def process_OOD(file_name): name = os.path.basename(file_name).split(".")[0] print("### " + name) print("```") model = Model(file_name) de = DE(model) stat = de.run() print("Time Taken : ", stat.runtime) stat.tiles() data_map = stat.median_spread() objs = stat.spit_objectives() headers = [obj.__name__.split("_")[-1] for obj in de.settings.obj_funcs] cluster_input = [headers] + objs print("") g = KMeans(k=2) clusters = g.run(cluster_input) med_spread_plot(data_map, headers, fig_name="img/gen_bin_" + name) plot_clusters(clusters, fig_name="img/bin_" + name, col_names=headers, s=50, edgecolors='none') print("```") print("![1](../../src/img/gen_bin_%s.png)" % name) return stat.runtime
def report(self, stats, sub_folder, fig_name): #headers = [obj.__name__.split("_")[-1] for obj in self.de.settings.obj_funcs] headers = ["softgoals", "goals", "costs"] med_spread_plot(stats, headers, fig_name="img/" + sub_folder + "/" + fig_name + ".png") return "img/" + sub_folder + "/" + fig_name + ".png"
def report(self, stats): headers = [ obj.__name__.split("_")[-1] for obj in self.de.settings.obj_funcs ] med_spread_plot(stats, headers, fig_name="img/costs/" + self.model.get_tree().name + ".png")
def process_ood(file_name): name = os.path.basename(file_name).split(".")[0] print("### " + name) print("```") model = Model(file_name) de = DE(model) stat = de.run() print("Time Taken : ", stat.runtime) stat.tiles() data_map = stat.median_spread() objs = stat.spit_objectives() headers = [obj.__name__.split("_")[-1] for obj in de.settings.obj_funcs] cluster_input = [headers] + objs print("") g = KMeans(k=2) clusters = g.run(cluster_input) med_spread_plot(data_map, headers, fig_name="img/gen_bin_"+name) plot_clusters(clusters, fig_name="img/bin_"+name, col_names=headers, s=50, edgecolors='none') print("```") print("![1](../../src/img/gen_bin_%s.png)"%name) return stat.runtime
def report(self, stats, sub_folder, fig_name): #headers = [obj.__name__.split("_")[-1] for obj in self.de.settings.obj_funcs] headers = ["root cost", "root benefit", "softgoals", "preset decisions cost"] headers = ["root cost", "root benefit", "softgoals"] med_spread_plot(stats, headers, fig_name="img/"+sub_folder+"/"+fig_name+".png") return "img/"+sub_folder+"/"+fig_name+".png"