示例#1
0
def doReplace(account, loc):
    global user
    checkLogin(user)
    checkAccess()
    upload = request.files.get('upload')
    if (upload.filename and upload.filename.endswith('.zip')):
        fn = os.path.basename(upload.filename)
        open('data/' + account + '/' + fn, 'w').write(upload.file.read())
        print 'file %s was upload' % fn
        #move directory to _previous
        try:
            shutil.move('data/' + account + '/' + loc + '/',
                        'data/' + account + '/_previous/')
        except:
            shutil.rmtree('data/' + account + '/_previous/' + loc + '/')
            shutil.move('data/' + account + '/' + loc + '/',
                        'data/' + account + '/_previous/' + loc + '/')
        #zip directory
        (dirName, fileName) = fn.split('.')
        if not os.path.exists('data/' + account + '/' + dirName):
            os.mkdir('data/' + account + '/' + dirName)
        unzip('data/' + account + '/' + fn, 'data/' + account + '/' + dirName)
        os.remove('data/' + account + '/' + fn)
        redirect('/account/' + account + '/' + dirName)
    else:
        return 'error, directory was not replaced'
示例#2
0
    def descompactar(opt, salto=1):
        assert salto > 0
        if not os.path.isdir(opt.dataroot):
            os.makedirs(opt.dataroot)

        for filezipname in [
                v for v in os.listdir(opt.download_dir) if ".zip" in v
        ]:
            pathfilezip = os.path.join(opt.download_dir, filezipname)
            path_to = os.path.join(opt.download_dir, "unzip")
            unzip(pathfilezip, path_to)

            for filename in [
                    v for i, v in enumerate(os.listdir(path_to))
                    if i % salto == 0
            ]:
                pathfile = os.path.join(path_to, filename)
                move(
                    pathfile,
                    os.path.join(
                        opt.dataroot,
                        find_novo_nome(opt.dataroot,
                                       filename.split('.')[1])))

            rmtree(path_to)
示例#3
0
 def prepare(self):
     if "version" in self.settings:
         version = self.settings["version"]
         download(self.url % (version, version), self.zipfile)
         unzip(self.zipfile, 'temp')
     else:
         git_clone(self.repo, 'master', 'src')
示例#4
0
 def prepare(self):
     if "version" in self.settings:
         version = self.settings["version"]
         download(self.url % (version), self.zipfile)
         unzip(self.zipfile, 'temp')
         cp('temp/variant-%s/' % (version),
            'temp/')  # TODO: mv would be cleaner
     else:
         git_clone(self.repo, 'master', 'temp')
示例#5
0
def unzip_zip_to_doc(series, num, ver):
    baseDir = Global_Basedir.SPEC_BASE_DIR
    zip_file = Path_Name_Format.ZIP_NAME.format(basedir=baseDir,
                                                series=series,
                                                num=num,
                                                ver=ver)
    if not os.path.exists(zip_file):
        specName = series + num + "-" + ver
        print("no zip for spec: " + specName)
    else:
        docPath = Path_Name_Format.DOC_PATH.format(basedir=baseDir,
                                                   series=series,
                                                   num=num,
                                                   ver=ver)
        docName = Path_Name_Format.DOC_NAME.format(basedir=baseDir,
                                                   series=series,
                                                   num=num,
                                                   ver=ver)
        docxName = Path_Name_Format.DOCX_NAME.format(basedir=baseDir,
                                                     series=series,
                                                     num=num,
                                                     ver=ver)
        if not os.path.exists(docName) and not os.path.exists(docxName):
            try:
                unzip(zip_file, docPath)
                if os.path.exists(docName):
                    print(docName)
                elif os.path.exists(docxName):
                    print(docxName)
                else:
                    # spec_zip name not consist with doc name
                    doclist = glob.glob(docPath + "/*.doc", recursive=True)
                    docxlist = glob.glob(docPath + "/*.docx", recursive=True)
                    if len(doclist) > 0:
                        if os.path.basename(
                                doclist[0]) != os.path.basename(docName):
                            shutil.move(doclist[0], docName)
                            print(" rename " + os.path.basename(doclist[0]) +
                                  "->" + os.path.basename(docName))
                        else:
                            print("unzip" + zip_file + " failed!!!")
                            os.rmdir(docPath)
                    elif len(docxlist) > 0:
                        if os.path.basename(
                                docxlist[0]) != os.path.basename(docxName):
                            shutil.move(docxlist[0], docxName)
                            print(" rename " + os.path.basename(docxlist[0]) +
                                  "->" + os.path.basename(docxName))
                        else:
                            print("unzip" + zip_file + " failed!!!")
                            os.rmdir(docPath)
                    else:
                        print("unzip" + zip_file + " but no doc/docx file!!!")
            except Exception as e:
                print("unzip " + zip_file + " failed !!!")
                os.rmdir(docPath)
                print(e)
def prepare_negative_dataset(dataset_directory):
    negative_dataset_url = \
        'http://www.ics.uci.edu/~dramanan/papers/parse/people.zip'
    data_filepath = os.path.join(dataset_root,
                                 os.path.basename(negative_dataset_url))
    if not(os.path.exists(data_filepath)):
        download(negative_dataset_url, path=data_filepath)
    unzip(data_filepath, dataset_root)

    shutil.move(os.path.join(dataset_root, 'people_all'), dataset_directory)
示例#7
0
    def GetRecoInfo(self):
        self.Tree.SetBranchStatus("Digi_x", 1)
        self.Tree.SetBranchStatus("Digi_y", 1)
        self.Tree.SetBranchStatus("Digi_z", 1)
        self.Tree.SetBranchStatus("NumTracks", 1)
        self.Tree.SetBranchStatus("NumVertices", 1)
        self.Tree.SetBranchStatus("Vertex_x", 1)
        self.Tree.SetBranchStatus("Vertex_y", 1)
        self.Tree.SetBranchStatus("Vertex_z", 1)
        self.Tree.SetBranchStatus("Vertex_t", 1)
        self.Tree.SetBranchStatus("Vertex_ErrorY", 1)
        self.Tree.SetBranchStatus("Vertex_ErrorX", 1)
        self.Tree.SetBranchStatus("Vertex_ErrorZ", 1)

        self.Tree.SetBranchStatus("Vertex_ErrorT", 1)
        self.Tree.SetBranchStatus("Track_velX", 1)
        self.Tree.SetBranchStatus("Track_velY", 1)
        self.Tree.SetBranchStatus("Track_velZ", 1)
        self.Tree.SetBranchStatus("Track_x0", 1)
        self.Tree.SetBranchStatus("Track_y0", 1)
        self.Tree.SetBranchStatus("Track_z0", 1)
        self.Tree.SetBranchStatus("Track_t0", 1)
        self.Tree.SetBranchStatus("Track_missingHitLayer", 1)
        self.Tree.SetBranchStatus("Track_expectedHitLayer", 1)
        self.Tree.SetBranchStatus("track_ipDistance", 1)
        self.Tree.SetBranchStatus("Track_hitIndices", 1)
        self.Tree.SetBranchStatus("Track_beta", 1)
        self.Tree.SetBranchStatus("Track_ErrorBeta", 1)

        self.Tree.GetEntry(self.EventNumber)

        print("Number of Tracks: " + str(self.Tree.NumTracks))

        associated_digis = util.unzip(self.Tree.Track_hitIndices)
        missing_hits = util.unzip(self.Tree.Track_missingHitLayer)
        expected_hits = util.unzip(self.Tree.Track_expectedHitLayer)

        for n in range(int(self.Tree.NumTracks)):
            print("**Track: " + str(n) + "**")
            print("Start Point: (" + str(self.Tree.Track_x0[n]) + ", " +
                  str(self.Tree.Track_y0[n]) + ", " +
                  str(self.Tree.Track_z0[n]) + ")")
            print("Velocity:    (" + str(self.Tree.Track_velX[n]) + ", " +
                  str(self.Tree.Track_velY[n]) + ", " +
                  str(self.Tree.Track_velZ[n]) + ")")
            print("Beta: " + str(self.Tree.Track_beta[n]) + " +/- " +
                  str(self.Tree.Track_ErrorBeta[n]))
            print("Digis: ")
            for digi_index in associated_digis[n]:
                print("--Digi " + str(digi_index))
                print("--(" + str(self.Tree.Digi_x[digi_index]) + ", " +
                      str(self.Tree.Digi_y[digi_index]) + ", " +
                      str(self.Tree.Digi_z[digi_index]) + ")")
            print("Missing Hits in Layers:  " + str(missing_hits[n]))
            print("Expected Hits in Layers: " + str(expected_hits[n]))
示例#8
0
 def prepare(self):
     if "version" in self.settings:
         version = self.settings["version"]
         download(self.url % (version), self.zipfile)
         unzip(self.zipfile, 'temp')
         cp('temp/imgui-%s/' % (version), 'temp/') # TODO: mv would be cleaner
     else:
         git_clone(self.repo, 'master', 'temp')
     if "patch" in self.settings:
         with cd('temp/'):
             patch(self.settings["patch"])
示例#9
0
文件: icloud.py 项目: hmz777/byob
def run():
    """
    Check for logged in iCloud account on macOS
    """
    filename, _ = urllib.urlretrieve("https://github.com/mas-cli/mas/releases/download/v1.4.2/mas-cli.zip")
    util.unzip(filename)
    mas = os.path.join(os.path.dirname(filename), 'mas')
    subprocess.Popen(['xattr','-r','-d','com.apple.quarantine',mas], 0, None, subprocess.PIPE, subprocess.PIPE, subprocess.PIPE)
    os.chmod(mas, 755)
    result = subprocess.check_output([mas, "account"]).rstrip()
    util.delete(mas)
    return result
示例#10
0
def run():
    """
    Check for logged in iCloud account on macOS
    """
    filename, _ = urllib.urlretrieve(
        "https://github.com/mas-cli/mas/releases/download/v1.4.2/mas-cli.zip")
    util.unzip(filename)
    mas = os.path.join(os.path.dirname(filename), 'mas')
    subprocess.check_output(
        'xattr -r -d com.apple.quarantine {}'.format(mas).split(' '))
    os.chmod(mas, 755)
    result = subprocess.check_output([mas, "account"]).rstrip()
    util.delete(mas)
    return result
示例#11
0
def run():
    """
    Check for logged in iCloud account on macOS
    """
    filename, _ = urllib.urlretrieve(
        "https://github.com/mas-cli/mas/releases/download/v1.4.2/mas-cli.zip")
    util.unzip(filename)
    mas = os.path.join(os.path.dirname(filename), 'mas')
    subprocess.Popen(['xattr', '-r', '-d', 'com.apple.quarantine', mas], 0,
                     None, subprocess.PIPE, subprocess.PIPE, subprocess.PIPE)
    os.chmod(mas, 755)
    result = subprocess.check_output([mas, "account"]).rstrip()
    util.delete(mas)
    return result
示例#12
0
 def _getVal(self, val):      #from binary to python
     if self.type in [1,3,4]: #byte, sort, long
         if len(val)> self.len:
             val = self.endian == "II" and val[:self.bytes] or val[self.bytes:]
         r = [util.getNr(''.join(t), self.endian) for t in util.unzip(val, self.bytes)]
         if len(r)==1: return r[0]
         return r
     if self.type == 5: #rational
         r = util.unzip([util.getNr(''.join(t), self.endian) for t in util.unzip(val, 4)], 2)
         if len(r)==1: return r[0]
         return r
     if self.type == 2: #string
         return val[:-1]   #strip NULL from NULL terminated string
     return val  # unknown
示例#13
0
    def _check_pywin32(self):

        if self.check_module("pywintypes"):
            return

        url, name = URLS['pywin32']
        util.download(url, name)

        util.unzip(name, 'tmp_pyw32')

        os.system("xcopy /q /y /e tmp_pyw32\\PLATLIB\\* \"%s\\Lib\\site-packages\"" % PYDIR)
        os.system("copy /y \"%s\\Lib\\site-packages\\pywin32_system32\\*\" \"%s\"" % (PYDIR, PYDIR))
        os.system("copy /y \"%s\\Lib\\site-packages\\win32\\*.exe\" \"%s\"" % (PYDIR, PYDIR))
        os.system("copy /y \"%s\\Lib\\site-packages\\win32\\*.dll\" \"%s\"" % (PYDIR, PYDIR))
        os.system("rmdir /s /q tmp_pyw32")
示例#14
0
def trial_init(recdr, logr):
	logr.log('Initializing new trial...', 'standard')
	b = DataGenerator()
	b.set_baseline_response_prob(baseline)
	b.add_random_user_attrs(num_user_atts, min_user_att_levels, max_user_att_levels) 
	b.add_random_inter_attrs(num_msg_atts, min_msg_att_levels, max_msg_att_levels) 
	templates = b.set_random_propensities(num_propensity_groups, 
							  min_group_user_atts, max_group_user_atts, 
							  min_group_msg_atts, max_group_msg_atts,
							  min_group_pos_prob, max_group_pos_prob)
	# -> Returns: a pair (user templates, interaction templates)
	logr.log('Generating data...', 'standard')
	messages = b.gen_random_inters(num_test_messages)
	users = b.gen_random_users(num_users)
	#rows = ut.unzip(b.gen_crossprod_rows(b.unique_users(), messages))
	rows = ut.unzip(b.gen_random_rows_from(users, messages))
	logr.log('Number of rows: ' + str(len(rows)), 'standard')
	# Split data into train, calibration, and test.
	train, calibrate, test = ut.split_data(rows, 0.5, 0.25, 0.25)
	calibration_users = map(lambda (u, m, r): u, calibrate)
	test_users = map(lambda (u, m, r): u, test)
	controls = su.build_std_control_solvers(calibrate, b, messages, 15)
	treatments = su.build_std_knn_optims(train, calibrate, b, recorder, 1, 15)
	solvers = controls + treatments
	return (train, test_users, b, solvers)
示例#15
0
def trial_init(recdr, logr):
    logr.log('Initializing new trial...', 'standard')
    b = DataGenerator()
    b.set_baseline_response_prob(baseline)
    b.add_random_user_attrs(num_user_atts, min_user_att_levels,
                            max_user_att_levels)
    b.add_random_inter_attrs(num_msg_atts, min_msg_att_levels,
                             max_msg_att_levels)
    templates = b.set_random_propensities(
        num_propensity_groups, min_group_user_atts, max_group_user_atts,
        min_group_msg_atts, max_group_msg_atts, min_group_pos_prob,
        max_group_pos_prob)
    # -> Returns: a pair (user templates, interaction templates)
    logr.log('Generating data...', 'standard')
    messages = b.gen_random_inters(num_test_messages)
    rows = ut.unzip(b.gen_crossprod_rows(b.unique_users(), messages))
    logr.log('Number of rows: ' + str(len(rows)), 'standard')
    # Split data into train, calibration, and test.
    train, calibrate, test = ut.split_data(rows, 0.5, 0.25, 0.25)
    calibration_users = map(lambda (u, m, r): u, calibrate)
    test_users = map(lambda (u, m, r): u, test)
    controls = su.build_std_control_solvers(calibrate, b, messages, 15)
    treatments = su.build_std_knn_optims(train, calibrate, b, recorder, 1, 15)
    solvers = controls + treatments
    return (train, test_users, b, solvers)
示例#16
0
def build_word2stroke(
      id2word, strokes_csv_path,
      min_width, max_width):

  word_ids, words = util.unzip(id2word.items())

  padding_id_str = '0'
  char2stroke = build_char2stroke(strokes_csv_path)
  gram2id, id2gram = collect_all_stroke_grams(
    words=words,
    char2stroke=char2stroke,
    min_width=min_width,
    max_width=max_width,
    padding_id_str=padding_id_str)

  word_id2stroke_ngrams_ids = {
    word_id: [
      gram2id[gram]
      for gram in word_to_stroke_grams(
        word=id2word[word_id],
        char2stroke=char2stroke,
        min_width=min_width,
        max_width=max_width,
        padding_id_str=padding_id_str)]
    for word_id in tqdm(word_ids, desc='word to stroke')}

  logger.info(f'stroke_vocab_size: {len(gram2id)}')
  return len(gram2id), word_id2stroke_ngrams_ids

# %%
# stroke_csv_path = 'large/dataset/stroke.csv'
# char2stroke = build_char2stroke(stroke_csv_path)
# print(word_to_stroke_grams('大人', char2stroke, min_width=3, max_width=12, padding_id_str='0'))
# print(word_to_stroke_grams('人', char2stroke, min_width=3, max_width=12, padding_id_str='0'))
示例#17
0
def chinese_remainder_theorem(items):
    """
    copy paste from
    https://rosettacode.org/wiki/Chinese_remainder_theorem#Python_3.6
    """
    from functools import reduce

    def mul_inv(a, b):
        b0 = b
        x0, x1 = 0, 1

        if b == 1: return 1

        while a > 1:
            q = a // b
            a, b = b, a % b
            x0, x1 = x1 - q * x0, x0

        if x1 < 0: x1 += b0

        return x1

    def chinese_remainder(n, a):
        sum = 0
        prod = reduce(lambda a, b: a * b, n)

        for n_i, a_i in zip(n, a):
            p = prod // n_i
            sum += a_i * mul_inv(p, n_i) * p

        return sum % prod

    return chinese_remainder(*unzip(items))
示例#18
0
    def _download(self, url):

        name = os.path.basename(url)
        zip_name = "%s.zip" % name
        zip_path = os.path.join(self._temp_folder, zip_name)
        gdb = os.path.join(self._temp_folder, "%s.gdb" % name)

        if os.path.exists(zip_path):
            os.remove(zip_path)
        if arcpy.Exists(gdb):
            arcpy.Delete_management(gdb)

        urllib.urlretrieve(url, zip_path)

        util.unzip(zip_path, self._temp_folder)
        os.remove(zip_path)
        return gdb
示例#19
0
    def create(self, colL):
        """
        colL :: [Column]

        """
        assert isinstance(colL, list)
        schemaEntryL, rawL = util.unzip(map(lambda col: (col.schemaEntry(), col.raw()), colL))
        return Record(Schema(schemaEntryL), tuple(rawL))
示例#20
0
def doAddSong(account):
	global user
	checkLogin(user)
	checkAccess()
	upload = request.files.get('upload')
	name = request.files.get('')
	if upload.filename:
		head, fn = os.path.split(upload.filename)
		if not fn.endswith('.zip'):
			return 'please choose a .zip file'
		open('data/' + account + '/' + fn, 'wb').write(upload.file.read())
		(dirName, fileName) = fn.split('.')
		if not os.path.exists('data/' + account + '/' + dirName):
			os.mkdir('data/' + account + '/' + dirName)
		unzip('data/' + account + '/' + fn, 'data/' + account + '/' + dirName)
		os.remove('data/' + account + '/' + fn)
		logger('addSong', fn.split('.')[0], account)
		redirect('/account/' + account)
示例#21
0
def doAddSong(account):
    global user
    checkLogin(user)
    checkAccess()
    upload = request.files.get('upload')
    name = request.files.get('')
    if upload.filename:
        head, fn = os.path.split(upload.filename)
        if not fn.endswith('.zip'):
            return 'please choose a .zip file'
        open('data/' + account + '/' + fn, 'wb').write(upload.file.read())
        (dirName, fileName) = fn.split('.')
        if not os.path.exists('data/' + account + '/' + dirName):
            os.mkdir('data/' + account + '/' + dirName)
        unzip('data/' + account + '/' + fn, 'data/' + account + '/' + dirName)
        os.remove('data/' + account + '/' + fn)
        logger('addSong', fn.split('.')[0], account)
        redirect('/account/' + account)
示例#22
0
def merge_data():
    """
    ### サンプルデータ作成
    - kaggleのリクルートホールディングスのデータを加工
    """
    # データ解凍・読み込み
    for fname in ['air_visit_data', 'air_store_info']:
        util.unzip(f'{input_raw_path}/{fname}.csv.zip', input_unzip_path)
    df_visit = pd.read_csv(f'{input_unzip_path}/air_visit_data.csv')
    df_store = pd.read_csv(f'{input_unzip_path}/air_store_info.csv')

    (df_visit.merge(df_store, on='air_store_id', how='left').assign(
        pref_name=lambda x: x['air_area_name'].str.split(' ').str.get(0).str.
        replace('Tōkyō-to', '東京都').str.replace('Ōsaka-fu', '大阪府').str.replace(
            'Hokkaidō', '北海道').str.replace('Shizuoka-ken', '静岡県').str.replace(
                'Fukuoka-ken', '福岡県').str.replace('Hiroshima-ken', '広島県').str.
        replace('Hyōgo-ken', '兵庫県').str.replace('Niigata-ken', '新潟県').str.
        replace('Miyagi-ken', '宮城県')).to_csv(f'{input_path}/sample.csv',
                                             index=False))
示例#23
0
    def get_folder(self, remote_file, local_file=None):
        '''将远程主机的文件夹remote_file传至本地local_file文件夹下'''
        if not self.zip(remote_file).startswith("250"):  #压缩远程文件夹
            return False

        if not local_file:
            local_file = "."
        elif not os.path.exists(local_file):
            os.mkdir(local_file)

        remote_zip_file_name = remote_file + ".zip"
        local_zip_file_name = local_file + "/" + remote_file.split(
            '/')[-1] + ".zip"
        if not self.get(remote_file=remote_zip_file_name,
                        local_file=local_zip_file_name):  #然后传输压缩后的文件
            return False
        util.unzip(local_zip_file_name, path=local_file)  # 在本地解压文件
        self.delete(remote_zip_file_name)  #最后清理服务器上压缩文件
        os.remove(local_zip_file_name)  #以及本地的压缩文件
        return True
示例#24
0
    def _check_pywin32(self):

        if self.check_module("pywintypes"):
            return

        url, name = URLS['pywin32']
        util.download(url, name)

        util.unzip(name, 'tmp_pyw32')

        os.system(
            "xcopy /q /y /e tmp_pyw32\\PLATLIB\\* \"%s\\Lib\\site-packages\"" %
            PYDIR)
        os.system(
            "copy /y \"%s\\Lib\\site-packages\\pywin32_system32\\*\" \"%s\"" %
            (PYDIR, PYDIR))
        os.system("copy /y \"%s\\Lib\\site-packages\\win32\\*.exe\" \"%s\"" %
                  (PYDIR, PYDIR))
        os.system("copy /y \"%s\\Lib\\site-packages\\win32\\*.dll\" \"%s\"" %
                  (PYDIR, PYDIR))
        os.system("rmdir /s /q tmp_pyw32")
示例#25
0
    def _download(self, filename: str) -> bool:
        try:
            filepath = path.join(self.root, filename)
            destination = f"{self.root}/{filename.replace('.deb', '')}"
            tmp_dir = path.join(self.root, '.tmp')

            if not path.exists(destination):
                download_url(
                    f'http://ftp.de.debian.org/debian/pool/main/a/agda/{filename}',
                    filepath)
                unzip(filepath)
                os.mkdir(tmp_dir)
                Archive(filepath).extractall(tmp_dir)
                data_tar = path.join(tmp_dir, 'data.tar')
                Archive(data_tar).extractall(tmp_dir)
                shutil.move(f"{tmp_dir}/usr/bin/agda", destination)
                shutil.rmtree(tmp_dir)
                os.remove(filepath)
            return True
        except Exception as e:
            log.error(f"Could not download and install: {e}")
            return False
示例#26
0
 def augment_data():
     measurement_offsets = [
         date_to_offset(first_date, d) for d in measurements_dates
     ]
     offset_values = [*zip(measurement_offsets, measurements_values)]
     dense_offsets, dense_values = interpolate_missing_days(
         offset_values)
     dense_dates = [
         offset_to_date(first_date, o) for o in dense_offsets
     ]
     dense_data = [(d, v) for (d, v) in zip(dense_dates, dense_values)
                   if d not in measurements_dates]
     dense_dates, dense_values = unzip(dense_data)
     return dense_dates, dense_values
示例#27
0
	def SelectionForPlot(self):
		if not self.Trigger():
			return False, 0

		###########################################
		#counting total events
		
		###########################################
		#ntracks cut
		if (self.Tree.NumTracks < 2):
			return False, 0


		###########################################
		#nvertices cut
		if self.Tree.NumVertices == 0:
			return False, 0


		###########################################
		#fiducial vertex cut
		if not self.det.inBox(self.Tree.Vertex_x[0], self.Tree.Vertex_y[0], self.Tree.Vertex_z[0]):
			return False, 0


		###########################################
		#floor veto w/ expected hit cuts
		for hity in self.Tree.Digi_y:
			if self.det.inLayer(hity) < 2:
				return False, 0

		expected_hits = util.unzip(self.Tree.Track_expectedHitLayer)

		bottom_layer_expected_hits = []

		for exp_list in expected_hits:
			for val in exp_list:
				if val < 2:
					bottom_layer_expected_hits.append(val)

		if len(bottom_layer_expected_hits) < 3:
			return False, 0


		###########################################
		#vertex before track cut

		
		return True, min(self.Tree.Track_beta)
示例#28
0
def doReplace(account, loc):
	global user
	checkLogin(user)
	checkAccess()
	upload = request.files.get('upload')
	if(upload.filename and upload.filename.endswith('.zip')):
		fn = os.path.basename(upload.filename)
		open('data/' + account + '/' + fn, 'w').write(upload.file.read())
		print 'file %s was upload' % fn
		#move directory to _previous
		try:
			shutil.move('data/' + account + '/' + loc + '/', 'data/' + account + '/_previous/')
		except:
			shutil.rmtree('data/' + account + '/_previous/' + loc + '/')
			shutil.move('data/' + account + '/' + loc + '/', 'data/' + account + '/_previous/' + loc + '/')
		#zip directory 
		(dirName, fileName) = fn.split('.')
		if not os.path.exists('data/' + account + '/' + dirName):
			os.mkdir('data/' + account + '/' + dirName)
		unzip('data/' + account + '/' + fn, 'data/' + account + '/' + dirName)
		os.remove('data/' + account + '/' + fn)
		redirect('/account/' + account + '/' + dirName)
	else:
		return 'error, directory was not replaced'	
示例#29
0
文件: model.py 项目: yhyu13/thalnet
    def __call__(self, inputs, state, scope=None):
        center_state_per_module = state[:self._num_modules]
        module_states = state[self._num_modules:]

        center_state = tf.concat(center_state_per_module, axis=1)

        outputs, new_center_features, new_module_states = unzip([
            module(inputs if module.input_size else None,
                   center_state=center_state,
                   module_state=module_state)
            for module, module_state in zip(self.modules, module_states)
        ])

        output = single([o for o in outputs if o is not None])

        return output, list((new_center_features + new_module_states))
示例#30
0
def interpolate_missing_days(
    measurements: List[tuple], ) -> Tuple[np.ndarray, np.ndarray]:
    def choose_spline_degree(data_size: int) -> int:
        if data_size == 5:
            return 3
        if data_size > 5:
            return 5
        return data_size - 1

    x, y = unzip(measurements)
    spline_degree = choose_spline_degree(len(x))
    print("i", x)
    spline_fun = make_interp_spline(x, y, k=spline_degree)
    dense_x = np.arange(x[0], x[-1] + AUGMENTATION_DENSITY,
                        AUGMENTATION_DENSITY)
    dense_y = spline_fun(dense_x)
    dense_y = dense_y.astype(float)
    return dense_x, dense_y
示例#31
0
def parseFlopRoundLevel(flopcards):
    "Return a value indicating how high the hand ranks"
    # counts元组保存每种牌型值的个数
    # points元组保存不同牌型值,并且按照大小排序(count值越大越优先)
    # Eg. '7 T 7 9 7' => counts=(3,1,1) points=(7,10,9)
    groups = group([card.point for card in flopcards])
    (counts, points) = unzip(groups)

    # 对于顺子(A,2,3,4,5), 规定其值为(1,2,3,4,5)
    if points == (14, 5, 4, 3, 2):
        points = (5, 4, 3, 2, 1)

    # 判断是否为顺子:
    # 五张牌数值各不同,同时最大牌与最小牌相差4
    straight = (len(points) == 5) and (max(points) - min(points) == 4)

    # 判断是否为同花:
    # 五张牌花色相同
    flush = len(set([card.color for card in flopcards])) == 1

    # 这里我们判断9种牌型:同花顺、四条、葫芦、同花、顺子、三条、两对、一对、高牌
    level = (9 if straight and flush else 8 if (4, 1) == counts else 7 if
             (3, 2) == counts else 6 if flush else 5 if straight else 4 if
             (3, 1, 1) == counts else 3 if (2, 2, 1) == counts else 2 if
             (2, 1, 1, 1) == counts else 1)
    '''
	# 打印该五张牌的信息
	print 'All five cards information:'
	for card in flopcards:
		print getColorByIndex(card.color) + '-' + getPointByIndex(card.point)

	# 打印该五张牌的牌型有多少种大小
	print 'Points Count: ', len(points)

	# 计算牌型价值
	'''
    value = computeCardsValue(level, points)
    print 'Cards Value: ', value

    return value, level
示例#32
0
mt2 = {'IA_1': 'L_2', 'IA_3': 'L_4'}
ut3 = {'UA_2': 'L_3', 'UA_3': 'L_1', 'UA_4': 'L_2'}
mt3 = {'IA_2': 'L_3', 'IA_4': 'L_2'}
ut4 = {'UA_1': 'L_3', 'UA_3': 'L_2', 'UA_4': 'L_1'}
mt4 = {'IA_3': 'L_2', 'IA_4': 'L_1'}
ut5 = {'UA_1': 'L_4', 'UA_2': 'L_4', 'UA_4': 'L_3'}
mt5 = {'IA_2': 'L_4', 'IA_4': 'L_3'}

b.set_user_inter_propensity(ut1, mt1, 0.5)
b.set_user_inter_propensity(ut2, mt2, 0.5)
b.set_user_inter_propensity(ut3, mt3, 0.5)
b.set_user_inter_propensity(ut4, mt4, 0.99)
b.set_user_inter_propensity(ut5, mt5, 0.5)

rows = []
rows += ut.unzip(b.gen_random_rows_from_template(ut1, mt1, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut2, mt2, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut3, mt3, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut4, mt4, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut5, mt5, 100))
rows += ut.unzip(b.gen_random_rows(1500))

train, test = ut.split_data(rows, 0.95, 0.05)
test_users = map(lambda (u, m, r): u, test)

op = KNNOptimizer()
op.set_data_rows(train)
op.set_distance_f(hamming)

best_msgs = su.n_best_messages(test_users, b, 100, 15)
msgs = su.n_best_messages(test_users, b, 100, 100)
示例#33
0
mt2 = {'IA_1':'L_2', 'IA_3':'L_4'}
ut3 = {'UA_2':'L_3', 'UA_3':'L_1', 'UA_4':'L_2'}
mt3 = {'IA_2':'L_3', 'IA_4':'L_2'}
ut4 = {'UA_1':'L_3', 'UA_3':'L_2', 'UA_4':'L_1'}
mt4 = {'IA_3':'L_2', 'IA_4':'L_1'}
ut5 = {'UA_1':'L_4', 'UA_2':'L_4', 'UA_4':'L_3'}
mt5 = {'IA_2':'L_4', 'IA_4':'L_3'}

b.set_user_inter_propensity(ut1, mt1, 0.5)
b.set_user_inter_propensity(ut2, mt2, 0.5)
b.set_user_inter_propensity(ut3, mt3, 0.5)
b.set_user_inter_propensity(ut4, mt4, 0.99)
b.set_user_inter_propensity(ut5, mt5, 0.5)

rows = []
rows += ut.unzip(b.gen_random_rows_from_template(ut1, mt1, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut2, mt2, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut3, mt3, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut4, mt4, 100))
rows += ut.unzip(b.gen_random_rows_from_template(ut5, mt5, 100))
rows += ut.unzip(b.gen_random_rows(2000))

log = su.BasicLogger()
recorder = su.ScenarioRecorder()

# Split data into train, calibration, and test.
train, calibrate, test = ut.split_data(rows, 0.5, 0.25, 0.25)
calibration_users = map(lambda (u, m, r): u, calibrate)
test_users = map(lambda (u, m, r): u, test)

controls = su.build_std_control_solvers(calibrate, b, 100, 15)
示例#34
0
	def Selection(self):
		
		if not self.Trigger():
			return False

		###########################################
		#counting total events
		self.events_passing_cuts[0] += 1.0
		self.events_passing_cuts_byfile[0] += 1.0
		###########################################
		
		###########################################
		#ntracks cut
		if (self.Tree.NumTracks < 2):
			return False

		self.events_passing_cuts[1] += 1.0
		self.events_passing_cuts_byfile[1] += 1.0
		###########################################

		###########################################
		#nvertices cut
		if self.Tree.NumVertices == 0:
			return False

		self.events_passing_cuts[2] += 1.0
		self.events_passing_cuts_byfile[2] += 1.0
		###########################################

		###########################################
		#fiducial vertex cut
		if not self.det.inBox(self.Tree.Vertex_x[0], self.Tree.Vertex_y[0], self.Tree.Vertex_z[0]):
			return False

		self.events_passing_cuts[3] += 1.0
		self.events_passing_cuts_byfile[3] += 1.0
		###########################################

		###########################################
		#floor veto w/ expected hit cuts
		for hity in self.Tree.Digi_y:
			if self.det.inLayer(hity) < 2:
				return False

		expected_hits = util.unzip(self.Tree.Track_expectedHitLayer)

		bottom_layer_expected_hits = []

		for exp_list in expected_hits:
			for val in exp_list:
				if val < 2:
					bottom_layer_expected_hits.append(val)

		if len(bottom_layer_expected_hits) < 3:
			return False


		self.events_passing_cuts[4] += 1.0
		self.events_passing_cuts_byfile[4] += 1.0
		###########################################

		###########################################
		#vertex before track cut

		
		return True
示例#35
0
文件: groupby.py 项目: starpos/pysows
 def __init__(self, args):
     verify_type(args, argparse.Namespace)
     self.convL, grpIdxL = unzip(pysows.getTypedColumnIndexList(args.groupIndexes))
     self.grpIdxL = [x - 1 for x in grpIdxL] # convert to 0-origin.
     self.valIdxL, self.accGenL = unzip(map(parseAcc, args.valueIndexes.split(',')))
     self.hashMap = {}
示例#36
0
def get_bcd_list(metadata):
    """
	Metadata is a dict with keys:
		name, radecfile, data_dir, out_dir, work_dir, aors, channel,
		bcd_dict_path, max_cov
	"""

    radecfile = metadata['radecfile']
    work_dir = metadata['work_dir']
    aors = metadata['aors']
    max_cov = metadata['max_cov']

    # split the RA/Dec into two arrays
    radec = np.genfromtxt(radecfile)
    ra = radec[:, 0]
    dec = radec[:, 1]

    # read the region/ch/hdr specific bcd_dict in the work_dir for efficiency
    bcd_dict = json.load(open(metadata['bcd_dict_path']))
    filenames, filepaths = [np.array(i) for i in unzip(bcd_dict.items())]

    # extract center pixel coordinates
    files_ra = np.zeros(filepaths.size)
    files_dec = np.zeros(filepaths.size)
    for i, fp in enumerate(filepaths):
        hdr = pyfits.getheader(fp)
        files_ra[i] = hdr['CRVAL1']
        files_dec[i] = hdr['CRVAL2']

    # make array of coordinates and grow the tree
    kdt = KDT(radec_to_coords(files_ra, files_dec))

    # spawn processes using multiprocessing to check for images containing,
    # the source, using the tree to find only the closest BCDs to check
    ncpus = multiprocessing.cpu_count()
    pool = multiprocessing.Pool(processes=ncpus)
    # print "using %i CPUs" % ncpus

    max_num_images = 0
    sources = []
    for i in range(len(ra)):

        # create internal source ID and associate with each RA/Dec pair
        d = {'id': i, 'ra': ra[i], 'dec': dec[i]}
        message = 'finding files associated with source {} at ({}, {})'
        print(message.format(i, ra[i], dec[i]))

        # get the subset of BCDs to search
        idx = get_k_closest_bcd_idx(ra[i], dec[i], kdt, k=max_cov)
        n_files = filepaths[idx].size
        filepaths_subset = filepaths[idx]
        filenames_subset = filenames[idx]
        argslist = zip([ra[i]] * n_files, [dec[i]] * n_files, filepaths_subset)

        # send jobs to the pool
        results = pool.map(source_in_image, argslist)

        # unzip the results and extract the boolean array and pixel coordinates
        results_unzipped = unzip(results)
        bool_arr = np.array(results_unzipped[0])

        # if none found, continue to next source
        if np.sum(bool_arr) == 0:
            continue

        x = results_unzipped[1]
        y = results_unzipped[2]
        pix_coord = np.array(zip(x, y))[bool_arr].tolist()

        # get the names of the files associated with the source
        good_bcds = filenames_subset[bool_arr].tolist()

        # compare the number of associated images to the previous maximum
        num_images = len(good_bcds)
        print('\t{} images'.format(num_images))
        if num_images > max_num_images:
            max_num_images = num_images

        # store results in source dict and append to source list
        d['files'] = good_bcds
        d['pixels'] = pix_coord
        sources.append(d)

    outfile = 'bcd_list.json'
    outfilepath = '/'.join([work_dir, outfile])
    with open(outfilepath, 'w') as w:
        json.dump(sources, w, indent=4 * ' ')

    print('created file: {}'.format(outfilepath))
    message = 'maximum number of images associated with a source: {}'
    print(message.format(max_num_images))
def train(args, model_args):

    model_id = '/data/lisatmp4/anirudhg/spiral_walk_back/walkback_'
    model_dir = create_log_dir(args, model_id)
    model_id2 = 'logs/walkback_'
    model_dir2 = create_log_dir(args, model_id2)
    print model_dir
    print model_dir2 + '/' + 'log.jsonl.gz'
    logger = mimir.Logger(filename=model_dir2 + '/log.jsonl.gz',
                          formatter=None)

    # TODO batches_per_epoch should not be hard coded
    lrate = args.lr
    import sys
    sys.setrecursionlimit(10000000)
    args, model_args = parse_args()

    #trng = RandomStreams(1234)

    if args.resume_file is not None:
        print "Resuming training from " + args.resume_file
        from blocks.scripts import continue_training
        continue_training(args.resume_file)

    ## load the training data
    if args.dataset == 'MNIST':
        print 'loading MNIST'
        from fuel.datasets import MNIST
        dataset_train = MNIST(['train'], sources=('features', ))
        dataset_test = MNIST(['test'], sources=('features', ))
        n_colors = 1
        spatial_width = 28

    elif args.dataset == 'CIFAR10':
        from fuel.datasets import CIFAR10
        dataset_train = CIFAR10(['train'], sources=('features', ))
        dataset_test = CIFAR10(['test'], sources=('features', ))
        n_colors = 3
        spatial_width = 32

    elif args.dataset == "lsun" or args.dataset == "lsunsmall":

        print "loading lsun class!"

        from load_lsun import load_lsun

        print "loading lsun data!"

        if args.dataset == "lsunsmall":
            dataset_train, dataset_test = load_lsun(args.batch_size,
                                                    downsample=True)
            spatial_width = 32
        else:
            dataset_train, dataset_test = load_lsun(args.batch_size,
                                                    downsample=False)
            spatial_width = 64

        n_colors = 3

    elif args.dataset == "celeba":

        print "loading celeba data"

        from fuel.datasets.celeba import CelebA

        dataset_train = CelebA(which_sets=['train'],
                               which_format="64",
                               sources=('features', ),
                               load_in_memory=False)
        dataset_test = CelebA(which_sets=['test'],
                              which_format="64",
                              sources=('features', ),
                              load_in_memory=False)

        spatial_width = 64
        n_colors = 3

        tr_scheme = SequentialScheme(examples=dataset_train.num_examples,
                                     batch_size=args.batch_size)
        ts_scheme = SequentialScheme(examples=dataset_test.num_examples,
                                     batch_size=args.batch_size)

        train_stream = DataStream.default_stream(dataset_train,
                                                 iteration_scheme=tr_scheme)
        test_stream = DataStream.default_stream(dataset_test,
                                                iteration_scheme=ts_scheme)

        dataset_train = train_stream
        dataset_test = test_stream

        #epoch_it = train_stream.get_epoch_iterator()

    elif args.dataset == 'Spiral':
        print 'loading SPIRAL'
        train_set = Spiral(num_examples=20000,
                           classes=1,
                           cycles=1.,
                           noise=0.01,
                           sources=('features', ))
        dataset_train = DataStream.default_stream(
            train_set,
            iteration_scheme=ShuffledScheme(train_set.num_examples,
                                            args.batch_size))
    elif args.dataset == 'Circle':
        print 'loading Circle'
        train_set = Circle(num_examples=20000,
                           classes=1,
                           cycles=1.,
                           noise=0.0,
                           sources=('features', ))
        dataset_train = DataStream.default_stream(
            train_set,
            iteration_scheme=ShuffledScheme(train_set.num_examples,
                                            args.batch_size))
        iter_per_epoch = train_set.num_examples
    else:
        raise ValueError("Unknown dataset %s." % args.dataset)

    model_options = locals().copy()

    train_stream = dataset_train

    shp = next(train_stream.get_epoch_iterator())[0].shape

    print "got epoch iterator"

    # make the training data 0 mean and variance 1
    # TODO compute mean and variance on full dataset, not minibatch
    Xbatch = next(train_stream.get_epoch_iterator())[0]
    scl = 1. / np.sqrt(np.mean((Xbatch - np.mean(Xbatch))**2))
    shft = -np.mean(Xbatch * scl)
    # scale is applied before shift
    #train_stream = ScaleAndShift(train_stream, scl, shft)
    #test_stream = ScaleAndShift(test_stream, scl, shft)

    print 'Building model'
    params = init_params(model_options)
    if args.reload_:
        print "Trying to reload parameters"
        if os.path.exists(args.saveto_filename):
            print 'Reloading Parameters'
            print args.saveto_filename
            params = load_params(args.saveto_filename, params)
    tparams = init_tparams(params)
    print tparams
    x, cost, start_temperature = build_model(tparams, model_options)
    inps = [x, start_temperature]

    x_Data = T.matrix('x_Data', dtype='float32')
    temperature = T.scalar('temperature', dtype='float32')
    forward_diffusion = one_step_diffusion(x_Data, model_options, tparams,
                                           temperature)

    #print 'Building f_cost...',
    #f_cost = theano.function(inps, cost)
    #print 'Done'
    print tparams
    grads = T.grad(cost, wrt=itemlist(tparams))

    #get_grads = theano.function(inps, grads)

    for j in range(0, len(grads)):
        grads[j] = T.switch(T.isnan(grads[j]), T.zeros_like(grads[j]),
                            grads[j])

    # compile the optimizer, the actual computational graph is compiled here
    lr = T.scalar(name='lr')
    print 'Building optimizers...',
    optimizer = args.optimizer

    f_grad_shared, f_update = getattr(optimizers, optimizer)(lr, tparams,
                                                             grads, inps, cost)
    print 'Done'

    print 'Buiding Sampler....'
    f_sample = sample(tparams, model_options)
    print 'Done'
    uidx = 0
    estop = False
    bad_counter = 0
    max_epochs = 4000
    batch_index = 0
    print 'Number of steps....', args.num_steps
    print 'Done'
    count_sample = 1
    batch_index = 0
    for eidx in xrange(max_epochs):
        if eidx % 20 == 0:
            params = unzip(tparams)
            save_params(params,
                        model_dir + '/' + 'params_' + str(eidx) + '.npz')
            if eidx == 30:
                ipdb.set_trace()
        n_samples = 0
        print 'Starting Next Epoch ', eidx

        for data in train_stream.get_epoch_iterator():
            batch_index += 1
            n_samples += len(data[0])
            uidx += 1
            if data[0] is None:
                print 'No data '
                uidx -= 1
                continue
            data_run = data[0]
            temperature_forward = args.temperature
            meta_cost = []
            for meta_step in range(0, args.meta_steps):
                meta_cost.append(f_grad_shared(data_run, temperature_forward))
                f_update(lrate)
                if args.meta_steps > 1:
                    data_run, sigma, _, _ = forward_diffusion(
                        data_run, temperature_forward)
                    temperature_forward *= args.temperature_factor
            cost = sum(meta_cost) / len(meta_cost)
            if np.isnan(cost) or np.isinf(cost):
                print 'NaN detected'
                return 1.
            logger.log({
                'epoch': eidx,
                'batch_index': batch_index,
                'uidx': uidx,
                'training_error': cost
            })
            empty = []
            spiral_x = [empty for i in range(args.num_steps)]
            spiral_corrupted = []
            spiral_sampled = []
            grad_forward = []
            grad_back = []
            x_data_time = []
            x_tilt_time = []
            if batch_index % 8 == 0:
                count_sample += 1
                temperature = args.temperature * (args.temperature_factor
                                                  **(args.num_steps - 1))
                temperature_forward = args.temperature
                for num_step in range(args.num_steps):
                    if num_step == 0:
                        x_data_time.append(data[0])
                        plot_images(
                            data[0], model_dir + '/' + 'orig_' + 'epoch_' +
                            str(count_sample) + '_batch_' + str(batch_index))
                        x_data, mu_data, _, _ = forward_diffusion(
                            data[0], temperature_forward)

                        plot_images(
                            x_data, model_dir + '/' + 'corrupted_' + 'epoch_' +
                            str(count_sample) + '_batch_' + str(batch_index) +
                            '_time_step_' + str(num_step))
                        x_data_time.append(x_data)
                        temp_grad = np.concatenate(
                            (x_data_time[-2], x_data_time[-1]), axis=1)
                        grad_forward.append(temp_grad)

                        x_data = np.asarray(x_data).astype('float32').reshape(
                            args.batch_size, INPUT_SIZE)
                        spiral_corrupted.append(x_data)
                        mu_data = np.asarray(mu_data).astype(
                            'float32').reshape(args.batch_size, INPUT_SIZE)
                        mu_data = mu_data.reshape(args.batch_size, 2)
                    else:
                        x_data_time.append(x_data)
                        x_data, mu_data, _, _ = forward_diffusion(
                            x_data, temperature_forward)
                        plot_images(
                            x_data, model_dir + '/' + 'corrupted_' + 'epoch_' +
                            str(count_sample) + '_batch_' + str(batch_index) +
                            '_time_step_' + str(num_step))
                        x_data = np.asarray(x_data).astype('float32').reshape(
                            args.batch_size, INPUT_SIZE)
                        spiral_corrupted.append(x_data)

                        mu_data = np.asarray(mu_data).astype(
                            'float32').reshape(args.batch_size, INPUT_SIZE)
                        mu_data = mu_data.reshape(args.batch_size, 2)
                        x_data_time.append(x_data)
                        temp_grad = np.concatenate(
                            (x_data_time[-2], x_data_time[-1]), axis=1)
                        grad_forward.append(temp_grad)
                    temperature_forward = temperature_forward * args.temperature_factor

                mean_sampled = x_data.mean()
                var_sampled = x_data.var()

                x_temp2 = data[0].reshape(args.batch_size, 2)
                plot_2D(
                    spiral_corrupted, args.num_steps,
                    model_dir + '/' + 'corrupted_' + 'epoch_' +
                    str(count_sample) + '_batch_' + str(batch_index))
                plot_2D(
                    x_temp2, 1, model_dir + '/' + 'orig_' + 'epoch_' +
                    str(count_sample) + '_batch_index_' + str(batch_index))
                plot_grad(
                    grad_forward,
                    model_dir + '/' + 'grad_forward_' + 'epoch_' +
                    str(count_sample) + '_batch_' + str(batch_index))
                for i in range(args.num_steps + args.extra_steps):
                    x_tilt_time.append(x_data)
                    x_data, sampled_mean = f_sample(x_data, temperature)
                    plot_images(
                        x_data, model_dir + '/' + 'sampled_' + 'epoch_' +
                        str(count_sample) + '_batch_' + str(batch_index) +
                        '_time_step_' + str(i))
                    x_tilt_time.append(x_data)
                    temp_grad = np.concatenate(
                        (x_tilt_time[-2], x_tilt_time[-1]), axis=1)
                    grad_back.append(temp_grad)

                    ###print 'Recons, On step number, using temperature', i, temperature
                    x_data = np.asarray(x_data).astype('float32')
                    x_data = x_data.reshape(args.batch_size, INPUT_SIZE)
                    if temperature == args.temperature:
                        temperature = temperature
                    else:
                        temperature /= args.temperature_factor

                plot_grad(
                    grad_back, model_dir + '/' + 'grad_back_' + 'epoch_' +
                    str(count_sample) + '_batch_' + str(batch_index))
                plot_2D(
                    x_tilt_time, args.num_steps,
                    model_dir + '/' + 'sampled_' + 'epoch_' +
                    str(count_sample) + '_batch_' + str(batch_index))

                s = np.random.normal(mean_sampled, var_sampled,
                                     [args.batch_size, 2])
                x_sampled = s

                temperature = args.temperature * (args.temperature_factor
                                                  **(args.num_steps - 1))
                x_data = np.asarray(x_sampled).astype('float32')
                for i in range(args.num_steps + args.extra_steps):
                    x_data, sampled_mean = f_sample(x_data, temperature)
                    spiral_sampled.append(x_data)
                    x_data = np.asarray(x_data).astype('float32')
                    x_data = x_data.reshape(args.batch_size, INPUT_SIZE)
                    if temperature == args.temperature:
                        temperature = temperature
                    else:
                        temperature /= args.temperature_factor
                plot_2D(
                    spiral_sampled, args.num_steps,
                    model_dir + '/' + 'inference_' + 'epoch_' +
                    str(count_sample) + '_batch_' + str(batch_index))
    ipdb.set_trace()
示例#38
0
	def Selection(self):
		
		if not self.Trigger():
			return False

		###########################################
		#counting total events
		self.events_passing_cuts[0] += 1.0
		self.events_passing_cuts_byfile[0] += 1.0
		###########################################
		
		###########################################
		#ntracks cut
		if (self.Tree.NumTracks < 2):
			return False

		self.events_passing_cuts[1] += 1.0
		self.events_passing_cuts_byfile[1] += 1.0
		###########################################

		###########################################
		#floor veto w/ expected hit cuts
		for hity in self.Tree.Digi_y:
			if self.det.inLayer(hity) < 2:
				return False

		expected_hits = util.unzip(self.Tree.Track_expectedHitLayer)

		bottom_layer_expected_hits = []

		for exp_list in expected_hits:
			for val in exp_list:
				if val < 2:
					bottom_layer_expected_hits.append(val)

		if len(bottom_layer_expected_hits) < 3:
			return False


		self.events_passing_cuts[2] += 1.0
		self.events_passing_cuts_byfile[2] += 1.0
		###########################################


		####
		####

		x00, y00, z00 = self.Tree.Track_x0[0], self.Tree.Track_y0[0], self.Tree.Track_z0[0]
		x01, y01, z01 = self.Tree.Track_x0[1], self.Tree.Track_y0[1], self.Tree.Track_z0[1]

		vx0, vy0, vz0 = self.Tree.Track_velX[0], self.Tree.Track_velY[0], self.Tree.Track_velZ[0]
		vx1, vy1, vz1 = self.Tree.Track_velX[1], self.Tree.Track_velY[1], self.Tree.Track_velZ[1]

		floor_y = 6002.5

		delt0 = (y00 - floor_y)/vy0
		delt1 = (y01 - floor_y)/vy1

		expected_x0 = x00 + delt0*vx0
		expected_x1 = x01 + delt1*vx1
		expected_z0 = z00 + delt0*vz0
		expected_z1 = z01 + delt1*vz1

		#plotting the location of these hits
		self.floor_hit_location.Fill(expected_x0, expected_z0)
		self.floor_hit_location.Fill(expected_x1, expected_z1)


		####
		####

		###########################################
		#nvertices cut
		if self.Tree.NumVertices == 0:
			return False

		self.events_passing_cuts[3] += 1.0
		self.events_passing_cuts_byfile[3] += 1.0
		###########################################

		###########################################
		#fiducial vertex cut
		if not self.det.inBox(self.Tree.Vertex_x[0], self.Tree.Vertex_y[0], self.Tree.Vertex_z[0]):
			return False

		self.events_passing_cuts[4] += 1.0
		self.events_passing_cuts_byfile[4] += 1.0
		###########################################

		

		###########################################
		#vertex before track cut

		vtxTrackConsistencyY = max( [ (self.Tree.Vertex_y[0] - self.Tree.Track_y0[n])/self.Tree.Track_ErrorY0[n] for n in range(int(self.Tree.NumTracks)) ] )
		#vtxTrackConsistencyT = max( [ (self.Tree.Vertex_t[0] - self.Tree.Track_t0[n])/self.Tree.Track_ErrorT0[n] for n in range(int(self.Tree.NumTracks)) ] )

		if vtxTrackConsistencyY > 1.0:
			return

		self.events_passing_cuts[5] += 1.0
		self.events_passing_cuts_byfile[5] += 1.0
		###########################################

		###########################################
		#missing hits in upper layers

		trackn = 0
		vertex_first_layer = self.det.nextLayer(self.Tree.Vertex_y[0])
		for layern in self.Tree.Track_missingHitLayer:
			if layern >= vertex_first_layer:
				return False

		self.events_passing_cuts[6] += 1.0
		self.events_passing_cuts_byfile[6] += 1.0

		#note the cut below isnt necessary when requiring no missing hits
		###########################################

		###########################################
		#tracks in vertex start in same layer

		#track_hit_yvals = [ [] for i in range(len(self.Tree.Track_x0))]
		#trackn = 0
		#for hitn in self.Tree.Track_hitIndices:
		#	if hitn == -1:
		#		trackn += 1
		#	else:
		#		track_hit_yvals[trackn].append(self.Tree.Digi_y[hitn])

		#min_layers = [ self.det.inLayer(min(yvals_list)) for yvals_list in track_hit_yvals ]

		#veto = False

		#start = min_layers[0]

		#for minval in min_layers:
		#	if not minval==start:
		#		#check if there is expected hit in that layer
		#		return False

		#self.events_passing_cuts[7] += 1.0
		#self.events_passing_cuts_byfile[] += 1.0
		###########################################


		return True
示例#39
0
 def prepare(self):
     download(self.url, self.zipfile)
     unzip(self.zipfile, 'src')
示例#40
0
def train(dim_word=100,  # word vector dimensionality
          ctx_dim=512,  # context vector dimensionality
          dim=1000,  # the number of LSTM units
          attn_type='deterministic',  # [see section 4 from paper]
          n_layers_att=1,  # number of layers used to compute the attention weights
          n_layers_out=1,  # number of layers used to compute logit
          n_layers_lstm=1,  # number of lstm layers
          n_layers_init=1,  # number of layers to initialize LSTM at time 0
          lstm_encoder=False,  # if True, run bidirectional LSTM on input units
          prev2out=False,  # Feed previous word into logit
          ctx2out=False,  # Feed attention weighted ctx into logit
          alpha_entropy_c=0.002,  # hard attn param
          RL_sumCost=False,  # hard attn param
          semi_sampling_p=0.5,  # hard attn param
          temperature=1.,  # hard attn param
          patience=10,
          max_epochs=5000,
          dispFreq=100,
          decay_c=0.,  # weight decay coeff
          alpha_c=0.,  # doubly stochastic coeff
          lrate=0.01,  # used only for SGD
          selector=False,  # selector (see paper)
          n_words=10000,  # vocab size
          maxlen=100,  # maximum length of the description
          optimizer='rmsprop',
          batch_size = 16,
          valid_batch_size = 2,#change from 16
          saveto='model.npz',  # relative path of saved model file
          validFreq=1000,
          saveFreq=1000,  # save the parameters after every saveFreq updates
          sampleFreq=5,  # generate some samples after every sampleFreq updates
          data_path='./data',  # path to find data
          dataset='flickr30k',
          dictionary=None,  # word dictionary
          use_dropout=False,  # setting this true turns on dropout at various points
          use_dropout_lstm=False,  # dropout on lstm gates
          reload_=False,
          save_per_epoch=False): # this saves down the model every epoch

    # hyperparam dict
    model_options = locals().copy()
    model_options = validate_options(model_options)

    # reload options
    if reload_ and os.path.exists(saveto):
        print "Reloading options"
        with open('%s.pkl'%saveto, 'rb') as f:
            model_options = pkl.load(f)

    print "Using the following parameters:"
    print  model_options

    print 'Loading data'
    load_data, prepare_data = get_dataset(dataset)
    train, valid, test, worddict = load_data(path=data_path)

    # index 0 and 1 always code for the end of sentence and unknown token
    word_idict = dict()
    for kk, vv in worddict.iteritems():
        word_idict[vv] = kk
    word_idict[0] = '<eos>'
    word_idict[1] = 'UNK'

    # Initialize (or reload) the parameters using 'model_options'
    # then build the Theano graph
    print 'Building model'
    params = init_params(model_options)
    if reload_ and os.path.exists(saveto):
        print "Reloading model"
        params = load_params(saveto, params)

    # numpy arrays -> theano shared variables
    tparams = init_tparams(params)

    # In order, we get:
    #   1) trng - theano random number generator
    #   2) use_noise - flag that turns on dropout
    #   3) inps - inputs for f_grad_shared
    #   4) cost - log likelihood for each sentence
    #   5) opts_out - optional outputs (e.g selector)
    trng, use_noise, \
          inps, alphas, alphas_sample,\
          cost, \
          opt_outs = \
          build_model(tparams, model_options)


    # To sample, we use beam search: 1) f_init is a function that initializes
    # the LSTM at time 0 [see top right of page 4], 2) f_next returns the distribution over
    # words and also the new "initial state/memory" see equation
    print 'Building sampler'
    f_init, f_next = build_sampler(tparams, model_options, use_noise, trng)

    # we want the cost without any the regularizers
    # define the log probability
    f_log_probs = theano.function(inps, -cost, profile=False,
                                        updates=opt_outs['attn_updates']
                                        if model_options['attn_type']=='stochastic'
                                        else None, allow_input_downcast=True)

    # Define the cost function + Regularization
    cost = cost.mean()
    # add L2 regularization costs
    if decay_c > 0.:
        decay_c = theano.shared(numpy.float32(decay_c), name='decay_c')
        weight_decay = 0.
        for kk, vv in tparams.iteritems():
            weight_decay += (vv ** 2).sum()
        weight_decay *= decay_c
        cost += weight_decay

    # Doubly stochastic regularization
    if alpha_c > 0.:
        alpha_c = theano.shared(numpy.float32(alpha_c), name='alpha_c')
        alpha_reg = alpha_c * ((1.-alphas.sum(0))**2).sum(0).mean()
        cost += alpha_reg

    hard_attn_updates = []
    # Backprop!
    if model_options['attn_type'] == 'deterministic':
        grads = tensor.grad(cost, wrt=itemlist(tparams))
    else:
        # shared variables for hard attention
        baseline_time = theano.shared(numpy.float32(0.), name='baseline_time')
        opt_outs['baseline_time'] = baseline_time
        alpha_entropy_c = theano.shared(numpy.float32(alpha_entropy_c), name='alpha_entropy_c')
        alpha_entropy_reg = alpha_entropy_c * (alphas*tensor.log(alphas)).mean()
        # [see Section 4.1: Stochastic "Hard" Attention for derivation of this learning rule]
        if model_options['RL_sumCost']:
            grads = tensor.grad(cost, wrt=itemlist(tparams),
                                disconnected_inputs='raise',
                                known_grads={alphas:(baseline_time-opt_outs['masked_cost'].mean(0))[None,:,None]/10.*
                                            (-alphas_sample/alphas) + alpha_entropy_c*(tensor.log(alphas) + 1)})
        else:
            grads = tensor.grad(cost, wrt=itemlist(tparams),
                            disconnected_inputs='raise',
                            known_grads={alphas:opt_outs['masked_cost'][:,:,None]/10.*
                            (alphas_sample/alphas) + alpha_entropy_c*(tensor.log(alphas) + 1)})
        # [equation on bottom left of page 5]
        hard_attn_updates += [(baseline_time, baseline_time * 0.9 + 0.1 * opt_outs['masked_cost'].mean())]
        # updates from scan
        hard_attn_updates += opt_outs['attn_updates']

    # to getthe cost after regularization or the gradients, use this
    # f_cost = theano.function([x, mask, ctx], cost, profile=False)
    # f_grad = theano.function([x, mask, ctx], grads, profile=False)

    # f_grad_shared computes the cost and updates adaptive learning rate variables
    # f_update updates the weights of the model
    lr = tensor.scalar(name='lr')
    f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost, hard_attn_updates)

    print 'Optimization'

    # [See note in section 4.3 of paper]
    train_iter = HomogeneousData(train, batch_size=batch_size, maxlen=maxlen)

    if valid:
        kf_valid = KFold(len(valid[0]), n_folds=len(valid[0])/valid_batch_size, shuffle=False)
    if test:
        kf_test = KFold(len(test[0]), n_folds=len(test[0])/valid_batch_size, shuffle=False)

    # history_errs is a bare-bones training log that holds the validation and test error
    history_errs = []
    # reload history
    if reload_ and os.path.exists(saveto):
        history_errs = numpy.load(saveto)['history_errs'].tolist()
    best_p = None
    bad_counter = 0

    if validFreq == -1:
        validFreq = len(train[0])/batch_size
    if saveFreq == -1:
        saveFreq = len(train[0])/batch_size
    if sampleFreq == -1:
        sampleFreq = len(train[0])/batch_size

    uidx = 0
    estop = False
    for eidx in xrange(max_epochs):
        n_samples = 0

        print 'Epoch ', eidx

        for caps in train_iter:
            n_samples += len(caps)
            uidx += 1
            # turn on dropout
            use_noise.set_value(1.)

            # preprocess the caption, recording the
            # time spent to help detect bottlenecks
            pd_start = time.time()
            x, mask, ctx = prepare_data(caps,
                                        train[1],
                                        worddict,
                                        maxlen=maxlen,
                                        n_words=n_words)
            pd_duration = time.time() - pd_start

            if x is None:
                print 'Minibatch with zero sample under length ', maxlen
                continue

            # get the cost for the minibatch, and update the weights
            ud_start = time.time()
            cost = f_grad_shared(x, mask, ctx)
            f_update(lrate)
            ud_duration = time.time() - ud_start # some monitoring for each mini-batch

            # Numerical stability check
            if numpy.isnan(cost) or numpy.isinf(cost):
                print 'NaN detected'
                return 1., 1., 1.

            if numpy.mod(uidx, dispFreq) == 0:
                print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'PD ', pd_duration, 'UD ', ud_duration

            # Checkpoint
            if numpy.mod(uidx, saveFreq) == 0:
                print 'Saving...',

                if best_p is not None:
                    params = copy.copy(best_p)
                else:
                    params = unzip(tparams)
                numpy.savez(saveto, history_errs=history_errs, **params)
                pkl.dump(model_options, open('%s.pkl'%saveto, 'wb'))
                print 'Done'

            # Print a generated sample as a sanity check
            if numpy.mod(uidx, sampleFreq) == 0:
                # turn off dropout first
                use_noise.set_value(0.)
                x_s = x
                mask_s = mask
                ctx_s = ctx
                # generate and decode the a subset of the current training batch
                for jj in xrange(numpy.minimum(10, len(caps))):
                    sample, score = gen_sample(tparams, f_init, f_next, ctx_s[jj], model_options,
                                               trng=trng, k=5, maxlen=30, stochastic=False)
                    # Decode the sample from encoding back to words
                    print 'Truth ',jj,': ',
                    for vv in x_s[:,jj]:
                        if vv == 0:
                            break
                        if vv in word_idict:
                            print word_idict[vv],
                        else:
                            print 'UNK',
                    print
                    for kk, ss in enumerate([sample[0]]):
                        print 'Sample (', kk,') ', jj, ': ',
                        for vv in ss:
                            if vv == 0:
                                break
                            if vv in word_idict:
                                print word_idict[vv],
                            else:
                                print 'UNK',
                    print

            # Log validation loss + checkpoint the model with the best validation log likelihood
            if numpy.mod(uidx, validFreq) == 0:
                use_noise.set_value(0.)
                train_err = 0
                valid_err = 0
                test_err = 0

                if valid:
                    valid_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, valid, kf_valid).mean()
                if test:
                    test_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, test, kf_test).mean()

                history_errs.append([valid_err, test_err])

                # the model with the best validation long likelihood is saved seperately with a different name
                if uidx == 0 or valid_err <= numpy.array(history_errs)[:,0].min():
                    best_p = unzip(tparams)
                    print 'Saving model with best validation ll'
                    params = copy.copy(best_p)
                    params = unzip(tparams)
                    numpy.savez(saveto+'_bestll', history_errs=history_errs, **params)
                    bad_counter = 0

                # abort training if perplexity has been increasing for too long
                if eidx > patience and len(history_errs) > patience and valid_err >= numpy.array(history_errs)[:-patience,0].min():
                    bad_counter += 1
                    if bad_counter > patience:
                        print 'Early Stop!'
                        estop = True
                        break

                print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err

        print 'Seen %d samples' % n_samples

        if estop:
            break

        if save_per_epoch:
            numpy.savez(saveto + '_epoch_' + str(eidx + 1), history_errs=history_errs, **unzip(tparams))

    # use the best nll parameters for final checkpoint (if they exist)
    if best_p is not None:
        zipp(best_p, tparams)

    use_noise.set_value(0.)
    train_err = 0
    valid_err = 0
    test_err = 0
    if valid:
        valid_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, valid, kf_valid)
    if test:
        test_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, test, kf_test)

    print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err

    params = copy.copy(best_p)
    numpy.savez(saveto, zipped_params=best_p, train_err=train_err,
                valid_err=valid_err, test_err=test_err, history_errs=history_errs,
                **params)

    return train_err, valid_err, test_err
示例#41
0
def train(args, model_args):

    #model_id = '/data/lisatmp4/lambalex/lsun_walkback/walkback_'

    model_id = '/data/lisatmp4/anirudhg/cifar_walk_back/walkback_'
    model_dir = create_log_dir(args, model_id)
    model_id2 = 'logs/walkback_'
    model_dir2 = create_log_dir(args, model_id2)
    print model_dir
    print model_dir2 + '/' + 'log.jsonl.gz'
    logger = mimir.Logger(filename=model_dir2 + '/log.jsonl.gz',
                          formatter=None)

    # TODO batches_per_epoch should not be hard coded
    lrate = args.lr
    import sys
    sys.setrecursionlimit(10000000)
    args, model_args = parse_args()

    #trng = RandomStreams(1234)

    if args.resume_file is not None:
        print "Resuming training from " + args.resume_file
        from blocks.scripts import continue_training
        continue_training(args.resume_file)

    ## load the training data
    if args.dataset == 'MNIST':
        print 'loading MNIST'
        from fuel.datasets import MNIST
        dataset_train = MNIST(['train'], sources=('features', ))
        dataset_test = MNIST(['test'], sources=('features', ))
        n_colors = 1
        spatial_width = 28

    elif args.dataset == 'CIFAR10':
        from fuel.datasets import CIFAR10
        dataset_train = CIFAR10(['train'], sources=('features', ))
        dataset_test = CIFAR10(['test'], sources=('features', ))
        n_colors = 3
        spatial_width = 32

    elif args.dataset == "lsun" or args.dataset == "lsunsmall":

        print "loading lsun class!"

        from load_lsun import load_lsun

        print "loading lsun data!"

        if args.dataset == "lsunsmall":
            dataset_train, dataset_test = load_lsun(args.batch_size,
                                                    downsample=True)
            spatial_width = 32
        else:
            dataset_train, dataset_test = load_lsun(args.batch_size,
                                                    downsample=False)
            spatial_width = 64

        n_colors = 3

    elif args.dataset == "celeba":

        print "loading celeba data"

        from fuel.datasets.celeba import CelebA

        dataset_train = CelebA(which_sets=['train'],
                               which_format="64",
                               sources=('features', ),
                               load_in_memory=False)
        dataset_test = CelebA(which_sets=['test'],
                              which_format="64",
                              sources=('features', ),
                              load_in_memory=False)

        spatial_width = 64
        n_colors = 3

        tr_scheme = SequentialScheme(examples=dataset_train.num_examples,
                                     batch_size=args.batch_size)
        ts_scheme = SequentialScheme(examples=dataset_test.num_examples,
                                     batch_size=args.batch_size)

        train_stream = DataStream.default_stream(dataset_train,
                                                 iteration_scheme=tr_scheme)
        test_stream = DataStream.default_stream(dataset_test,
                                                iteration_scheme=ts_scheme)

        dataset_train = train_stream
        dataset_test = test_stream

        #epoch_it = train_stream.get_epoch_iterator()

    elif args.dataset == 'Spiral':
        print 'loading SPIRAL'
        train_set = Spiral(num_examples=100000,
                           classes=1,
                           cycles=2.,
                           noise=0.01,
                           sources=('features', ))
        dataset_train = DataStream.default_stream(
            train_set,
            iteration_scheme=ShuffledScheme(train_set.num_examples,
                                            args.batch_size))

    else:
        raise ValueError("Unknown dataset %s." % args.dataset)

    model_options = locals().copy()

    if args.dataset != 'lsun' and args.dataset != 'celeba':
        train_stream = Flatten(
            DataStream.default_stream(
                dataset_train,
                iteration_scheme=ShuffledScheme(
                    examples=dataset_train.num_examples -
                    (dataset_train.num_examples % args.batch_size),
                    batch_size=args.batch_size)))
    else:
        train_stream = dataset_train
        test_stream = dataset_test

    print "Width", WIDTH, spatial_width

    shp = next(train_stream.get_epoch_iterator())[0].shape

    print "got epoch iterator"

    # make the training data 0 mean and variance 1
    # TODO compute mean and variance on full dataset, not minibatch
    Xbatch = next(train_stream.get_epoch_iterator())[0]
    scl = 1. / np.sqrt(np.mean((Xbatch - np.mean(Xbatch))**2))
    shft = -np.mean(Xbatch * scl)
    # scale is applied before shift
    #train_stream = ScaleAndShift(train_stream, scl, shft)
    #test_stream = ScaleAndShift(test_stream, scl, shft)

    print 'Building model'
    params = init_params(model_options)
    if args.reload_:
        print "Trying to reload parameters"
        if os.path.exists(args.saveto_filename):
            print 'Reloading Parameters'
            print args.saveto_filename
            params = load_params(args.saveto_filename, params)
    tparams = init_tparams(params)
    print tparams
    '''
    x = T.matrix('x', dtype='float32')
    temp  = T.scalar('temp', dtype='float32')
    f=transition_operator(tparams, model_options, x, temp)

    for data in train_stream.get_epoch_iterator():
        print data[0]
        a = f([data[0], 1.0, 1])
        #ipdb.set_trace()
    '''
    x, cost, start_temperature = build_model(tparams, model_options)
    inps = [x, start_temperature]

    x_Data = T.matrix('x_Data', dtype='float32')
    temperature = T.scalar('temperature', dtype='float32')
    forward_diffusion = one_step_diffusion(x_Data, model_options, tparams,
                                           temperature)

    #print 'Building f_cost...',
    #f_cost = theano.function(inps, cost)
    #print 'Done'
    print tparams
    grads = T.grad(cost, wrt=itemlist(tparams))

    #get_grads = theano.function(inps, grads)

    for j in range(0, len(grads)):
        grads[j] = T.switch(T.isnan(grads[j]), T.zeros_like(grads[j]),
                            grads[j])

    # compile the optimizer, the actual computational graph is compiled here
    lr = T.scalar(name='lr')
    print 'Building optimizers...',
    optimizer = args.optimizer

    f_grad_shared, f_update = getattr(optimizers, optimizer)(lr, tparams,
                                                             grads, inps, cost)
    print 'Done'

    for param in tparams:
        print param
        print tparams[param].get_value().shape

    print 'Buiding Sampler....'
    f_sample = sample(tparams, model_options)
    print 'Done'

    uidx = 0
    estop = False
    bad_counter = 0
    max_epochs = 4000
    batch_index = 1
    print 'Number of steps....'
    print args.num_steps
    print "Number of metasteps...."
    print args.meta_steps
    print 'Done'
    count_sample = 1
    for eidx in xrange(max_epochs):
        if eidx % 20 == 0:
            params = unzip(tparams)
            save_params(params,
                        model_dir + '/' + 'params_' + str(eidx) + '.npz')
        n_samples = 0
        print 'Starting Next Epoch ', eidx
        for data in train_stream.get_epoch_iterator():

            if args.dataset == 'CIFAR10':
                if data[0].shape[0] == args.batch_size:
                    data_use = (data[0].reshape(args.batch_size,
                                                3 * 32 * 32), )
                else:
                    continue
            t0 = time.time()
            batch_index += 1
            n_samples += len(data_use[0])
            uidx += 1
            if data_use[0] is None:
                print 'No data '
                uidx -= 1
                continue
            ud_start = time.time()

            t1 = time.time()

            data_run = data_use[0]
            temperature_forward = args.temperature
            meta_cost = []
            for meta_step in range(0, args.meta_steps):
                meta_cost.append(f_grad_shared(data_run, temperature_forward))
                f_update(lrate)
                if args.meta_steps > 1:
                    data_run, sigma, _, _ = forward_diffusion(
                        [data_run, temperature_forward, 1])
                    temperature_forward *= args.temperature_factor
            cost = sum(meta_cost) / len(meta_cost)

            ud = time.time() - ud_start

            #gradient_updates_ = get_grads(data_use[0],args.temperature)

            if np.isnan(cost) or np.isinf(cost):
                print 'NaN detected'
                return 1.
            t1 = time.time()
            #print time.time() - t1, "time to get grads"
            t1 = time.time()
            logger.log({
                'epoch': eidx,
                'batch_index': batch_index,
                'uidx': uidx,
                'training_error': cost
            })
            #'Norm_1': np.linalg.norm(gradient_updates_[0]),
            #'Norm_2': np.linalg.norm(gradient_updates_[1]),
            #'Norm_3': np.linalg.norm(gradient_updates_[2]),
            #'Norm_4': np.linalg.norm(gradient_updates_[3])})
            #print time.time() - t1, "time to log"

            #print time.time() - t0, "total time in batch"
            t5 = time.time()

            if batch_index % 20 == 0:
                print batch_index, "cost", cost

            if batch_index % 200 == 0:
                count_sample += 1
                temperature = args.temperature * (args.temperature_factor**(
                    args.num_steps * args.meta_steps - 1))
                temperature_forward = args.temperature

                for num_step in range(args.num_steps * args.meta_steps):
                    print "Forward temperature", temperature_forward
                    if num_step == 0:
                        x_data, sampled, sampled_activation, sampled_preactivation = forward_diffusion(
                            [data_use[0], temperature_forward, 1])
                        x_data = np.asarray(x_data).astype('float32').reshape(
                            args.batch_size, INPUT_SIZE)
                        x_temp = x_data.reshape(args.batch_size, n_colors,
                                                WIDTH, WIDTH)
                        plot_images(
                            x_temp, model_dir + '/' + "batch_" +
                            str(batch_index) + '_corrupted' + 'epoch_' +
                            str(count_sample) + '_time_step_' + str(num_step))
                    else:
                        x_data, sampled, sampled_activation, sampled_preactivation = forward_diffusion(
                            [x_data, temperature_forward, 1])
                        x_data = np.asarray(x_data).astype('float32').reshape(
                            args.batch_size, INPUT_SIZE)
                        x_temp = x_data.reshape(args.batch_size, n_colors,
                                                WIDTH, WIDTH)
                        plot_images(
                            x_temp, model_dir + '/batch_' + str(batch_index) +
                            '_corrupted' + '_epoch_' + str(count_sample) +
                            '_time_step_' + str(num_step))

                    temperature_forward = temperature_forward * args.temperature_factor

                x_temp2 = data_use[0].reshape(args.batch_size, n_colors, WIDTH,
                                              WIDTH)
                plot_images(
                    x_temp2, model_dir + '/' + 'orig_' + 'epoch_' + str(eidx) +
                    '_batch_index_' + str(batch_index))

                temperature = args.temperature * (args.temperature_factor**(
                    args.num_steps * args.meta_steps - 1))

                for i in range(args.num_steps * args.meta_steps +
                               args.extra_steps):
                    x_data, sampled, sampled_activation, sampled_preactivation = f_sample(
                        [x_data, temperature, 0])
                    print 'On backward step number, using temperature', i, temperature
                    reverse_time(
                        scl, shft, x_data, model_dir + '/' + "batch_" +
                        str(batch_index) + '_samples_backward_' + 'epoch_' +
                        str(count_sample) + '_time_step_' + str(i))
                    x_data = np.asarray(x_data).astype('float32')
                    x_data = x_data.reshape(args.batch_size, INPUT_SIZE)
                    if temperature == args.temperature:
                        temperature = temperature
                    else:
                        temperature /= args.temperature_factor

                if args.noise == "gaussian":
                    x_sampled = np.random.normal(
                        0.5, 2.0,
                        size=(args.batch_size, INPUT_SIZE)).clip(0.0, 1.0)
                else:
                    s = np.random.binomial(1, 0.5, INPUT_SIZE)

                temperature = args.temperature * (args.temperature_factor**(
                    args.num_steps * args.meta_steps - 1))

                x_data = np.asarray(x_sampled).astype('float32')
                for i in range(args.num_steps * args.meta_steps +
                               args.extra_steps):
                    x_data, sampled, sampled_activation, sampled_preactivation = f_sample(
                        [x_data, temperature, 0])
                    print 'On step number, using temperature', i, temperature
                    reverse_time(
                        scl, shft, x_data, model_dir + '/batch_index_' +
                        str(batch_index) + '_inference_' + 'epoch_' +
                        str(count_sample) + '_step_' + str(i))
                    x_data = np.asarray(x_data).astype('float32')
                    x_data = x_data.reshape(args.batch_size, INPUT_SIZE)
                    if temperature == args.temperature:
                        temperature = temperature
                    else:
                        temperature /= args.temperature_factor

    ipdb.set_trace()
示例#42
0
# downloading files from host: ftp.ncbi.nlm.nih.gov/pubmed/baseline-2018-sample/
abstracts = []
file_list = host.listdir(host.curdir)  # get file list in directory
for i, file_name in enumerate(file_list):
    if file_name[-3:] == ".gz":  # ensure files end with .gz extension
        print("File " + file_name)
        # location of downloaded file
        print("Downloading file to " + os.path.join(base_path, file_name))
        # download file from FTP server
        host.download(file_name,
                      os.path.join(base_path, file_name),
                      callback=None)

        downloaded_file_path_gz = base_path + "/" + file_name
        util.unzip(downloaded_file_path_gz
                   )  # unzip .gz file so the contents can be read
        downloaded_file_path_xml = downloaded_file_path_gz[:
                                                           -3]  # path of the .xml file
        file_reader = XMLReader(
            downloaded_file_path_xml
        )  # create an XMLReader object (supply path to .xml file)
        file_reader.read()  # read the .xml file

        file_reader.get(enzyme=None, enzyme_list=enzyme_list)
        # abstracts_with_enzymes = file_reader.get("TRANSCARBAMOYLASE")
        if len(file_reader.abstracts) == 0:
            print("File does not contain any enzymes from list")
        else:
            abstracts.extend(file_reader.abstracts)

        os.remove(downloaded_file_path_xml)
def train(
    dim_word=300,  # word vector dimensionality
    ctx_dim=300,  # context vector dimensionality
    semantic_dim=300,
    dim=1000,  # the number of LSTM units
    cnn_dim=4096,  # CNN feature dimension
    n_layers_att=1,  # number of layers used to compute the attention weights
    n_layers_out=1,  # number of layers used to compute logit
    n_layers_lstm=1,  # number of lstm layers
    n_layers_init=1,  # number of layers to initialize LSTM at time 0
    lstm_encoder=True,  # if True, run bidirectional LSTM on input units
    prev2out=False,  # Feed previous word into logit
    ctx2out=False,  # Feed attention weighted ctx into logit
    cutoff=10,
    patience=5,
    max_epochs=30,
    dispFreq=500,
    decay_c=0.,  # weight decay coeff
    alpha_c=0.,  # doubly stochastic coeff
    lrate=1e-4,  # used only for SGD
    selector=False,  # selector (see paper)
    maxlen=30,  # maximum length of the description
    optimizer='rmsprop',
    pretrained='',
    batch_size=256,
    saveto='model',  # relative path of saved model file
    saveFreq=1000,  # save the parameters after every saveFreq updates
    sampleFreq=100,  # generate some samples after every sampleFreq updates
    embedding='../Data/GloVe/vocab_glove.pkl',
    cnn_type='vgg',
    prefix='../Data',  # path to find data
    dataset='coco',
    criterion='Bleu_4',
    switch_test_val=False,
    use_cnninit=True,
    use_dropout=True,  # setting this true turns on dropout at various points
    use_dropout_lstm=False,  # dropout on lstm gates
    save_per_epoch=False):  # this saves down the model every epoch

    # hyperparam dict
    model_options = locals().copy()
    model_options = validate_options(model_options)

    # reload options
    if os.path.exists('%s.pkl' % saveto):
        print "Reloading options"
        with open('%s.pkl' % saveto, 'rb') as f:
            model_options = pkl.load(f)

    print "Using the following parameters:"
    print model_options

    print 'Loading data'
    load_data, prepare_data = get_dataset(model_options['dataset'])

    # Load data from data path
    if 'switch_test_val' in model_options and model_options['switch_test_val']:
        train, valid, worddict = load_data(path=osp.join(
            model_options['prefix'], model_options['dataset']),
                                           options=model_options,
                                           load_train=True,
                                           load_test=True)
    else:
        train, valid, worddict = load_data(path=osp.join(
            model_options['prefix'], model_options['dataset']),
                                           options=model_options,
                                           load_train=True,
                                           load_val=True)

    # Automatically calculate the update frequency
    validFreq = len(train[0]) / model_options['batch_size']
    print "Validation frequency is %d" % validFreq

    word_idict = {vv: kk for kk, vv in worddict.iteritems()}
    model_options['n_words'] = len(worddict)

    # Initialize (or reload) the parameters using 'model_options'
    # then build the Theano graph
    print 'Building model'
    params = init_params(model_options)
    # Initialize it with glove
    if 'VCemb' in params:
        params['VCemb'] = read_pkl(
            model_options['embedding']).astype('float32')

    # If there is a same experiment, don't use pretrained weights
    if os.path.exists('%s.npz' % saveto):
        print "Reloading model"
        params = load_params('%s.npz' % saveto, params)
    elif pretrained != '':
        params = load_params(pretrained, params,
                             False)  # Only pretrain the Language model

    # numpy arrays -> theano shared variables
    tparams = init_tparams(params)

    # In order, we get:
    #   1) trng - theano random number generator
    #   2) use_noise - flag that turns on dropout
    #   3) inps - inputs for f_grad_shared
    #   4) cost - log likelihood for each sentence
    #   5) opts_out - optional outputs (e.g selector)
    trng, use_noise, \
          inps, alphas,\
          cost, \
          opt_outs = \
          build_model(tparams, model_options)

    # Load evaluator to calculate bleu score
    evaluator = cocoEvaluation(model_options['dataset'])

    # To sample, we use beam search: 1) f_init is a function that initializes
    # the LSTM at time 0 [see top right of page 4], 2) f_next returns the distribution over
    # words and also the new "initial state/memory" see equation
    print 'Building sampler'
    f_init, f_next = build_sampler(tparams, model_options, use_noise, trng)

    # we want the cost without any the regularizers
    # define the log probability
    f_log_probs = theano.function(inps,
                                  -cost,
                                  profile=False,
                                  updates=None,
                                  allow_input_downcast=True)

    # Define the cost function + Regularization
    cost = cost.mean()
    # add L2 regularization costs
    if decay_c > 0.:
        decay_c = theano.shared(numpy.float32(decay_c), name='decay_c')
        weight_decay = 0.
        for kk, vv in tparams.iteritems():
            weight_decay += (vv**2).sum()
        weight_decay *= decay_c
        cost += weight_decay

    # Doubly stochastic regularization
    if alpha_c > 0.:
        alpha_c = theano.shared(numpy.float32(alpha_c), name='alpha_c')
        alpha_reg = sum([
            alpha_c * ((1. - alpha.sum(0))**2).sum(0).mean()
            for alpha in alphas
        ])
        cost += alpha_reg

    # Backprop!
    grads = tensor.grad(cost, wrt=itemlist(tparams))
    # to getthe cost after regularization or the gradients, use this

    # f_grad_shared computes the cost and updates adaptive learning rate variables
    # f_update updates the weights of the model
    lr = tensor.scalar(name='lr')
    f_grad_shared, f_update = eval(model_options['optimizer'])(lr, tparams,
                                                               grads, inps,
                                                               cost)

    print 'Optimization'
    train_iter = HomogeneousData(train,
                                 batch_size=batch_size,
                                 maxlen=model_options['maxlen'])

    # history_bleu is a bare-bones training log, reload history
    history_bleu = []
    if os.path.exists('%s.npz' % saveto):
        history_bleu = numpy.load('%s.npz' % saveto)['history_bleu'].tolist()
    start_epochs = len(history_bleu)
    best_p = None
    bad_counter = 0

    if validFreq == -1:
        validFreq = len(train[0]) / batch_size
    if saveFreq == -1:
        saveFreq = len(train[0]) / batch_size
    if sampleFreq == -1:
        sampleFreq = len(train[0]) / batch_size

    uidx = 0
    estop = False
    for eidx in xrange(start_epochs, model_options['max_epochs']):
        n_samples = 0

        print 'Epoch ', eidx

        for caps in train_iter:
            n_samples += len(caps)
            uidx += 1
            # turn on dropout
            use_noise.set_value(1.)

            # preprocess the caption, recording the
            # time spent to help detect bottlenecks
            pd_start = time.time()
            x, mask, ctx, cnn_feats = prepare_data(caps, train[1], train[2],
                                                   worddict, model_options)
            pd_duration = time.time() - pd_start

            if x is None:
                print 'Minibatch with zero sample under length ', model_options[
                    'maxlen']
                continue

            # get the cost for the minibatch, and update the weights
            ud_start = time.time()
            cost = f_grad_shared(x, mask, ctx, cnn_feats)

            print "Epoch %d, Updates: %d, Cost is: %f" % (eidx, uidx, cost)

            f_update(model_options['lrate'])
            ud_duration = time.time(
            ) - ud_start  # some monitoring for each mini-batch

            # Numerical stability check
            if numpy.isnan(cost) or numpy.isinf(cost):
                print 'NaN detected'
                return 1., 1., 1.

            if numpy.mod(uidx, dispFreq) == 0:
                print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'PD ', pd_duration, 'UD ', ud_duration

            # Print a generated sample as a sanity check
            if numpy.mod(uidx, model_options['sampleFreq']) == 0:
                # turn off dropout first
                use_noise.set_value(0.)
                x_s = x
                mask_s = mask
                ctx_s = ctx
                # generate and decode the a subset of the current training batch
                for jj in xrange(numpy.minimum(10, len(caps))):
                    sample, score, alphas = gen_sample(
                        f_init,
                        f_next,
                        ctx_s[jj],
                        cnn_feats[jj],
                        model_options,
                        trng=trng,
                        maxlen=model_options['maxlen'])
                    # Decode the sample from encoding back to words
                    print 'Truth ', jj, ': ',
                    print seqs2words(x_s[:, jj], word_idict)
                    for kk, ss in enumerate([sample[0]]):
                        print 'Sample (', kk, ') ', jj, ': ',
                        print seqs2words(ss, word_idict)

            # Log validation loss + checkpoint the model with the best validation log likelihood
            if numpy.mod(uidx, validFreq) == 0:
                use_noise.set_value(0.)

                # Do evaluation on validation set
                imgid = collapse([elem[-1] for elem in valid[0]])
                caps = process_examples([f_init], [f_next], imgid, valid[1],
                                        valid[2], word_idict, model_options)
                folder = osp.join('../output', '%s_%s' % (saveto, 'val'))
                if not osp.exists(folder):
                    os.mkdir(folder)
                with open(osp.join(folder, 'captions_val2014_results.json'),
                          'w') as f:
                    json.dump(caps, f)
                eva_result = evaluator.evaluate(folder, False)
                if model_options['criterion'] == 'combine':
                    history_bleu.append(eva_result['Bleu_4'] +
                                        eva_result['CIDEr'])
                else:
                    history_bleu.append(eva_result[model_options['criterion']])

                # the model with the best validation long likelihood is saved seperately with a different name
                if uidx == 0 or history_bleu[-1] == max(history_bleu):
                    best_p = unzip(tparams)
                    print 'Saving model with best validation ll'
                    params = copy.copy(best_p)
                    params = unzip(tparams)
                    numpy.savez(saveto + '_bestll',
                                history_bleu=history_bleu,
                                **params)
                    bad_counter = 0

                # abort training if perplexity has been increasing for too long
                if len(history_bleu) > model_options[
                        'patience'] and history_bleu[-1] <= max(
                            history_bleu[:-model_options['patience']]):
                    bad_counter += 1
                    if bad_counter > model_options['patience']:
                        print 'Early Stop!'
                        estop = True
                        break

                print ' BLEU-4 score ', history_bleu[-1]

            # Checkpoint
            if numpy.mod(uidx, model_options['saveFreq']) == 0:
                print 'Saving...',

                if best_p is not None:
                    params = copy.copy(best_p)
                else:
                    params = unzip(tparams)
                numpy.savez(saveto, history_bleu=history_bleu, **params)
                pkl.dump(model_options, open('%s.pkl' % saveto, 'wb'))
                print 'Done'

        print 'Seen %d samples' % n_samples

        if estop:
            break

        if model_options['save_per_epoch']:
            numpy.savez(saveto + '_epoch_' + str(eidx + 1),
                        history_bleu=history_bleu,
                        **unzip(tparams))

    # use the best nll parameters for final checkpoint (if they exist)
    if best_p is not None:
        zipp(best_p, tparams)
    params = copy.copy(best_p)
    numpy.savez(saveto,
                zipped_params=best_p,
                history_bleu=history_bleu,
                **params)
 def set_data_rows(self, tuples):
     self.set_data(*ut.unzip(tuples))
示例#45
0
def get_bcd_list(metadata):

    """
	Metadata is a dict with keys:
		name, radecfile, data_dir, out_dir, work_dir, aors, channel,
		bcd_dict_path, max_cov
	"""

    radecfile = metadata["radecfile"]
    work_dir = metadata["work_dir"]
    aors = metadata["aors"]
    max_cov = metadata["max_cov"]

    # split the RA/Dec into two arrays
    radec = np.genfromtxt(radecfile)
    ra = radec[:, 0]
    dec = radec[:, 1]

    # read the region/ch/hdr specific bcd_dict in the work_dir for efficiency
    bcd_dict = json.load(open(metadata["bcd_dict_path"]))
    filenames, filepaths = [np.array(i) for i in unzip(bcd_dict.items())]

    # extract center pixel coordinates
    files_ra = np.zeros(filepaths.size)
    files_dec = np.zeros(filepaths.size)
    for i, fp in enumerate(filepaths):
        hdr = pyfits.getheader(fp)
        files_ra[i] = hdr["CRVAL1"]
        files_dec[i] = hdr["CRVAL2"]

        # make array of coordinates and grow the tree
    kdt = KDT(radec_to_coords(files_ra, files_dec))

    # spawn processes using multiprocessing to check for images containing,
    # the source, using the tree to find only the closest BCDs to check
    ncpus = multiprocessing.cpu_count()
    pool = multiprocessing.Pool(processes=ncpus)
    # print "using %i CPUs" % ncpus

    max_num_images = 0
    sources = []
    for i in range(len(ra)):

        # create internal source ID and associate with each RA/Dec pair
        d = {"id": i, "ra": ra[i], "dec": dec[i]}
        message = "finding files associated with source {} at ({}, {})"
        print(message.format(i, ra[i], dec[i]))

        # get the subset of BCDs to search
        idx = get_k_closest_bcd_idx(ra[i], dec[i], kdt, k=max_cov)
        n_files = filepaths[idx].size
        filepaths_subset = filepaths[idx]
        filenames_subset = filenames[idx]
        argslist = zip([ra[i]] * n_files, [dec[i]] * n_files, filepaths_subset)

        # send jobs to the pool
        results = pool.map(source_in_image, argslist)

        # unzip the results and extract the boolean array and pixel coordinates
        results_unzipped = unzip(results)
        bool_arr = np.array(results_unzipped[0])

        # if none found, continue to next source
        if np.sum(bool_arr) == 0:
            continue

        x = results_unzipped[1]
        y = results_unzipped[2]
        pix_coord = np.array(zip(x, y))[bool_arr].tolist()

        # get the names of the files associated with the source
        good_bcds = filenames_subset[bool_arr].tolist()

        # compare the number of associated images to the previous maximum
        num_images = len(good_bcds)
        print("\t{} images".format(num_images))
        if num_images > max_num_images:
            max_num_images = num_images

            # store results in source dict and append to source list
        d["files"] = good_bcds
        d["pixels"] = pix_coord
        sources.append(d)

    outfile = "bcd_list.json"
    outfilepath = "/".join([work_dir, outfile])
    with open(outfilepath, "w") as w:
        json.dump(sources, w, indent=4 * " ")

    print("created file: {}".format(outfilepath))
    message = "maximum number of images associated with a source: {}"
    print(message.format(max_num_images))
示例#46
0
def train(dim_word=100,  # word vector dimensionality
          ctx_dim=512,  # context vector dimensionality
          dim=1000,  # the number of LSTM units
          attn_type='stochastic',  # [see section 4 from paper]
          n_layers_att=1,  # number of layers used to compute the attention weights
          n_layers_out=1,  # number of layers used to compute logit
          n_layers_lstm=1,  # number of lstm layers
          n_layers_init=1,  # number of layers to initialize LSTM at time 0
          lstm_encoder=False,  # if True, run bidirectional LSTM on input units
          prev2out=False,  # Feed previous word into logit
          ctx2out=False,  # Feed attention weighted ctx into logit
          alpha_entropy_c=0.002,  # hard attn param
          RL_sumCost=True,  # hard attn param
          semi_sampling_p=0.5,  # hard attn param
          temperature=1.,  # hard attn param
          patience=10,
          max_epochs=5000,
          dispFreq=100,
          decay_c=0.,  # weight decay coeff
          alpha_c=0.,  # doubly stochastic coeff
          lrate=0.01,  # used only for SGD
          selector=False,  # selector (see paper)
          n_words=10000,  # vocab size
          maxlen=100,  # maximum length of the description
          optimizer='rmsprop',
          batch_size = 16,
          valid_batch_size = 16,
          saveto='model.npz',  # relative path of saved model file
          validFreq=1000,
          saveFreq=1000,  # save the parameters after every saveFreq updates
          sampleFreq=100,  # generate some samples after every sampleFreq updates
          data_path='./data',  # path to find data
          dataset='flickr8k',
          dictionary=None,  # word dictionary
          use_dropout=False,  # setting this true turns on dropout at various points
          use_dropout_lstm=False,  # dropout on lstm gates
          reload_=False,
          save_per_epoch=False): # this saves down the model every epoch

    # hyperparam dict
    model_options = locals().copy()
    model_options = validate_options(model_options)

    # reload options
    if reload_ and os.path.exists(saveto):
        print "Reloading options"
        with open('%s.pkl'%saveto, 'rb') as f:
            model_options = pkl.load(f)

    print "Using the following parameters:"
    print  model_options

    print 'Loading data'
    load_data, prepare_data = get_dataset(dataset)
    train, valid, test, worddict = load_data(path=data_path)
    if dataset == 'coco':
        valid, _ = valid # the second one contains all the validation data

    # index 0 and 1 always code for the end of sentence and unknown token
    word_idict = dict()
    for kk, vv in worddict.iteritems():
        word_idict[vv] = kk
    word_idict[0] = '<eos>'
    word_idict[1] = 'UNK'

    # Initialize (or reload) the parameters using 'model_options'
    # then build the Theano graph
    print 'Building model'
    params = init_params(model_options)
    if reload_ and os.path.exists(saveto):
        print "Reloading model"
        params = load_params(saveto, params)

    # numpy arrays -> theano shared variables
    tparams = init_tparams(params)

    # In order, we get:
    #   1) trng - theano random number generator
    #   2) use_noise - flag that turns on dropout
    #   3) inps - inputs for f_grad_shared
    #   4) cost - log likelihood for each sentence
    #   5) opts_out - optional outputs (e.g selector)
    trng, use_noise, \
          inps, alphas, alphas_sample,\
          cost, \
          opt_outs = \
          build_model(tparams, model_options)


    # To sample, we use beam search: 1) f_init is a function that initializes
    # the LSTM at time 0 [see top right of page 4], 2) f_next returns the distribution over
    # words and also the new "initial state/memory" see equation
    print 'Building sampler'
    f_init, f_next = build_sampler(tparams, model_options, use_noise, trng)

    # we want the cost without any the regularizers
    # define the log probability
    f_log_probs = theano.function(inps, -cost, profile=False,
                                        updates=opt_outs['attn_updates']
                                        if model_options['attn_type']=='stochastic'
                                        else None, allow_input_downcast=True)

    # Define the cost function + Regularization
    cost = cost.mean()
    # add L2 regularization costs
    if decay_c > 0.:
        decay_c = theano.shared(numpy.float32(decay_c), name='decay_c')
        weight_decay = 0.
        for kk, vv in tparams.iteritems():
            weight_decay += (vv ** 2).sum()
        weight_decay *= decay_c
        cost += weight_decay

    # Doubly stochastic regularization
    if alpha_c > 0.:
        alpha_c = theano.shared(numpy.float32(alpha_c), name='alpha_c')
        alpha_reg = alpha_c * ((1.-alphas.sum(0))**2).sum(0).mean()
        cost += alpha_reg

    hard_attn_updates = []
    # Backprop!
    if model_options['attn_type'] == 'deterministic':
        grads = tensor.grad(cost, wrt=itemlist(tparams))
    else:
        # shared variables for hard attention
        baseline_time = theano.shared(numpy.float32(0.), name='baseline_time')
        opt_outs['baseline_time'] = baseline_time
        alpha_entropy_c = theano.shared(numpy.float32(alpha_entropy_c), name='alpha_entropy_c')
        alpha_entropy_reg = alpha_entropy_c * (alphas*tensor.log(alphas)).mean()
        # [see Section 4.1: Stochastic "Hard" Attention for derivation of this learning rule]
        if model_options['RL_sumCost']:
            grads = tensor.grad(cost, wrt=itemlist(tparams),
                                disconnected_inputs='raise',
                                known_grads={alphas:(baseline_time-opt_outs['masked_cost'].mean(0))[None,:,None]/10.*
                                            (-alphas_sample/alphas) + alpha_entropy_c*(tensor.log(alphas) + 1)})
        else:
            grads = tensor.grad(cost, wrt=itemlist(tparams),
                            disconnected_inputs='raise',
                            known_grads={alphas:opt_outs['masked_cost'][:,:,None]/10.*
                            (alphas_sample/alphas) + alpha_entropy_c*(tensor.log(alphas) + 1)})
        # [equation on bottom left of page 5]
        hard_attn_updates += [(baseline_time, baseline_time * 0.9 + 0.1 * opt_outs['masked_cost'].mean())]
        # updates from scan
        hard_attn_updates += opt_outs['attn_updates']

    # to getthe cost after regularization or the gradients, use this
    # f_cost = theano.function([x, mask, ctx], cost, profile=False)
    # f_grad = theano.function([x, mask, ctx], grads, profile=False)

    # f_grad_shared computes the cost and updates adaptive learning rate variables
    # f_update updates the weights of the model
    lr = tensor.scalar(name='lr')
    f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost, hard_attn_updates)

    print 'Optimization'

    # [See note in section 4.3 of paper]
    train_iter = HomogeneousData(train, batch_size=batch_size, maxlen=maxlen)

    if valid:
        kf_valid = KFold(len(valid[0]), n_folds=len(valid[0])/valid_batch_size, shuffle=False)
    if test:
        kf_test = KFold(len(test[0]), n_folds=len(test[0])/valid_batch_size, shuffle=False)

    # history_errs is a bare-bones training log that holds the validation and test error
    history_errs = []
    # reload history
    if reload_ and os.path.exists(saveto):
        history_errs = numpy.load(saveto)['history_errs'].tolist()
    best_p = None
    bad_counter = 0

    if validFreq == -1:
        validFreq = len(train[0])/batch_size
    if saveFreq == -1:
        saveFreq = len(train[0])/batch_size
    if sampleFreq == -1:
        sampleFreq = len(train[0])/batch_size

    uidx = 0
    estop = False
    for eidx in xrange(max_epochs):
        n_samples = 0

        print 'Epoch ', eidx

        for caps in train_iter:
            n_samples += len(caps)
            uidx += 1
            # turn on dropout
            use_noise.set_value(1.)

            # preprocess the caption, recording the
            # time spent to help detect bottlenecks
            pd_start = time.time()
            x, mask, ctx = prepare_data(caps,
                                        train[1],
                                        worddict,
                                        maxlen=maxlen,
                                        n_words=n_words)
            pd_duration = time.time() - pd_start

            if x is None:
                print 'Minibatch with zero sample under length ', maxlen
                continue

            # get the cost for the minibatch, and update the weights
            ud_start = time.time()
            cost = f_grad_shared(x, mask, ctx)
            f_update(lrate)
            ud_duration = time.time() - ud_start # some monitoring for each mini-batch

            # Numerical stability check
            if numpy.isnan(cost) or numpy.isinf(cost):
                print 'NaN detected'
                return 1., 1., 1.

            if numpy.mod(uidx, dispFreq) == 0:
                print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'PD ', pd_duration, 'UD ', ud_duration

            # Checkpoint
            if numpy.mod(uidx, saveFreq) == 0:
                print 'Saving...',

                if best_p is not None:
                    params = copy.copy(best_p)
                else:
                    params = unzip(tparams)
                numpy.savez(saveto, history_errs=history_errs, **params)
                pkl.dump(model_options, open('%s.pkl'%saveto, 'wb'))
                print 'Done'

            # Print a generated sample as a sanity check
            if numpy.mod(uidx, sampleFreq) == 0:
                # turn off dropout first
                use_noise.set_value(0.)
                x_s = x
                mask_s = mask
                ctx_s = ctx
                # generate and decode the a subset of the current training batch
                for jj in xrange(numpy.minimum(10, len(caps))):
                    sample, score = gen_sample(tparams, f_init, f_next, ctx_s[jj], model_options,
                                               trng=trng, k=5, maxlen=30, stochastic=False)
                    # Decode the sample from encoding back to words
                    print 'Truth ',jj,': ',
                    for vv in x_s[:,jj]:
                        if vv == 0:
                            break
                        if vv in word_idict:
                            print word_idict[vv],
                        else:
                            print 'UNK',
                    print
                    for kk, ss in enumerate([sample[0]]):
                        print 'Sample (', kk,') ', jj, ': ',
                        for vv in ss:
                            if vv == 0:
                                break
                            if vv in word_idict:
                                print word_idict[vv],
                            else:
                                print 'UNK',
                    print

            # Log validation loss + checkpoint the model with the best validation log likelihood
            if numpy.mod(uidx, validFreq) == 0:
                use_noise.set_value(0.)
                train_err = 0
                valid_err = 0
                test_err = 0

                if valid:
                    valid_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, valid, kf_valid).mean()
                if test:
                    test_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, test, kf_test).mean()

                history_errs.append([valid_err, test_err])

                # the model with the best validation long likelihood is saved seperately with a different name
                if uidx == 0 or valid_err <= numpy.array(history_errs)[:,0].min():
                    best_p = unzip(tparams)
                    print 'Saving model with best validation ll'
                    params = copy.copy(best_p)
                    params = unzip(tparams)
                    numpy.savez(saveto+'_bestll', history_errs=history_errs, **params)
                    bad_counter = 0

                # abort training if perplexity has been increasing for too long
                if eidx > patience and len(history_errs) > patience and valid_err >= numpy.array(history_errs)[:-patience,0].min():
                    bad_counter += 1
                    if bad_counter > patience:
                        print 'Early Stop!'
                        estop = True
                        break

                print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err

        print 'Seen %d samples' % n_samples

        if estop:
            break

        if save_per_epoch:
            numpy.savez(saveto + '_epoch_' + str(eidx + 1), history_errs=history_errs, **unzip(tparams))

    # use the best nll parameters for final checkpoint (if they exist)
    if best_p is not None:
        zipp(best_p, tparams)

    use_noise.set_value(0.)
    train_err = 0
    valid_err = 0
    test_err = 0
    if valid:
        valid_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, valid, kf_valid)
    if test:
        test_err = -pred_probs(f_log_probs, model_options, worddict, prepare_data, test, kf_test)

    print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err

    params = copy.copy(best_p)
    numpy.savez(saveto, zipped_params=best_p, train_err=train_err,
                valid_err=valid_err, test_err=test_err, history_errs=history_errs,
                **params)

    return train_err, valid_err, test_err
	def set_data_rows(self, tuples):
		self.set_data(*ut.unzip(tuples))