTS_NAME)
            model.load_state_dict(torch.load(args.load_weights))
        if args.load_distilbert_weights != '':
            # args.load_distilbert_weights = os.path.join(args.load_distilbert_weights, 'checkpoint', model.WEIGHTS_NAME)
            args.load_distilbert_weights = os.path.join(
                args.load_distilbert_weights, 'checkpoint',
                'pytorch_model.bin')
            model.distilbert.load_state_dict(
                torch.load(args.load_distilbert_weights))
            print('loaded pretrained distilbert weights from',
                  args.load_distilbert_weights)

        trainer = Trainer(args, log, model)
        #target_data_dir, target_dataset, tokenizer, split_name, source_data_dir = None, source_dataset = None
        train_dataset, _ = get_train_dataset(args, \
                                       args.target_train_dir,\
                                       args.target_train_datasets,\
                                       tokenizer, 'train', \
                                       source_data_dir=args.source_train_dir, \
                                       source_dataset=args.source_train_datasets)
        log.info("Preparing Validation Data...")
        val_dataset, val_dict = get_dataset(args, \
                                       args.eval_datasets,\
                                       args.eval_dir,\
                                       tokenizer, 'val')
        train_loader = DataLoader(train_dataset,
                                  batch_size=args.batch_size,
                                  sampler=RandomSampler(train_dataset))
        val_loader = DataLoader(val_dataset,
                                batch_size=args.batch_size,
                                sampler=SequentialSampler(val_dataset))
        best_scores = trainer.train(train_loader, val_loader, val_dict)
    if args.do_eval:
        args.device = torch.device(
            'cuda') if torch.cuda.is_available() else torch.device('cpu')
        split_name = 'test' if 'test' in args.eval_dir else 'validation'
        log = util.get_logger(args.save_dir, f'log_{split_name}')
        trainer = Trainer(args, log, model)
        config_path = os.path.join(args.save_dir, 'checkpoint', 'config.json')
        checkpoint_path = os.path.join(args.save_dir, 'checkpoint',
                                       model.WEIGHTS_NAME)
        model.load_state_dict(torch.load(checkpoint_path))
        model.to(args.device)
        eval_dataset, eval_dict = get_dataset(args, args.eval_datasets,
                                              args.eval_dir, tokenizer,
                                              split_name)
        eval_loader = DataLoader(eval_dataset,
                                 batch_size=args.batch_size,
                                 sampler=SequentialSampler(eval_dataset))
        eval_preds, eval_scores = trainer.evaluate(eval_loader,
                                                   eval_dict,
                                                   return_preds=True,
                                                   split=split_name)
        results_str = ', '.join(f'{k}: {v:05.2f}'
                                for k, v in eval_scores.items())
        log.info(f'Eval {results_str}')
        # Write submission file
        sub_path = os.path.join(args.save_dir,
                                split_name + '_' + args.sub_file)
        log.info(f'Writing submission file to {sub_path}...')
        with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
            csv_writer = csv.writer(csv_fh, delimiter=',')
            csv_writer.writerow(['Id', 'Predicted'])
            for uuid in sorted(eval_preds):
                csv_writer.writerow([uuid, eval_preds[uuid]])
示例#29
0
def main(args):
    # Set up logging
    args.save_dir = util.get_save_dir(args.save_dir, args.name, training=False)
    log = util.get_logger(args.save_dir, args.name)
    device, gpu_ids = util.get_available_devices()
    args.batch_size *= max(1, len(gpu_ids))
    log.info(f'Args: {dumps(vars(args), indent=4, sort_keys=True)}')

    # Get embeddings
    log.info('Loading embeddings...')
    word_vectors = util.torch_from_json(args.word_emb_file)

    models = {}

    if args.use_ensemble:

        total_models = 0
        for model_name in ['bidaf', 'bidafextra', 'fusionnet']:

            models_list = []

            for model_file in glob.glob(
                    f'{args.load_path}/{model_name}-*/{args.ensemble_models}'):

                # Get model
                log.info('Building model...')
                if model_name == 'bidaf':
                    model = BiDAF(word_vectors=word_vectors,
                                  hidden_size=args.hidden_size)
                elif model_name == 'bidafextra':
                    model = BiDAFExtra(word_vectors=word_vectors, args=args)
                elif model_name == 'fusionnet':
                    model = FusionNet(word_vectors=word_vectors, args=args)

                model = nn.DataParallel(model, gpu_ids)
                log.info(f'Loading checkpoint from {model_file}...')
                model = util.load_model(model,
                                        model_file,
                                        gpu_ids,
                                        return_step=False)

                # Load each model on CPU (have plenty of RAM ...)
                model = model.cpu()
                model.eval()

                models_list.append(model)

            models[model_name] = models_list

            total_models += len(models_list)

        log.info(f'Using an ensemble of {total_models} models')

    else:

        device, gpu_ids = util.get_available_devices()

        # Get model
        log.info('Building model...')
        if args.model == 'bidaf':
            model = BiDAF(word_vectors=word_vectors,
                          hidden_size=args.hidden_size)
        elif args.model == 'bidafextra':
            model = BiDAFExtra(word_vectors=word_vectors, args=args)
        elif args.model == 'fusionnet':
            model = FusionNet(word_vectors=word_vectors, args=args)

        model = nn.DataParallel(model, gpu_ids)
        log.info(f'Loading checkpoint from {args.load_path}...')
        model = util.load_model(model,
                                args.load_path,
                                gpu_ids,
                                return_step=False)
        model = model.to(device)
        model.eval()

        models[args.model] = [model]

    # Get data loader
    log.info('Building dataset...')
    record_file = vars(args)[f'{args.split}_record_file']
    dataset = SQuAD(record_file, args)
    data_loader = data.DataLoader(dataset,
                                  batch_size=args.batch_size,
                                  shuffle=False,
                                  num_workers=args.num_workers,
                                  collate_fn=collate_fn)

    # Evaluate
    log.info(f'Evaluating on {args.split} split...')
    nll_meter = util.AverageMeter()
    pred_dict = {}  # Predictions for TensorBoard
    sub_dict = {}  # Predictions for submission
    eval_file = vars(args)[f'{args.split}_eval_file']
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, cw_pos, cw_ner, cw_freq, cqw_extra, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            p1s = []
            p2s = []

            for model_name in models:
                for model in models[model_name]:
                    # Move model to GPU to evaluate
                    model = model.to(device)

                    # Forward
                    if model_name == 'bidaf':
                        log_p1, log_p2 = model.to(device)(cw_idxs, qw_idxs)
                    else:
                        log_p1, log_p2 = model.to(device)(cw_idxs, qw_idxs,
                                                          cw_pos, cw_ner,
                                                          cw_freq, cqw_extra)

                    log_p1, log_p2 = log_p1.cpu(), log_p2.cpu()

                    if not args.use_ensemble:
                        y1, y2 = y1.to(device), y2.to(device)
                        log_p1, log_p2 = log_p1.to(device), log_p2.to(device)

                        loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
                        nll_meter.update(loss.item(), batch_size)

                    # Move model back to CPU to release GPU memory
                    model = model.cpu()

                    # Get F1 and EM scores
                    p1, p2 = log_p1.exp().unsqueeze(
                        -1).cpu(), log_p2.exp().unsqueeze(-1).cpu()
                    p1s.append(p1), p2s.append(p2)

            best_ps = torch.max(
                torch.cat([
                    torch.cat(p1s, -1).unsqueeze(-1),
                    torch.cat(p2s, -1).unsqueeze(-1)
                ], -1), -2)[0]

            p1, p2 = best_ps[:, :, 0], best_ps[:, :, 1]
            starts, ends = util.discretize(p1, p2, args.max_ans_len,
                                           args.use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            if args.split != 'test':
                # No labels for the test set, so NLL would be invalid
                progress_bar.set_postfix(NLL=nll_meter.avg)

            idx2pred, uuid2pred = util.convert_tokens(gold_dict, ids.tolist(),
                                                      starts.tolist(),
                                                      ends.tolist(),
                                                      args.use_squad_v2)
            pred_dict.update(idx2pred)
            sub_dict.update(uuid2pred)

    # Log results (except for test set, since it does not come with labels)
    if args.split != 'test':
        results = util.eval_dicts(gold_dict, pred_dict, args.use_squad_v2)
        results_list = [('NLL', nll_meter.avg), ('F1', results['F1']),
                        ('EM', results['EM'])]
        if args.use_squad_v2:
            results_list.append(('AvNA', results['AvNA']))
        results = OrderedDict(results_list)

        # Log to console
        results_str = ', '.join(f'{k}: {v:05.2f}' for k, v in results.items())
        log.info(f'{args.split.title()} {results_str}')

        # Log to TensorBoard
        tbx = SummaryWriter(args.save_dir)
        util.visualize(tbx,
                       pred_dict=pred_dict,
                       eval_path=eval_file,
                       step=0,
                       split=args.split,
                       num_visuals=args.num_visuals)

    # Write submission file
    sub_path = join(args.save_dir, args.split + '_' + args.sub_file)
    log.info(f'Writing submission file to {sub_path}...')
    with open(sub_path, 'w', newline='', encoding='utf-8') as csv_fh:
        csv_writer = csv.writer(csv_fh, delimiter=',')
        csv_writer.writerow(['Id', 'Predicted'])
        for uuid in sorted(sub_dict):
            csv_writer.writerow([uuid, sub_dict[uuid]])
示例#30
0
文件: run.py 项目: yyht/rrws
def run(args):
    # set up args
    if args.cuda and torch.cuda.is_available():
        device = torch.device('cuda')
        args.cuda = True
    else:
        device = torch.device('cpu')
        args.cuda = False
    if args.train_mode == 'thermo' or args.train_mode == 'thermo_wake':
        partition = util.get_partition(args.num_partitions,
                                       args.partition_type, args.log_beta_min,
                                       device)
    util.print_with_time('device = {}'.format(device))
    util.print_with_time(str(args))

    # save args
    save_dir = util.get_save_dir()
    args_path = util.get_args_path(save_dir)
    util.save_object(args, args_path)

    # data
    binarized_mnist_train, binarized_mnist_valid, binarized_mnist_test = \
        data.load_binarized_mnist(where=args.where)
    data_loader = data.get_data_loader(binarized_mnist_train, args.batch_size,
                                       device)
    valid_data_loader = data.get_data_loader(binarized_mnist_valid,
                                             args.valid_batch_size, device)
    test_data_loader = data.get_data_loader(binarized_mnist_test,
                                            args.test_batch_size, device)
    train_obs_mean = torch.tensor(np.mean(binarized_mnist_train, axis=0),
                                  device=device,
                                  dtype=torch.float)

    # init models
    util.set_seed(args.seed)
    generative_model, inference_network = util.init_models(
        train_obs_mean, args.architecture, device)

    # optim
    optim_kwargs = {'lr': args.learning_rate}

    # train
    if args.train_mode == 'ws':
        train_callback = train.TrainWakeSleepCallback(
            save_dir, args.num_particles * args.batch_size, test_data_loader,
            args.eval_num_particles, args.logging_interval,
            args.checkpoint_interval, args.eval_interval)
        train.train_wake_sleep(generative_model, inference_network,
                               data_loader, args.num_iterations,
                               args.num_particles, optim_kwargs,
                               train_callback)
    elif args.train_mode == 'ww':
        train_callback = train.TrainWakeWakeCallback(
            save_dir, args.num_particles, test_data_loader,
            args.eval_num_particles, args.logging_interval,
            args.checkpoint_interval, args.eval_interval)
        train.train_wake_wake(generative_model, inference_network, data_loader,
                              args.num_iterations, args.num_particles,
                              optim_kwargs, train_callback)
    elif args.train_mode == 'reinforce' or args.train_mode == 'vimco':
        train_callback = train.TrainIwaeCallback(
            save_dir, args.num_particles, args.train_mode, test_data_loader,
            args.eval_num_particles, args.logging_interval,
            args.checkpoint_interval, args.eval_interval)
        train.train_iwae(args.train_mode, generative_model, inference_network,
                         data_loader, args.num_iterations, args.num_particles,
                         optim_kwargs, train_callback)
    elif args.train_mode == 'thermo':
        train_callback = train.TrainThermoCallback(
            save_dir, args.num_particles, partition, test_data_loader,
            args.eval_num_particles, args.logging_interval,
            args.checkpoint_interval, args.eval_interval)
        train.train_thermo(generative_model, inference_network, data_loader,
                           args.num_iterations, args.num_particles, partition,
                           optim_kwargs, train_callback)
    elif args.train_mode == 'thermo_wake':
        train_callback = train.TrainThermoWakeCallback(
            save_dir, args.num_particles, test_data_loader,
            args.eval_num_particles, args.logging_interval,
            args.checkpoint_interval, args.eval_interval)
        train.train_thermo_wake(generative_model, inference_network,
                                data_loader, args.num_iterations,
                                args.num_particles, partition, optim_kwargs,
                                train_callback)

    # eval validation
    train_callback.valid_log_p, train_callback.valid_kl = train.eval_gen_inf(
        generative_model, inference_network, valid_data_loader,
        args.eval_num_particles)

    # save models and stats
    util.save_checkpoint(save_dir,
                         iteration=None,
                         generative_model=generative_model,
                         inference_network=inference_network)
    stats_path = util.get_stats_path(save_dir)
    util.save_object(train_callback, stats_path)