def test (indata): prefix='distance_' try: util.set_features(indata, prefix) except NotImplementedError, e: print e return True
def test (indata): try: util.set_features(indata, 'distribution_') _set_distribution(indata) except NotImplementedError, e: print e return True
def test(indata): try: util.set_features(indata, 'distribution_') _set_distribution(indata) except NotImplementedError, e: print e return True
def test (indata): prefix='topfk_' if indata.has_key(prefix+'name'): try: util.set_features(indata, prefix) return _evaluate_top_fisher(indata, prefix) except NotImplementedError, e: print e return True
def test (indata): prefix='classifier_' if indata[prefix+'type']=='kernel': feature_prefix='kernel_' elif indata[prefix+'type']=='knn': feature_prefix='distance_' else: feature_prefix='classifier_' try: util.set_features(indata, feature_prefix) except NotImplementedError, e: print e return True
def test(indata): try: util.set_features(indata, 'kernel_') except NotImplementedError, e: print e return True
def test (indata): try: util.set_features(indata, 'kernel_') except NotImplementedError, e: print e return True
# public ######################################################################## def test (indata): prefix='topfk_' if indata.has_key(prefix+'name'): try: util.set_features(indata, prefix) return _evaluate_top_fisher(indata, prefix) except NotImplementedError, e: print e return True prefix='kernel_' try: util.set_features(indata, prefix) names=['Combined', 'AUC', 'Custom'] for name in names: if indata[prefix+'name']==name: return eval('_evaluate_'+name.lower()+'(indata, prefix)') names=['HistogramWordString', 'SalzbergWordString'] for name in names: if indata[prefix+'name']==name: return _evaluate_pie(indata, prefix) # pretty normal kernel return _evaluate_kernel(indata, prefix) except NotImplementedError, e: print e return True