def create_w2v_vectors(): # with open('./word2vec/IRBlog/w2v_per_300.pkl', 'rb') as infile: with open('./word2vec/Mixed/w2v_per.pkl', 'rb') as infile: w2v = pickle.load(infile) w2v_length = 100 # 300 stop_words = set( pd.read_csv('./Primary_data/PersianStopWordList.txt', header=None)[0]) questions = pd.read_csv('./Primary_data/result_filtered.csv', delimiter=';') train = QuickDataFrame(['w' + str(i) for i in range(0, w2v_length)]) prog = Progresser(questions.shape[0]) # build the train data for i, qrow in questions.iterrows(): prog.count() sum_array = np.zeros(w2v_length) number_of_words = 0 for word in tokenise(qrow['sentence']): if word not in stop_words and word in w2v: number_of_words += 1 sum_array += w2v[word] if i != len(train): print('wat?!!') train.append(list(sum_array / number_of_words)) train.to_csv('./Primary_data/w2v-100_vector_Q.csv')
def build_w2v_vectors(): with open('./word2vec/word2vec-En.pkl', 'rb') as infile: w2v = pickle.load(infile) w2v_length = 300 stop_words = set() for w in stopwords.words('english'): stop_words.add(w) id_mappings = QuickDataFrame.read_csv( './EurLex_data/eurlex_ID_mappings.csv', sep='\t') # create DataFrame cols_list = ['doc_id'] + ['w' + str(i) for i in range(0, w2v_length)] train = QuickDataFrame(columns=cols_list) prog = Progresser(len(id_mappings)) for i in range(len(id_mappings)): prog.count() # read the file try: with open('./EurLex_data/lem_txt/' + str(id_mappings['DocID'][i]) + '-lem.txt', 'r', encoding="utf8") as infile: doc_text = infile.read() except IOError: continue try: sum_array = np.zeros(w2v_length) number_of_words = 0 for word in word_tokenize(doc_text): if word not in stop_words and word in w2v: number_of_words += 1 sum_array += w2v[word] if number_of_words > 0: sum_array = sum_array / number_of_words train.append([id_mappings['DocID'][i]] + list(sum_array)) except Exception as e: print(e) train.to_csv('./EurLex_data/w2v_vector_Q.csv')
def build_all_vectors(): id_mappings = QuickDataFrame.read_csv( './EurLex_data/eurlex_ID_mappings.csv', sep='\t') subject_data = QuickDataFrame.read_csv( './EurLex_data/eurlex_id2class/id2class_eurlex_subject_matter.qrels', header=False, columns=['sub', 'doc_id', 'col2'], sep=' ') words_vector = QuickDataFrame.read_csv('./EurLex_data/1000words.csv', header=False, columns=['term']) topics = QuickDataFrame.read_csv('./EurLex_data/tags.csv') # train = QuickDataFrame.read_csv('./EurLex_data/w2v_vector_Q.csv') # train.set_index(train['doc_id'], unique=True) # create DataFrame cols_list = ['doc_id'] + list(words_vector['term']) train = QuickDataFrame(columns=cols_list) # filling word columns prog = Progresser(len(id_mappings)) for i in range(len(id_mappings)): prog.count() try: # read the file try: with open('./EurLex_data/lem_txt/' + str(id_mappings['DocID'][i]) + '-lem.txt', 'r', encoding="utf8") as infile: doc_text = infile.read() except IOError: continue # add a new row train.append(value=0) # complete the data in that row train['doc_id'][len(train) - 1] = id_mappings['DocID'][i] for word in word_tokenize(doc_text): if word in train.data: train[word][len(train) - 1] = 1 except Exception as e: print(e) # index by doc id train.set_index(train['doc_id'], unique=True) # rename word columns rename_dict = dict() index = 0 for wrd in list(words_vector['term']): rename_dict[wrd] = 'wrd' + str(index) index += 1 train.rename(columns=rename_dict) # add topic columns for col in list(topics['term']): train.add_column(name=col, value=0) # filling topic columns for i in range(len(subject_data)): try: sub = subject_data['sub'][i] doc_id = subject_data['doc_id'][i] train[sub, doc_id] = 1 except Exception as e: print(e) # rename topic columns rename_dict = dict() index = 0 for tpc in list(topics['term']): rename_dict[tpc] = 'tpc' + str(index) index += 1 train.rename(columns=rename_dict) # write to file print('\nWriting to file...') # train.to_csv('./EurLex_data/eurlex_combined_vectors.csv') train.to_csv('./EurLex_data/eurlex_combined_vectors-w2v.csv')
def evaluate_model_cnn(x, y, learn_path, k=10): print(len(y), len(y[0])) # create a k fold with no unique classes count = 0 while True: count += 1 # print(count, 'Finding a proper KF...') kf = list( KFold(n_splits=k, shuffle=True, random_state=randint(0, 100000)).split(x)) good_folds = True for train_index, test_index in kf: for i in range(len(y[0])): if len(np.unique( y[train_index, i])) < 2: # or len(np.unique(y[test_index, i])) < 2: # print(y[train_index, i],np.unique(y[train_index, i])) print(i) good_folds = False break if not good_folds: break if good_folds: break print('Found a good KF in', count, 'try!') with open(learn_path + 'topic_classifier-folds.pkl', 'wb') as out_file: pickle.dump(kf, out_file) fold_num = 0 stats = QuickDataFrame([ 'Jaccard (normalised)', 'Accuracy (normalised)', 'Accuracy', 'F1_score (micro averaged)', 'F1_score (macro averaged by labels)', 'F1_score (averaged by samples)', 'Hamming loss', 'Label Ranking loss:' ]) txt_cnns = [TextCNN() for _ in range(y.shape[1])] prog = Progresser(k) for train_index, test_index in kf: # print(train_index, test_index) print('___________________________________________________') x_train, x_test = x[train_index], x[test_index] y_train, y_test = y[train_index], y[test_index] # cls = SVC(kernel='linear') # cls = SVC(kernel='poly', probability=True, tol=1e-5) # cls = GaussianNB() # cls = RandomForestClassifier(max_features='auto', random_state=1) # topic_classifier = BinaryRelevance(classifier=cls, require_dense=[True, True]) # try: # topic_classifier.fit(x_train, y_train) for i in range(y.shape[1]): txt_cnns[i].train_cnn(train_index, i) # except Exception as e: # print('\nfit error!:', e) # continue # with open(learn_path + 'topic_classifier-SVC' + str(fold_num) + '.pkl', 'wb') as out_file: # pickle.dump(topic_classifier, out_file) # try: predictions = np.zeros((len(x_test), y.shape[1])) for i in range(y.shape[1]): predictions[:, i] = np.array(txt_cnns[i].predict_text(test_index)) s = [ jaccard_score(y_test, predictions, average='micro'), accuracy_score(y_test, predictions, normalize=True), accuracy_score(y_test, predictions, normalize=False), f1_score(y_test, predictions, average='micro'), f1_score(y_test, predictions, average='macro'), f1_score(y_test, predictions, average='samples'), hamming_loss(y_test, predictions), label_ranking_loss(y_test, predictions) ] stats.append(s) print(stats[stats.length - 1]) # except Exception as e: # print('Eval error!:', e) fold_num += 1 prog.count() for col in stats.cols: print(col, np.mean(stats[col]))