def save(self, filename): """Saves the text map and serialized entities""" folder = self.get_folder() check_dir(folder) file_path = folder + sep + filename config = SafeConfigParser() # Add the save header s = self.__cfg_header config.add_section(s) config.set(s, "version", str(WORLD_VERSION)) # Serialize and save each entity s = self.__cfg_entities config.add_section(s) for entity in self.entity_manager.get_entities().values(): uid = entity.get_uid() data = self.entity_manager.serialize_entity(uid) config.set(s, str(uid), ord_bytes(data)) # Add the map content s = self.__cfg_map config.add_section(s) for x, y in enumerate(self.map): config.set(s, str(x), y) cfg_file = open(file_path, "w") config.write(cfg_file) cfg_file.close() self.redraw_map = True self.redraw_minimap = True self.__log.info("Saved world %s" % filename)
def data_problem(self, data, info = "Problem with data"): """Warnings about problem with data""" self.log.error("%s: %s" % (info, format_bytes(data))) if data != None: fail_folder = get_base_dir() + sep + UDP_FOLDER + sep check_dir(fail_folder) filename = fail_folder + str(round_int(time())) + ".udp" fail = open(filename, "w") fail.write(data) fail.close()
def list(self): """Returns the maps in current selected folder""" files = {} files_names = [] files_full = [] folder = self.get_folder() check_dir(folder) for name in listdir(folder): full = folder + sep + name if isfile(full): files[name] = full files_names.append(name) files_full.append(full) return files, files_names, files_full
type=int, default=5, help='number of classes in one training task') parser.add_argument('--save-path', default='/data/save_models/...') parser.add_argument('--gpu', default='0') parser.add_argument('--episodes-per-batch', type=int, default=8, help='number of episodes per batch') opt = parser.parse_args() set_gpu(opt.gpu) check_dir('./experiments/') check_dir(opt.save_path) log_file_path = os.path.join(opt.save_path, "train_log.txt") log(log_file_path, str(vars(opt))) (embedding_net, cls_head) = get_model(opt) #------------------------------------------ dataset_train = tieredImageNet(phase='train') dataset_val = tieredImageNet(phase='val') data_loader = FewShotDataloader dloader_train = data_loader( dataset=dataset_train, nKnovel=opt.train_way,